
Computer Science and Information Technology 4(3): 92-119, 2016 http://www.hrpub.org
DOI: 10.13189/csit.2016.040302

A Cognitive Walkthrough towards an Interface Model for
Shape Grammar Implementations

Joana Tching1,*, Joaquim Reis1, Alexandra Paio2

1Department of Computer Science and Information Technologies, ISCTE- University Institute of Lisbon, Portugal
2Department of Architecture, ISCTE- University Institute of Lisbon, Portugal

Copyright©2016 by authors, all rights reserved. Authors agree that this article remains permanently open access under the
terms of the Creative Commons Attribution License 4.0 International License

Abstract The present study arises from the interest in
computing as an important partner in the design process and
the new paradigms in design practice that emerge with the
use of computation. Shape Grammars (SG) are an example
of ruled-based systems that, used in applications in the field
of computational creativity, might assist architects, designers
and artists in the creative process, not only creating solutions
but also as a way of developing new ideas. However, SG
applications developed so far developed so far address
neither the specific work of creative projects nor the
computational knowledge and habits of the
designers-in-general. With this in mind, this research intends
to reveal our proposal of IM-sgi (the initials IM stand for
Interface Model and sgi for shape grammar
implementations), a model of interface for SG
implementations that can help SG to be introduced in the
project practice, as this is not a reality yet and could mean a
great contribution for new creative and complex architectural
and design projects. This paper presents the description of
the analysis used to define the IM-sgi model, with the result
of a Cognitive Walkthrough (CW) made to a group of SG
implementations and with the interaction model of Scott
Chase [1] as the basis to define the users and how they
communicate with the SG implementation.

Keywords Shape Grammars, Computational Design,
Computational Creativity, Interface Design

1. Introduction
The present paper has the purpose of presenting our

investigation in the field of SG and our creation of an
interface model for SG Implementations. It is organized in
four chapters, Introduction, Methodology, Results and
Conclusion

After a brief introduction to our investigation and its
objectives, we present the Methodology applied to
understand the existing SG implementations and which ones
seem to answer the interaction dynamics we believe are
needed for the user to understand SG potential when used in
creative projects. This was made using a CG to a group of

selected SG implementations, which were available for
manipulation, to be able to analyze the interaction modes that
are already available for SG use.

We then show the results of this CW and the conclusions
we were able to achieve.

The computational use of SG is the main field of study of
this work, which has the main objective of taking SG to the
design practice. We believe that SG can bring computational
creativity to architectural, design and artistic projects, if used
in computational implementations that are well received by
the professionals of these areas. Thus, SG can widely extend
the study of different creative solutions and be a partner in
creative decisions and proposals. Digital design and CAD
applications are widely used nowadays in architectural
projects and design. In creative areas, computational
applications have meant much more than faster and more
effective processes, comparing to those previously done.
They have also allowed the production of more complex and
ambitious projects, offering new ways of analysis, control
and representation, which would not be otherwise available
to designers, as more time and unaffordable resources would
be required.

Architectural design, in contrast to other artistic areas,
develops in different stages. These stages arise from the need
to solve a large number of issues, but also from the existing
rules and constraints to be complied, legal, environmental,
economic, aesthetical or other. The resolution of all these
constrains defines the final project outcome and the architect
demonstrates his creativity with his resolution of all the
involved issues in an aesthetic and functional product. By
dividing the project into its elementary parts, we can see that
the architect elects, consciously or intuitively, a set of rules
and makes choices that generate the final work.

There is a wide range of situations which are common to
the majority of the architectural projects and even the
specific issues of each project can be dealt with the use of SG
[2]. This is the reason why SG can explain design styles,
once the rules, which generate a certain shape, are
recognized. Overall, the architect’s intentions are translated
by rules, which are imposed by technical and legal needs of
the project and by the artist’s aesthetic and creative
intentions. Through the definition of a set of rules that

 Computer Science and Information Technology 4(3): 92-119, 2016 93

combine the technical and creative purposes of the architect,
SG can form a wide range of solutions that enhance the
creative response to a problem. Computational applications
that use SG can give the architect creative responses that he
would not achieve in other way.

Nowadays it is common practice to use computational
applications, which reproduce the architect’s manual design,
among other technical aspects of the project (such as
automatic measurements, thermal simulations,
three-dimensional visualization, etc.). Similarly, we believe
that the next step is the use of SG in the common practice.
This new way of working is a way of optimizing ideas, using
not only computational design but also computational
creativity.

Thus, how to achieve good usability? According to
Myers, there are 3 main points. First, know the users and
their tasks, through the analysis of these and contextualized
investigations; Second, ensure the adequacy of the design
through prototypes, tested by users with participatory and
iterative design; Third, making the final product usable and
efficient through the use of the interface, analyzing it
through various methods, heuristics, and others [3]. The
user interface (UI) is whatever the user finds in a computer
application, namely: functionality, content, labels,
presentation, layout, and navigation, speed of response,
documentation and help, among other. There are several
difficulties in defining the UI of an application. The design
of the UI is a creative process and often designers have
difficulty thinking how end users. Usability is linked to
learning, efficiency, productivity, ease of memorization, no
errors and satisfaction. Good usability is important, as it
reflects the notion of quality the user experiences when
using the computational application. Good usability allows
beginners to become effective more quickly, experts to be
more efficient, to reduce errors, the true needs to be
identified and for the computational application to be
successful on the market [3].

The importance and complexity of the user interface,
meaning the direct connection between user and application,
is so great that today there is a widespread use of toolkits,
Interface Builders and even components architectures.

Ultimately, a computer application is created for the
function to be performed and the functionality of a
computer application is defined by the set of tasks that it
provides to its users [4]. The importance of computer
applications is visible when it is used efficiently by the user
that is the computational application usability allows the
users to meet their objectives.

2. Methodology
For SG to have real potential of use, there is the need of

understanding how the users apply and manipulate SG and
their results. The model of interaction between SG and the
user developed by Scott Chase [1] is a very good example of
the studies on this matter. This model addresses
computational implementation of SG and how they must

respond to the users’ needs and objectives when using them.
But analyzing this and other models, there seems to be a

lack of guiding lines for an unambiguous interface for SG
implementations that fulfill the objectives of the existing
models of interaction, already addressing a large number of
issues about the needs of the SG users. The interface is the
main means of communication between the user and the SG
implementation. When this communication is not well
addressed, the efficient use of the SG implementation is
compromised and the problem solutions that could be
generated are unlikely to happen.

To study the issues about the interface, one must primarily
understand the type of users that are being addressed. Our
main interest is on the use of SG implementations on the
design practice.

The interface of a SG implementation, with the design
practice in sight as we intend to, must take into account that
architects are trained and feel comfortable using CAD
software, which interface is well adopted and stabilized. The
complexity of CAD systems and the type of tasks associated
impose a high-quality interface. In this sense, the best way to
insure that a SG implementation is well accepted and
understood by an architect is to apply the basics that the final
user is adapted to.

Thus, our proposal is the creation of IM-sgi, an interface
model that intends to respond to computing ergonomics and
suitability of architects needs that SG implementations
should respond. This model also takes into account other
types of users of SG, as designers, artists and students.

This model is being conceived with Human-Computer
Interaction (HCI) methods, with focus on the ones of
Interactive Design (ID) [5].

IM-sgi is our proposal to make the bridge between user
and SG implementation leading SG to the project practice
and leaving the analytical and educational fields where they
have mainly been used.

For this to take place there is a gap that needs to be
addressed: make the SG implementations clear and simple,
through a user directed interface. The answer to this
problem is a model of interface that reports the user needs.
Following this need it is developed an IM-sgi interface
model for SG implementations.

2.1. User Groups and Interface Needs

IM-sgi is based on the analysis of the Interaction model
of Scott Chase [1] that addresses the types of users for SG
and their way of relating to SG implementations. Chase’s
model of interaction opens the chance for combination with
a model for the Interface of SG implementations. The
interface has great importance for the success of SG
implementations, as it allows the connection of the
computational tool to the goal to accomplish with it.

According to Chase, there are several possible scenarios
for the control of SG implementations. The author believes
that there are three distinct entities: The creator of the
system, the designer and the computer.

94 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

Figure 1. Control scenarios for the development of Shape Grammar implementations [1]

The scenarios vary the level of control of each of these
three entities can control range from being totally user side
computer or entirely on the side. So, with the focus on the
user, the user may have full control, partial (sharing of the
control with the other two entities) or none.

Thus, studying the Scott Chase control scenarios and
with the perspective of SG use in creative projects, we
identified three main groups of users who relate directly
with a level of control scenario. As we have different
purposes, our groups differ from Chase’s groups. Instead of
focusing in the control, we focus on SG expertise. Instead
of Developer; Designer and Computer, our three groups are:
 Students - users that use SG in an exploratory

manner with the purpose of learning or simple
experimentation, which corresponds to Chase’
scenario 4 (the user only selects pre-existing
elements);

 Designers/Artists - users that apply SG for creative
projects, more simply or elaborately as needed or
according to their SG knowledge, corresponding to
Chase’ scenarios 2 and 3, where the user can create
and manipulate shapes and rules;

 Experts in SG - users with the ability to explore all
areas of the SG and their computer implementations,
which corresponds to Chase’ scenario 1, where the
user can control the entire implementation,
including its code.

Scenarios 5 and 6, where the computer system has full
control of events and only allows the user to be a spectator

of results, without any intervention, were excluded from
this study since they fall outside of the scope of studying
how to use SG in creative projects.

For each of these groups the interface should behave
distinctly, as the level of manipulation of SG, either in the
side of shapes or the rules, or both, is different.

The most basic use is more directed to the shape handling.
In the opposite direction, the greater the knowledge and
specific objective, the biggest is the focuses on rules
manipulation.

For a better definition of the stated above, a circular
scheme is presented, reflecting the various possibilities for
manipulation and control of SG implementations according
to these three groups. This scheme considers valid options
both for analytical and original SG.

This circular scheme must be read as follows: each
circumference section relates to the following inner and out
circumference sections that “touch” it. On the other hand,
the central axes of each section refer to the most complex
action possible for each user group.

The schematic representation of the relationships
between users and the interface was done in a circular
diagram in order to symbolize the various layers of
information involved. We can verify that the core is the
universal SG interpreter and that the outermost layer is the
interface. Among these layers we have, from the inside to
the outside, the generating elements of SG (shapes and
rules), how these elements are worked (selection,
introduction / manipulation) and the user groups.

 Computer Science and Information Technology 4(3): 92-119, 2016 95

Figure 2. Scheme of relations between users and IM-sgi interface model

The outer layer defines which type of interface is more
adequate to each group (Graphical User Interface or
Technical Interface). It also defines if we should have more
or less number of results and ability to manipulate, with the
signals “>” and “>”.

In this diagram it is also introduced a symbology that
allows us to see the level of control that each user group has

When analyzing a specific user group section, the outer
layer that connects to it describes the characterization of the
interface for that group, in the aspects of manipulation and
results, and the inner layers reflect how the user
manipulates Shapes and Rules to create SG.

For better understanding, next is presented the same
scheme, but with the illustration of the several possible
readings, one for each user group.

For better understanding, below Fig. 3, 4 and 5 illustrate
the depth of control for each group of users, illustrating
with color the segments that correlate for each group. Most
basic users (Students) have no direct access to anything but
the immediately following layer (Fig.3) Intermediate users
(Designers/Artists) can skip a layer and directly manipulate
“deeper” elements (Fig. 4). Finally, expert users (Experts in
SG) can skip all layers and directly manipulate the core.

The segmentation of users is not related to the creation of
limitations, it is related to the adjustment of the interface
accordingly to user's needs. This premise allows the
interface to be evolutionary and show levels of complexity
according to the tasks that user groups perform. This
adaptation allows the same computational application to
communicate differently and adjusted to each group of SG
users identified in this proposal.

Figure 3. Interaction scheme for "Students" group

In the above diagram it is indicated the type of interface
that is set to "Students", the most basic of the three, focused
on the use of SG in a perspective of learning and
exploration. This interface is intended to allow the selection
of pre-existing shapes and rules, already existing in the
computational application, so that the users can easily learn
and understand how they relate and create solutions. With
this purpose, the interface must have a greater number of
results and less possibilities of manipulation.

Figure 4. Interaction scheme for "Designers/Artists" group

96 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

Fig. 4 illustrates the type of interface set to
"Designers/Artists" group, which is considered the
intermediate mode regarding the knowledge level and need
for SG manipulation.

In the outermost layer it can be seen that the interface
needs to present a smaller quantity of results and shall
permit greater manipulation. At this level, Shapes and Rules
can be created by the user, as preexisting ones may not fill
all his needs.

Reading this diagram from the left side, users can handle
the application for Analytical SG, focusing on the Shapes,
and reading from the right, users can manipulate the
application for Original SG requiring handling the Rules.
For both the Shapes and Rules, it remains possible to work
only by selection, as in the most basic mode of interaction.

This is the privileged interface for users that can use SG
implementations for real architectural, design or artistic
projects. It requires a certain level of SG knowledge and
that’s why it is on the center of the scheme, as we can
consider it the one that would answer to the objectives of
our research – the use of SG in creative projects.

Figure 5. Interaction scheme for “Experts” group

Fig. 5 illustrates the type of interface set to "Experts of
SG" group, which is considered the expert mode regarding
the knowledge level of SG and programming knowledge.
These users are considered to be able to manipulate the
universal SG interpreter so that they can expand the
implementation abilities and range of solutions.

In the creation of a computer application, the interface is
a time consuming task and, frequently, the programmer, or
program designer, is not familiar with the true needs and
limitations of the end user. A model that specifies
categories of users of SG and their objectives, that clarifies
how each type of user makes use of the SG and what

barriers of communication need to be addressed increases
the possibilities of success of use of SG implementations.

2.2. IM-sgi: Towards an Interface Model for Shape
Grammar Implementations

With the difficulty associated to the creation of SG
implementations, it is possible that the user interface issue
has not received the deserved attention, when it plays a
major role in the success of the computer application.

IM-sgi main goal is the development of a friendly
interface model for SG that gives a response to the existing
communication failure between the user and the tool. Thus,
to address this problem the research used the following
methodology divided in 3 main phases.

Phase 1 is the preliminary analysis of the existing
implementations of Shape Grammars, with focus on their
interface. This analysis allows us to understand the types of
interaction that have been already used and tested and
understand their strengths and weak points.

Phase 2 is the definition of IM-sgi, structuring the model
of interface according to the types of users and their
interaction with the system, according to their different
goals. This model has its roots in the Interaction Model of
Scott Chase [1], as the author identifies the ways that
designers can interact with SG and how they relate with an
SG implementation. IM-sgi intends to connect these
interaction definitions and the application functioning, as
the interface is the means of communication between user
and machine.

Phase 3 is the creation of a prototype that follows the
IM-sgi guide lines so we can test its usefulness and
response to the issues addressed. This paper presents the
Phase 1 of the IM-sgi definition. As stated above, for a
systematization of the IM-sgi fundamentals, the first step to
be taken is a thorough analysis of the existing SG
implementations. Thereby, it is intended to understand how
the interface issues have been approached by these
implementations and which considerations may be made
from them, in terms of suitability to the user and performed
tasks.

This analysis, with the goal of gathering conclusions that
enable the proposal of an interface model settles on Human
Computer Interaction (HCI) methods, selected according to
the objectives of this paper. Since this discipline studies
interface designs, it is the one that can guide this process by
the most adequate principles.

When addressing the usability of existing SG
implementations, excluding the analysis of their capability
of application in the creative project (which is the
motivation for the present study), we realize that there is no
pattern in the fulfillment of HCI parameters, as a common
type of interface or a common communication logic does
not exist, even when the results are similar.

There are various HCI techniques for rating interfaces,
which can be applied to the intended analysis, thus it is very
important to decide which one helps us achieve the

 Computer Science and Information Technology 4(3): 92-119, 2016 97

expected conclusions in the most expeditious manner. A set
of techniques called Inspection Methods are considered
relevant to this study. They are analytical techniques which
allow the evaluation of the usability [6], that is, they refer to
the evaluation of how easy to learn users think a given
application is, the efficiency utilizing it after learning it, and
whether the use of the application is enjoyable. The
importance of the usability and methods to assure the same
have earned great notability after the 1990`s. The major
argument to the new introduced methods was the search for
methods that would involve less costs, since the tests of
usability are efficient, but in general, very expensive. The
use of inspection methods brought the urge to control costs,
which allowed the obtaining of results in a way that was
more rapid and economic than empirical techniques, which
involved user-applied usability tests, thus supporting in the
revision and analysis brought off by experts.

Since the analytical techniques of the inspection methods
do not directly involve the users, they are based on the
observation and analysis of actions that the users execute
and the results they expect. For a preliminary analysis of the
usability of the existing tools, these were the methods
considered the most adequate. Testing with users offers
excellent opportunity to observe how well adapted is the
interface to the user’s workplace; however, for the
preliminary analysis of the existing tools, it would cost a
time/manpower investment, which does not seem to be the
most recommended for the desired results. Tests with users
can indeed be of a great importance for the validation of the
effectiveness of the IM-sgi, which will be developed in
further work.

The vast majority of the interfaces are analyzed through
techniques that require expertise in the area of UI.
Examples of these techniques are the usability tests and the
heuristic evaluation. However, these techniques have
several limitations, once it is not always possible to have
specialists with the adequate background to carry out the
analysis. These techniques are also hard to make use of
before the interface is finalized, which requires the results
to be verified in an advanced phase, when it may be no
longer possible to implement major alterations [7], therefore
not being suitable for the outline of the proposed interface
model.

We intended, thus, to apply an Inspection Method, which
did not demand a UI specialist or tests with users. Within
these parameters, noteworthy is the method of Cognitive
Walkthrough (CW) proposed by [8], which is a
formalization of the possible thoughts and actions of a user
while interacting with the interface. This method emerges
from the adaption of Design Walkthrough techniques used
in Software Engineering, which involved manually testing
code sections to proof determined functionalities, with
cognitive models of learning by exploration. With the CW
the intention is to test the user’s cognitive activities
manually, with the purpose of analyzing how they are able
to learn to perform the tasks that the system supports, based
on the learning by exploration theory.

The CW method has evolved over the time and various
versions have been put together by several authors [9],
resulting in a successful and basic principle to simulate the
cognitive behavior of the user through the responses to
learning-related questions, manipulation and adoption of the
analyzed application.

In short, the CW enables the evaluation of the ease with
which the user completes a task with very little system
knowledge and the ease of learning and exploring the
interface.

In order to make this rating possible it is necessary to set
up an action script that reflects the manipulation and the
application by the user to achieve a certain goal. This
process shall be put to work when the application is still to
be developed, aiming the correction of determined aspects,
or it may be utilized after the application is already
developed, to determine the difficulties in the use of the
system to run determined scenarios.

As the purpose of the preliminary analysis of existing SG
is its usability, considering that this aspect directly relates to
the possible adoption of the SG by the designers, this
technique allows the perception of the relationship between
user and application in the features that are relevant to the
intended results, that is, in the ease of handling and use of
SG.

2.3. Phase 1: Cognitive Walkthrough Process
Organization

For an observation to the existing SG implementations,
that enable a critical analysis of the interfaces that these
possess, this chapter presents a comparative survey with the
implementations that could be performed and tested. Since
the key point to the analysis is the communication between
user and the computational tool, the simple theoretical
review of the functioning of the application or the image of
the interface has not been considered adequate for this study.
This premise is also essential for the correct use of the CW,
which usage can only be taken into account when the
handling of the application is possible.

In accordance to the SG implementations studied here,
the present analysis was performed by comparatively
testing the following implementations, organized
chronologically (Table 1).

Table 1. List of the applications used for the preliminary analysis of SG
implementations

Author Year Application
Name Reference

Miranda McGill 2001 Shaper 2D [10]

Jowers et al 2008 Subshape [11]

Trescak et al 2009 SGI [12]

LI et al 2009 SGDE [13]

Jowers et al 2010 SD2 [14]

Hiosl 2010 Spapper [15]

Once the implementations available for utilization had

98 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

been gathered, the process of the CW development was
followed to evaluate the interface in the context of specific
user-performed tasks. The CW session is formed by the
description of the interface design, it is considered an action
scenario, a user profile and, at last, a sequence of actions that
the user must successfully perform in order to complete the
desired task [16].

The CG process performed is made by a series of
definitions, preliminary analyses and, finally, application of
the method itself, that is, the effective testing of SG
applications.

The description of the process is presented next, with a
summary of the information and results. The analysis of the
selected SG implementations was made accordingly to four
steps: (1). Considered users; (2) Tasks for evaluation; (3)
Preliminary Analysis; (4) Development of Cognitive
Walkthrough.

The first step is the section of users that can give us a
wider range of aspects to analyze. From the groups pf users
defined above (Students; Designers/Artists and Experts in
SG) we defined that the ones to be considered are the
Designers/Artists. This choice allows us to consider the users
that use computational tools of vectorial and non-vectorial
drawing in their professional practice.

The second step is the definitions of the main tasks the
users can perform, defining a hierarchy of tasks for
evaluation. These are the tasks that will guide de CW,
meaning they are the ones to be used in step 4. We defined 5
tasks that sum the steps the users take to create and use a SG:

1. Creation of shapes
2. Creation of rules
3. SG Application
4. Manipulation of SG-obtained solutions
5. SG Alterations

The third step is the Preliminary Analysis, when it is
gathered and registered information considered relevant to
the analysis, through a list of important aspects to scope:

1. General Analysis (Table 2)
1.1. Type of Interface – if graphic or not
1.2. Dimensions – if SG are two-dimensional or

tridimensional, or both
1.3. First impression – analysis of the impact in the first

visualization of the general interface of the application
1.4. Learning – analysis of the ease of the tool

manipulation, if fast or slow, if difficult or easy without
script (this analysis was performed according to the actual
work processes of the designers, that is, verifying the
resemblance of the work with the computer-assisted drawing
applications, which are commonly utilized by this group of
users)

1.5. Graphics – graphical resemblance analysis with the
generality of the computer-assisted drawing applications

2. Usability analysis in accordance to the (ISO 9241-210,
2010) which defines the ergonomic principles of the
dialog between humans and information systems,
allowing to qualify the experience of the user when
performing the tasks defined above, these being (Table
3):

2.1.1. Suitability to the task
2.1.2. Ease of learning
2.1.3. Suitability to the individualization
2.1.4. Accordance with user’s expectations
2.1.5. Self-descriptive
2.1.6. Controllability
2.1.7. Error tolerance

Following the (ISO 9241-210, 2010), which defines the
scope of efficiency, satisfaction and effectiveness, this
analysis was performed using a rating scale of 5 points
according to the level of efficiency. According to this
standard, efficiency refers to the resources used by the user
to ensure the successful completion of a task. In the
performed CW, we measure the time taken to perform a task,
reflecting the ease of interpretation of the interface and
whether it was necessary to use the manual after failure to
solve the task. Thus, the outline evaluation scale used is:

1. Without success in meeting
2. With great difficulty
3. With some difficulty
4. Easily
5. Very easily

This analysis was made joining complementary
information found in referred bibliography in order to obtain
a broader perspective of the selected implementations
(MCKAY, et al., 2010).

Step four is the Development of the Cognitive
Walkthrough, performing the analysis of the selected
implementations according to the usability test with
predefined tasks.

In the next chapters, we describe our Cognitive
Walkthrough and the conclusions we gathered from the
testing of the SG computational applications available for
public use.

2.4. Phase 1_Step 3 – Preliminary Analysis

After the definitions from step 1 and 2, step 3 is the
preliminary test to the SG implementations selected, to
gather information about the implementations that are to be
used in the Cognitive Walkthrough (Table 2).

The next tables resume how the SG implementation
allows performing the tasks defined for the Cognitive
Walkthrough and their level of performance according to
Dialogue Principles of (ISO 9241-210, 2010) (Table 3 and
4).

 Computer Science and Information Technology 4(3): 92-119, 2016 99

Table 2. Preliminary Analysis to the selected SG implementations

Table 3. Usability Analysis

100 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

Table 4. Preliminary Analysis of the Tasks

 Computer Science and Information Technology 4(3): 92-119, 2016 101

Figure 6. Shape Drawing (from: Shaper 2D)

2.5. Phase 1_Step 4 - Development of the Cognitive
Walkthrough

The CG is here presented for each SG implementation
showing, for each one the 5 tasks to be performed in the CG,
a description and an illustration picture for each one.

2.5.1. Shaper 2D [10])

In 2001, Miranda McGill presented 2D Shaper, a visual
dynamic tool for use Shape grammars [10]. The purpose of
2D Shaper is the exploration of two-dimensional basic SG
in a learning perspective, and aiming the understanding of
the potential use of computer-based SG in the design area.

Task 1 - Shape creation
The pre-existing shapes are only selected and are

displayed as buttons on the left side of the display. We can
select the initial form and the form to which the rule is
applied to (Fig 6).

Task 2 - Rule creation and Task 3 - SG application
Rules are created "invisibly" to the user, which only

moves the shapes being submitted. Immediately and
automatically the result of both the rule and the final shape
created are shown.

The user can select the number of rule iterations and can
also choose to apply between one or two rules at a time (Fig.
7).

102 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

Figure 7. Rule creation and results visualization (from: Shaper 2D)

Task 4 - Solutions manipulation
The manipulation of the solutions is performed by changing the number of iterations through a dropdown menu that allows

choosing between 1 and 25 iterations (Fig 8).

Figure 8. Choice of rule iterations (from: Shaper 2D)

Task 5 - SG modification
Changes in the SG are performed in a simple and immediate way, by manipulating the position of the shapes, or by

changing the initial shape and the shape to which the rule is applied to.

 Computer Science and Information Technology 4(3): 92-119, 2016 103

2.5.2. Subshape [11]
Subshape was created with the purpose of creating a SG implementation based in visual correspondence. The author used

the Hausdorff distance, which is a measure of the maximum distance from a set of points to the nearest point in a second set.
Unlike any other SG implementation, this one works with bitmapped images.

Task 1 - Shape creation
Initial shapes are obtained by importing the bmp format image files, or directly opening an image files in black and white

(bps). We cannot draw directly in the application. When importing bmp images, we need to convert into bps, which is done
directly in the application (Fig 9).

Figure 9. Bitmaps as initial shapes (from: Subshape)

Task 2 - Rule creation
The application only allows the use of a substitution rule and for it to work it is necessary to follow exact the steps, or it

crashes. This could be a problem that only happens in the published version of the application. In order to define the left side
of the rule, we can open a bpm file through the Subshape menu, or the left side can be obtained by selecting an area of the
initial shape by using the Grab command in the same menu (Fig. 10).

104 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

Figure 10. Left side shape creation through selection of an area (from: Subshape)

After selecting the shape of the left side of the rule, we can choose in the dropdown list how to create the shape of the right
side. There are two options for this.

The first option is the Outline. This option copies the shape of the left side of the rule and it can be changed manually by
distortion rays applied graphically, meaning we can use invisible circles that distort the image (Fig. 11).

 Computer Science and Information Technology 4(3): 92-119, 2016 105

Figure 11. Visual transformation of the shape copied to define the right side shape (from: Subshape)

The second option is the command Substitute, which opens a new image file that is used as the right side of the rule (Fig.
12).

106 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

Figure 12. Bitmap file for definition of the right side of the rule (from: Subshape)

Task 3 – SG application:
To apply the SG rule, after defining the left and right shapes of the substitution rule, we must use the Find button, which

makes the match. If more than one match can be found, we can navigate between them to select the desired one. As seen in the
image bellow, the menu name is not clear for this function (Fig. 13).

 Computer Science and Information Technology 4(3): 92-119, 2016 107

Figure 13. Matching of the rule (from: Subshape)

After selecting the desired match we must use Apply Rule. We do not have a single menu to make the match and apply the
rule. One must jump from one side to the other of the interface (Fig. 14).

108 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

Figure 14. Substitution Rule application (from: Subshape)

Task 4 - Solutions manipulation and 5 - SG modification
After this process, there is no possibility of handling the

obtained drawing. To change the created SG we must repeat
the process from the beginning.

The menus are not organized according to the sequence of
actions to be taken, or set of actions related to the same task.
This CW was only possible following the user's guide, as it
was not understandable how to perform the correct order of
the commands without reading the manual instructions. Also,
if they are not performed in the correct sequence, the
application crashes.

2.5.3. SGI [12]
SGI is an interpreter for two dimensional SG that supports

real-time subshape detection and the author defined its
Graphical user interface with the purpose of having an easy
and visual manipulation of the shapes and rules.

Task 1 - Shape creation
This application displays multiple windows with

information on the shapes, rules and grammars. The logic of
creation of all elements is simple and straightforward, the
presentation of information is graphical and direct.

The creation of the shapes is performed using freehand
lines and curves. We can create multiple shapes, name them
and organize them. The left panel is used to organize and
create new shapes and the lower panel is used to check and
classify the shapes created (Fig. 15).

 Computer Science and Information Technology 4(3): 92-119, 2016 109

Figure 15. Shape creation and name configuration (from: SGI)

It is possible to create multiple shapes and use them for the rule creation (Fig. 16).

Figure 16. Shape definition - more than one allowed (from: SGI)

Task 2 - Rule creation
The creation of rules is very simple and it is shown graphically. In the Rule tab we can select rules of Substitution,

Modification and Addition (Fig. 17).

110 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

Figure 17. Rule type selection (from: SGI)

After selecting the rule type, the shapes for the left and right side of the rule are chosen from the shapes created previously.
The rule is graphically displayed (Fig. 18).

Figure 18. Choice of shapes for the left and right side of the rule (from: SGI)

The positioning of the drawn shapes is not taken into account, but the leftmost window can be used to manipulate the
shapes, both in position and in size. It is automatically viewed the changes of the rule (Fig. 19).

 Computer Science and Information Technology 4(3): 92-119, 2016 111

Figure 19. Direct manipulation of the objects for rule creation (from: SGI)

Task 3 – SG rule application
The SG application is made in the window Render with the choice of the number of iterations (Fig. 20).

Figure 20. SG rule application through selection of iterations number (from: SGI)

Task 4 - Solutions manipulation and 5 - SG modification
The manipulation of solutions is possible only in the change of the number of iterations of the rules created. If we want to

change the left or the right side of the rule, we must create a new rule.

2.5.4. SGDE [13]
SGDE was created by the authors with the purpose of implementing a system that allowed the user to edit and testing SG,

switching easily between the two types of activity, emphaticizing this with the graphic manipulation of the shapes.

112 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

Task 1 – Shape creation
The CW to this application was only possible using the manual, since there are menus that are not easily seen (they are

show as usually are shown the names of the windows, looking invisible). It has also become impossible to explore the
application without use of manual because of inaccurate tracking of the necessary steps leads to malfunctioning of the
software. The application allows creating shapes by drawing rectangles and lines in a limited drawing area. The procedure is
the same as the one for the creation of initial shapes and general shapes for the left and right of the rule (Fig. 21).

Figure 21. Creation of polygonal shapes (from: SGDE)

Task 2– Rule creation
Creating rules is accomplished through the design of the left and right side shapes, after a new rule creation command in

the Rule menu (Fig. 22).

Figure 22. Shape creation - drawn as in Fig. 41 (from: SGDE)

 Computer Science and Information Technology 4(3): 92-119, 2016 113

Task 3 – SG application
The application of a rule is performed on the Run menu, or using the buttons at the right. All possible outcomes are shown

in a new window. There are buttons to manipulate the display of the initial shape (from top, side views or backwards), but as
the shapes are only bi dimensional, this option does not give great advantages (Fig. 23).

Figure 23. Solutions visualization (from: SGDE)

Task 4 - Solutions manipulation and 5 - SG modification
There is no possibility of manipulating the obtained solutions. We can edit the initial shape and left and right shapes of the

rule, creating a new SG rule.

2.5.5. SD2 [14]
SD2 comes as an evolution of the Subshape, done by the same authors. In this newer implementation, the user can freely

draw shapes, instead of just importing them.

Task 1 – Shape creation:
In this application we can freely draw shapes. The design is performed using only free lines, which hinders the creation of

geometric shapes, but allows great artistic freedom (Fig. 24).

114 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

Figure 24. Free shape drawing (from: SD2)

Task 2 – Rule creation:
The creation of rules is performed by adding drawings to the left and right side of the rule (drawn directly or by opening

saved images). In the bottom pane are collected the opened or designed shapes, while in the right pane the rules are created
(Fig. 25).

Figure 25. Shape selection and rule definition (from: SD2)

Task 3 – SG application:
The application of the SG is performed by selecting the initial shape, the rule to apply and using of the “D” button

(design) where you can search for the rule match and apply the rule. All the rules are replacement ones (Fig. 26).

 Computer Science and Information Technology 4(3): 92-119, 2016 115

Figure 26. Match of the rule and SG application (from: SD2)

Figure 27. Solids creation (from: Spapper)

Task 4 - Solutions manipulation and 5 - SG modification
There is no the possibility of manipulating the solutions, changing what the SG created. Only the creation of new rules and

solutions is allowed.

2.5.6. Spapper [15]
This application is the most sophisticated of the group, in the sense that it is a plug-in for use in CAD applications. It allows

the creation of three dimensional shape grammars, with no restriction on the orientation of the objects. Task 1 – Shape
creation:

116 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

As this implementation is a plug-in for use in CAD applications, we followed the user guide and used the free software.
To accomplish the tasks the manual was essential, despite the software's resemblance with other CAD applications.

FreeCAD allows the creation of three-dimensional solids, and the tools of this application are used to create shapes (Fig. 27).

Task 2 – Rule creation:
The Spapper plug-in allows the drawing of shapes in the left and right side of the rule, using the FreeCAD commands to

create three-dimensional solids. The rules created use FreeCAD objects visualization and the handling is made with the
modification of the size parameters of the solids. However, there are a back and forward steps that do not make the use of the
tool very logic or user-friendly. We need to load the plug-in to open the windows that allow the creation of the left and right
shapes, but this action makes the drawing tools disappear. Thus, we need to reload the drawing tools, which make the plug-in
disappear and, after drawing the shapes needed, re-load the plug-in to be able to create the rules and SG. This means we
cannot have open all the tools needed during the entire process (Fig. 28).

Figure 28. Left and right side of rules creation (from: Spapper)

Task 3 – SG application:
After creating the rule for the left and right solids, we can apply the rule with the corresponding command. The buttons are

not obvious; as it was only possible to understand their function using the manual. It was also only possible to apply the rule
saving it, closing the application and re-uploading the saved rule.

The SG application window allows choosing the number of iterations and the number of desired solutions. It also allows
rule visualization (Fig. 29).

 Computer Science and Information Technology 4(3): 92-119, 2016 117

Figure 29. Shape application (from: Spapper)

Task 4 - Solutions manipulation
This is the only application that provides full handling of

the solutions. It is possible to manipulate the solids obtained
with total freedom. This is very interesting for the use of SG
as a creative partner and in the design / architecture project.

Task 5 - SG modification
As in most applications, we cannot directly change the

rules created. New rules have to be made with the desired
data from scratch.

After completing the CW through these six SG
implementations, it is important to stress that all of them
seem to be in an early stage of development or just for simple
manipulation/visualization of SG. They all seem to be fit for
educational purposes, rather than to professional
architectural or design projects.

3. Results
The present analysis has been carried out in accordance to

the purposes of the CW, that is, with the ease of learning and
the manipulation of the computer application in sight.
However, although out of the scope of this analysis’ goals, it
is interesting to point out a few understandings. It is very
important to state that most of the applications are rather
generic and simplified, not only concerning the interface but
also in its functioning.

According to the objectives set for this study, one can
easily assume that none of the tested applications would be
easily adopted for an effective use in design and architecture
creative projects. The lack of correspondence between these
applications and the ones that are generally used by these

groups of users can be pointed as a great obstacle to its
adoption, as shown below.

Since these users are characteristically used to CAD tools,
which have highly qualified interfaces, the non-resemblance
with these tools is one relevant aspect to point out. This
limitation can be found not only at the interface level, but
also in the way the tasks are performed. Though working
with SG can be rather specific, there is no resemblance, for
example, in the way the shapes are drawn in the tested
applications, neither there is one in the generic manipulation
of the applications, when the handling of the
computer-assisted drawing is generally established.

Specifically, the integration of Snapper [15] with a CAD
application is a good solution to address this issue.
Considering the SG applications as a plug-in for the CAD
tools may be an option, even though it is not reasonable to
consider it in our approach to the IM-sgi, as the use of SG is
much broader.

The Shaper 2D [10] is an application that stands out
because it offers a very easy handling and is very intuitive,
making direct object manipulation a reality. The fact that it is
very easy to use is a great help.

From the comparison table, we can see that SGDE [13]
has the general characteristics one would wish on a SG
computational application. But, as all the other
implementations, there is the need to make the interface
more appealing, more user-friendly and suitable to the
designers’ needs.

This Cognitive Walkthrough is a very important step in
our research, as it allows us to conclude that we cannot find
any resemblance or followed guidelines in the existing SG
applications. As we can find a considerable range of SG
computational applications, we could understand patterns in

118 A Cognitive Walkthrough towards an Interface Model for Shape Grammar Implementations

the way the authors address the tasks and the interface, but
that is not true.

There are common general issues that can be pointed after
our CG and that should guide our definition of an interface
model for SG implementations. There are four main
important conclusions:

1 – No resemblance with the common used computer
applications in the architectural and design fields. This
creates an immediate barrier to the use of these applications
for design purposes, as designers would have to learn new
ways to manipulate the applications;

2 – The interfaces are simple and outdated, lacking in
being appealing to the users we want to address, that are
sensible to visual style;

3 – Lack of organization between windows, menus and
buttons, many times making the user navigate through
different areas of the screen for a simple task;

4 – None of the applications show an interface that guides
the user through the sequence of tasks he should do to be
successful in creating and using SG.

With the CG performed, we have a starting point of
important issues that IM-sgi should answer. As defining the
interface is a very big time consuming task, we believe that
with IM-sgi we address the issues that are usually left behind
when developers create the SG implementations and help
these implementations take a leap forward, leaving the
investigational field to enter the design practice field.

4. Conclusions
This work aims to help SG implementations to effectively

enter in the design practice and become a relevant way of
exploring ideas and design solutions.

The use of computer applications in the fields of design
and architecture has suffered changes through time. Starting
with the computer performing the handwork of the designer,
the evolution has gone in the direction of becoming a
collaborator in the design process [19]. According to Akin,
the fact that computers serve mostly as a sophisticated design
tool can be linked, not only to the lack of technological
development, but also to the fact that it is intimidating for
creative designers to use computer applications in their daily
work. The author believes that the main problem lies in the
fact that systems are developed to perform what the designer,
slower or less accurate, is able to accomplish without using
the computer. What occurs is that the CAD computing
applications tend to not consider the human interface aspects,
and moreover the trends of cognitive capacities of the
designers.

The best way for the designer of interfaces to think about
the new user is to as an expert in its non-computational
domain. This view is positive so that the tools support the
user's activities like the work in the “real world” [20]. For
experienced users, the main issue in using a new computer
application is in the relation of the learning time versus the
benefits it brings. The important thing is the perception of

gains in productivity or efficiency in time, taking into
account the efforts to be familiar with the tool. If these gains
are not met or understood, preference is given to the known
methods, even if inefficient.

Having in mind the paradigm of the use of SG in the
design process, we want to propose a model to address the
interface issues related to the use of SG by architects,
designer, artist and students, as they all interact differently
and with different purposes.

In this text we present our analysis of existing SG
computational implementations that we could access and test.
In the Methodology chapter we show how we followed an
organized Cognitive Walkthrough, from which we describe
then the Results and point our Conclusions. This work was
done as a preliminary analysis needed for the definition of
the desired interface model.

According to the three phases described for the definition
of the IM-sgi, further work is to develop the Phases two and
three, defining rigorously the IM-sgi model and a graphic
interface prototype according to the IM-sgi model that can
adapt to different categories of use, user needs and objectives.
This prototype is to be tested through interviews to different
categories of users (designers/students/experts in SG) for
validation of suitability.

REFERENCES
[1] S. Chase, A model for user interaction in grammar-based

design systems, vol. Automation in Construction 11, Elsevier,
2002, pp. 161-172.

[2] J. Tching, J. Reis and A. Paio, Shape Grammars for Creative
Decisions, 2013.

[3] B. MyerS, A Quick Overview of Human-Computer Interaction,
2008.

[4] F. Karray, M. Alemzadeh, J. Saleh and M. Arab,
Human-Computer Interaction: Overview on State of the Art,
2008.

[5] Y. Rogers, S. Helen and J. Preece, Interaction Design - Beyond
Human-Computer Interaction, 3rd Edition, 2011.

[6] D. G. Novick , T. Hollingsed and L. Martin , Usability
inspection methods after 15 years of research and practice
after 15 Years of Research and Practice, Texas: University of
Texas at el Paso, 2007.

[7] R. Jeffries, J. R. Miller, C. Wharton and K. M. Uyeda, User
Interface Evaluation in the Real World: A Comparison of
Four Techniques, New Orleans: Hewlett-Packard Company,
1991.

[8] P. Polson, C. Lewis, J. Riemen and C. Wharton, Cognitive
Walkthroughs: A Method for Theory-Based Evaluation of
User Interfaces, Colorado: University of Colorado Boulder,
1991.

[9] T. Mahatody, M. Sagar and C. Kolski, State of the Art on the
Cognitive Walkthrough Method, Its Variants and Evolutions,

 Computer Science and Information Technology 4(3): 92-119, 2016 119

vol. 26, International Journal of Human-Computer Interaction,
2010, pp. 741-785.

[10] M. C. Mcgill, A Visual Approach for Exploring
Computational Design, 2001.

[11] I. Jowers, D. HogG, A. Mckay, H. H. Chau and A. d.
Pennington, Shape detection with vision: implementing shape
grammars in conceptual design, T. U. o. Strathclyde, Ed.,
Annecy, France: Eurographics Workshop on Sketched-Bases
Interfaces and Modeling, 2008, pp. 11-13.

[12] T. Trescak, I. Rodriguez and M. Esteva, General Shape
Grammar Interpreter for Intelligent Designs Generations,
Tianjin: IEEE, 2009, pp. 235-240.

[13] A. I.-K. Li, H. H. Chau, C. Liang and Y. Wang, A Prototype
System for Developing Two and Three Dimensional Shape
Grammars, Design Computing @ Cognition Workshop,
2009.

[14] I. Jowers, D. Hogg, A. Mckay, H. H. Chau and A. d.
Pennington, Shape detection with vision: implementing shape

grammars in conceptual design, London: Res Eng Design,
2010.

[15] F. R. Hoisl, Visual, Interactive 3D Spatial Grammars in CAD
for Computational Design Synthesis, Munique, 2012.

[16] C. Wharton, J. Rieman, C. Lewis and P. Polson, The Cognitive
Walkthrough Method: A Practitioner's Guide, Colorado:
Istitute of Cognitive Science, University of Colorado, 1993.

[17] ISO 9241-210, "ISO Standards," Usability Partners -
Stockholm, 2010. [Online]. Available: http://www.usabilityp
artners.se/about-usability/iso-standards. [Accessed 11 2014].

[18] A. Mckay, K. Shea, S. Chase, A. LI, T. Trescak, F. Hoisl, I.
Jowers, C. Ertelt and R. Corriera, Shape Grammar
Implementation: From Theory to useable software, Stuttgart:
Design Computing and Congnition Workshop, 2010.

[19] Ö. Akin, What's Wrong With CAAD? Pittsburgh, 1993.

[20] J. M. Carroll, HCI Models, Theories and Frameworks, San
Francisco: Morgan Kaufmann Publishers, 2003.

	1. Introduction
	2. Methodology
	3. Results
	4. Conclusions
	REFERENCES

