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Schwarzenberger bundles on smooth projective varieties

Enrique Arrondo, Simone Marchesi and Helena Soares

Abstract

We define Schwarzenberger bundles on smooth projective varieties and we introduce the notions
of jumping subspaces and jumping pairs of (F0,OX)-Steiner bundles. We determine a bound
for the dimension of the set of jumping pairs. We classify those Steiner bundles whose set of
jumping pairs has maximal dimension by proving that they are Schwarzenberger bundles.

Keywords Projective varieties; Schwarzenberger bundles; Steiner bundles
2010 Mathematics Subject Classification 14F05, 14N05

Introduction

Steiner vector bundles on projective spaces were first defined by Dolgachev and Kapranov
in [DK93] as vector bundles E fitting in an exact sequence of the form

0→ OPn(−1)s → OtPn → E → 0.

The authors use them to study logarithmic bundles E(H) = Ω(logH) associated to an arrange-
ment H of k hyperplanes with normal crossing. They show that logarithmic bundles are rank
n Steiner vector bundles on Pn and get a Torelli type theorem. More precisely, they prove that
for k ≥ 2n+ 3 the correspondence H → E(H) is bijective except when all hyperplanes osculate
the same rational normal curve. In this case, E(H) is the Schwarzenberger bundle associated
to this curve, as first constructed in [Sch61].

In [Val00], Vallès generalized this result for k > n+1. Whereas the main tool in the first paper
is the study of the jumping lines of E(H), Vallès focus on a special family of hyperplanes, called
unstable hyperplanes. He proves that if a Steiner bundle E has at least t+2 unstable hyperplanes
in general linear position then all hyperplanes osculate a rational normal curve and E is the
Schwarzenberger bundle associated to this curve. Sharing the same idea of unstable hyperplanes,
Ancona and Ottaviani show that a Steiner bundle is logarithmic if and only if it contains at
least t + 1 unstable hyperplanes (see [AO01]). Moreover, Vallès sees that this correspondence
between Schwarzenberger bundles and rational normal curves is also bijective in the following
sense: given a rational normal curve, one can construct the associated Schwarzenberger bundle
and reconstruct the curve from its set of unstable hyperplanes.

The generalization of the above correspondence was recently addressed by the first author
in [Arr10]. Arrondo introduces the notion of Schwarzenberger bundles on Pn of arbitrary rank
and the ensuing generalization of unstable hyperplanes, which he calls jumping subspaces. A
Schwarzenberger bundle will still be a Steiner bundle and in his paper Arrondo studies the
problems of when is the latter a Schwarzenberger bundle and the related Torelli-type theorem.
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He gets a sharp bound for the dimension of the set of jumping hyperplanes and shows that in
the case of maximal dimension all Steiner bundles are Schwarzenberger bundles.

In the end of his work, Arrondo proposes to use the definition of Steiner bundles given in
[MRS09] to get a natural definition of Schwarzenberger bundles on other smooth projective
varieties. In [AM14], the results in [Arr10] are extended for the Grassmannian variety G(k, n)

and are the main motivation of the present paper. Our goal is to generalize the work in [Arr10]
and [AM14] to any smooth projective variety X.

An (F0, F1) - Steiner bundle E on X is a vector bundle on X defined by an exact sequence
of the form 0 → F s0 → F t1 → E → 0, where (F0, F1) is a strongly exceptional ordered pair
of vector bundles on X such that F∨0 ⊗ F1 is generated by global sections. These bundles
were introduced in [Soa08] and a cohomological characterization can be found in [MRS09].
In the above cited papers, Arrondo and Marchesi define Schwarzenberger bundles on Pn and
G(k, n). They are, respectively, (OPn(−1),OPn) and (U ,OG(k,n))-Steiner bundles obtained from
a triplet (Z,L,M), where Z is any projective variety, and L, M are globally generated vector
bundles on Z. In order to generalize these concepts in a natural way we will restrict our
study to (F0,OX)-Steiner bundles. Denoting f0 = rk(F0), a Schwarzenberger on X will be
a Steiner bundle obtained from the data (Z,ψ, L), where Z is a projective variety provided
with a non-degenerate linearly normal morphism ψ : Z → G(f0, H

0(F∨0 )), and L is a globally
generated vector bundle on Z. When X is the Grassmannian variety G(k, n) (which includes the
projective space case), we get a Schwarzenberger bundle according to Arrondo and Marchesi,
when ψ : Z → Pn = P(H0(M)∗). Moreover, this definition will allow us to generalize the notion
of an (a, b)-jumping pair for an (F0,OX)-Steiner bundle E and prove a Torelli-type theorem
when a = 1 and b = f0. That is we will show that, in the case when the set J̃(E) of (1, f0)-
jumping pairs of E (endowed with a natural structure of a projective variety) has maximal
dimension, E is a (Z,ψ, L)-Schwarzenberger bundle and the Z = J̃(E).

Next we outline the structure of the paper. In Section 1 we recall the definition of Steiner
bundles on smooth projective varieties and their basic properties. In particular, we give an
equivalent definition in terms of linear algebra and get a low bound for the rank of an (F0,OX)-
Steiner bundle.

In Section 2 we recall the construction of Schwarzenberger bundles on the Grassmann variety
and define Schwarzenberger bundles on smooth projective varieties (Definition 2.1).

In Section 3 we introduce the notions of a jumping subspace and of a jumping pair of a
Steiner bundle on X (Definition 3.1) and endow the set of all jumping pairs with the structure
of a projective variety. We furthermore give a lower bound for its dimension.

In Section 4 we obtain an upper bound for the dimension of the jumping variety by studying
its tangent space at a fixed jumping pair (see Theorem 4.1).

In Section 5 we provide a complete classification of Steiner bundles whose jumping locus has
maximal dimension. In particular, we show that they all are Schwarzenberger bundles (Theorem
5.1).

Acknowledgements. The three authors were partially supported by Fundação para a Ciência e
Tecnologia, projects “Geometria Algébrica em Portugal”, PTDC/MAT/099275/2008 and “Comu-
nidade Portuguesa de Geometria Algébrica”, PTDC/MAT-GEO/0675/2012; and by Ministerio
de Educación y Ciencia de España, project "Variedades algebraicas y analíticas y aplicaciones",
MTM2009-06964. The second author was supported by the FAPESP postdoctoral grant num-
ber 2012/07481-1. The third author is also partially supported by BRU - Business Research
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Campinas. The authors would like to thank Margarida Mendes Lopes and Marcos Jardim for
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1 Steiner bundles on smooth projective varieties

In this section we recall the definition of Steiner bundles on smooth projective varieties
introduced in [MRS09] and we study some of their properties needed in the sequel.

Let us first fix some notation.

Notation 1.1. We will always work over a fixed algebraically closed field k of characteristic
zero and X will always denote a smooth projective variety over k.

The projective space P(V ) will be the set of hyperplanes of a vector space V over k or,
equivalently, the set of lines in the dual vector space of V , denoted by V ∗.

We will write G(r − 1,P(V )) for the Grassmann variety of (r − 1)-linear subspaces of the
projective space P(V ). This is equivalent to consider the set G(r, V ∗) of r-dimensional subspaces
of the vector space V ∗.

The dual of a coherent sheaf E on X will be denoted by E∨. If E is a vector bundle on X
then, for each x ∈ X, Ex is the fibre over x and hi(E) denotes the dimension of Hi(E).

In order to define Steiner bundles on a smooth projective variety X we will need the following
definition.

Definition 1.2. Let X be a smooth projective variety. A coherent sheaf E on X is exceptional
if

Hom(E,E) ' k,
Exti(E,E) = 0, for all i ≥ 1.

An ordered pair (E,F ) of coherent sheaves on X is called an exceptional pair if both E and F
are exceptional and

Extp(F,E) = 0, for all p ≥ 0.

If, in addition,
Extp(E,F ) = 0 for all p 6= 0,

we say that (E,F ) is a strongly exceptional pair.

Definition 1.3. Let X be a smooth projective variety. An (F0, F1)-Steiner bundle E on X is
a vector bundle on X defined by an exact sequence of the form

0→ S ⊗ F0 → T ⊗ F1 → E → 0,

where S and T are vector spaces over k of dimensions s and t, respectively, and (F0, F1) is an
ordered pair of vector bundles on X satisfying the two following conditions:

(i) (F0, F1) is strongly exceptional;

(ii) F∨0 ⊗ F1 is generated by global sections.

Examples 1.4.
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(a) A Steiner bundle, as defined by Dolgachev and Kapranov in [DK93], is an (OPn(−1),OPn)-
Steiner bundle in the sense of Definition 1.3. More generally, vector bundles E with a
resolution of type

0→ OPn(a)s → OPn(b)t → E → 0,

where 1 ≤ b− a ≤ n, are (OPn(a),OPn(b))-Steiner bundles on Pn (see [MRS09]).

(b) Consider the smooth hyperquadric Qn ⊂ Pn+1, n ≥ 2, and let Σ∗ denote the Spinor bundle
Σ on Qn if n is odd, and one of the Spinor bundles Σ+ or Σ− on Qn if n is even. The
vector bundle E on Qn defined by an exact sequence of the form

0→ OQn
(a)s → Σ∗(n− 1)t → E → 0,

for any 0 ≤ a ≤ n− 1, is an (OQn(a),Σ∗(n− 1))-Steiner bundle (see [MRS09]).

(c) Any exact sequence of vector bundles on the Grassmann variety G := G(r − 1,P(V )) of
the form

0→ Us → OtG → E → 0,

where U denotes the rank r universal subbundle of G, defines a (U ,OG)-Steiner bundle E
on G. These bundles were studied by Arrondo and Marchesi in [AM14].

(d) Let X = P̃2 be the blow-up of P2 at three points p1, p2 and p3. Let KX = −3L + E1 +

E2 + E3 denote the canonical divisor, where L is the divisor corresponding to a line not
passing through any of the three points, and Ei is the exceptional divisor of the blow-up
at the point pi, i = 1, 2, 3. Take F0 = −2L+ E1 + E2 + E3 and F1 = OX .
Observe that H0(F∨0 ) is globally generated and is the set of conics that passes through
three points. In particular, h0(F∨0 ) = 3 = dimX + 1.
Let us now prove that the pair of vector bundles (F0, F1) is strongly exceptional. Since
both F0 and F1 are line bundles on a projective variety, the fact that Hom(F0, F0) =

Hom(OX ,OX) = C and Exti(F0, F0) = Exti(OX ,OX) = 0, i = 1, 2, is straightforward.
Using Riemann-Roch formula we obtain χ(F∨0 ) = 3 and thus h1(F∨0 ) = h2(F∨0 ). Since
H2(F∨0 ) = H0(KX+F0)∗ = H0(−5L+2E1 +2E2 +2E3)∗ = 0 we get that Exti(F0,OX) =

Hi(F∨0 ) = 0, for i = 1, 2.
From the fact that H0(F∨0 ) 6= 0 and Hom(F0, F0) = H0(F0 ⊗ F∨0 ) 6= 0 it follows that
Hom(OX , F0) must be trivial. Furthermore, Ext2(OX , F0) = H2(F0) = H0(−F0+KX)∗ =

H0(−L)∗ = 0. Then, it also holds Ext1(OX , F0) = H1(F0) = 0, for we have χ(F0) = 0.
So, we have just proved that any vector bundle E fitting in a sequence of type

0→ F s0 → OtX → E → 0

is an (F0,OX)-Steiner bundle on the blow-up X.

The following proposition gives a characterization of (F0, F1)-Steiner bundles on a smooth
projective variety X by means of linear algebra (recall also Lemma 1.2 in [Arr10] or Lemma 1.7
in [AM14]). This interpretation will play an essential role for studying Schwarzenberger bundles
on X.

Proposition 1.5. To give an (F0, F1)-Steiner bundle on a smooth projective variety X

0→ S ⊗ F0 → T ⊗ F1 → E → 0,
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is equivalent to give a linear map ϕ : T ∗ → S∗ ⊗H0(F∨0 ⊗ F1) such that, for each x ∈ X, the
induced linear map

ϕ̃x : T ∗ ⊗ (F1)∗x → S∗ ⊗ (F∨0 )x

is surjective.

Proof. Dualizing the sequence defining the Steiner bundle E we see that to give a map S⊗F0 →
T ⊗ F1 is the same as to give a map ϕ̃ : T ∗ ⊗ F∨1 → S∗ ⊗ F∨0 .

Twisting by F1, taking cohomology and using condition (ii) of Definition 1.3, this is clearly
equivalent to a linear map ϕ : T ∗ → S∗⊗H0(F∨0 ⊗F1) with fibers ϕx : T ∗ → S∗⊗H0((F∨0 )x⊗
(F1)x) ∼= S∗ ⊗ (F∨0 )x ⊗ (F1)x. Hence, ϕx induces a linear map ϕ̃x : T ∗ ⊗ (F1)∗x → S∗ ⊗ (F∨0 )x
and, moreover, the map S ⊗ F0 → T ⊗ F1 is injective if and only if ϕ̃x is surjective for each
x ∈ X.

In what follows, ϕ will always denote the linear map associated to an (F0, F1)-Steiner bundle
introduced in Proposition 1.5.

Lemma 1.6. Let E be an (F0, F1)-Steiner bundle on a smooth projective variety X. Then the
following properties are equivalent:

(i) ϕ is injective.

(ii) H0(E∨ ⊗ F1) = 0.

(iii) E cannot split as EK ⊕ (K∗ ⊗ F1), where 0 6= K ⊂ kerϕ ⊂ T ∗ is a vector space.

Moreover, if ϕ is not injective then EK is the (F0, F1)-Steiner bundle corresponding to the
map T ∗/K → S∗ ⊗ H0(F∨0 ⊗ F1). In particular, when K = kerϕ, there is a splitting E =

Ekerϕ ⊕ ((kerϕ)∗ ⊗ F1), Ekerϕ is the (F0, F1)-Steiner bundle corresponding to the inclusion
Imϕ ↪→ S∗ ⊗H0(F∨0 ⊗ F1) and H0(E∨kerϕ ⊗ F1) = 0.

Proof. To see that (i) is equivalent to (ii), it is enough to observe that, after dualizing and
twisting by F1 the exact sequence defining E, we get a short exact sequence

0→ E∨ ⊗ F1 → (F∨1 )t ⊗ F1 → (F∨0 )s ⊗ F1 → 0.

So, taking cohomology and using the fact that (F0, F1) is an exceptional pair, we see that ϕ is
injective if and only if H0(E∨ ⊗ F1) = 0.

Now, if E splits as EK ⊕ (K ⊗ F1), for some vector space K ⊂ kerϕ ⊂ T ∗, then there is a
non-trivial morphism E → F1, i.e. H0(E∨ ⊗ F1) 6= 0. This proves that (i) implies (iii).

Reciprocally, suppose ϕ is not injective and let 0 6= t̃ ∈ kerϕ ⊂ T ∗. There is a commutative
triangle of linear maps

T ∗

��

ϕ // S∗ ⊗H0(F∨0 ⊗ F1)

T ∗/t̃

ϕ′

77

which, by Proposition 1.5, induces a commutative triangle

T ∗ ⊗ (F1)∗x

��

ϕ̃x // // S∗ ⊗ (F∨0 )x

T ∗/t̃⊗ (F1)∗x

ϕ̃′x

77 77
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In particular, we see that ϕ′ is a linear map such that ϕ′x induces a surjective linear map
ϕ̃′x : T ∗⊗ (F1)∗x → S∗⊗ (F∨0 )x. Therefore, ϕ

′ defines an (F0, F1)-Steiner bundle Et̃ and we have
a commutative diagram

0

��
0 // S ⊗ F0

//
(
T ∗/t̃

)∗ ⊗ F1
//

��

Et̃
//

��

0

0 // S ⊗ F0
// T ⊗ F1

//

��

E // 0

〈t̃〉∗ ⊗ F1
∼= F1

��
0

From the snake’s lemma we immediately deduce that the morphism Et̃ → E is injective and
that its cokernel is isomorphic to F1. Hence, the diagram above can be completed as follows:

0

��

0

��
0 // S ⊗ F0

//
(
T ∗/t̃

)∗ ⊗ F1
//

��

Et̃
//

��

0

0 // S ⊗ F0
// T ⊗ F1

//

��

E //

��

0

〈t̃〉∗ ⊗ F1
∼= F1

��

F1

��
0 0

Now, applying the functor Hom(F1,−) to the exact sequence that defines E (the middle row in
the diagram), it follows that Hom(F1, E) ∼= kt. Applying the same functor to the first row and
the right column in the diagram, we get that Ext1(F1, Et̃) = 0. Thus, E splits as EK⊕(K∗⊗F1),
where by construction K = 〈t̃〉∗ ⊂ kerϕ ⊂ T ∗.

The last statements follow directly from Proposition 1.5 and the equivalences just proved.

The previous lemma motivates the following definition.

Definition 1.7. An (F0, F1)-Steiner E is called reduced if one of the properties in Lemma
1.6 hold. The (F0, F1)-Steiner bundle E0 := Ekerϕ is called the reduced summand of E. In
particular, E is reduced if and only if it coincides with its reduced summand.

Examples 1.8.

(a) Any (OPn(a),OPn(b))-Steiner bundle on Pn of rank n is reduced. If this was not the
case, the previous lemma would imply that there would exist an (OPn(a),OPn(b))-Steiner
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bundle Ekerϕ of rank less than n, contradicting Proposition 1.11 below (or Proposition 3.9
in [DK93]).

(b) Let s ≤ k + 1. Then, the following is an exact sequence on the Grassmannian variety
G := G(k,P(V )), with V a vector space of dimension n+ 1:

0→ Us → Os(n+1)+r
G → Qs ⊕OαG → 0,

with r ≥ 0, and Q is the quotient bundle on G. If r > 0 then Qs⊕OrG is a (U ,OG)-Steiner
bundle on G that is not reduced (see [AM14], Theorem 2.13).

From now on, and in order to generalize the results in [AM14], we will restrict our study to
(F0,OX)-Steiner bundles on a smooth projective variety X.

Given an (F0,OX)-Steiner bundle, F∨0 is a globally generated vector bundle on X and hence
we have an exact sequence of vector bundles on X:

0 −→ F0 −→ H0(F∨0 )∗ ⊗OX −→ Q −→ 0. (1)

When ϕ is surjective we can determine all (F0,OX)-Steiner bundles.

Proposition 1.9. Let E be an (F0,OX)-Steiner bundle on a smooth projective variety X. Then,
ϕ is surjective if and only if E ∼= (S ⊗Q)⊕OpX , for some p ≥ 0.

Proof. Consider the following commutative diagram:

0 // E∨

��

// T ∗ ⊗OX

ϕ⊗idX
��

// S∗ ⊗ F∨0
'
��

// 0

0 // S∗ ⊗Q∨ // S∗ ⊗H0(F∨0 )⊗OX // S∗ ⊗ F∨0 // 0

Suppose ϕ is surjective. If E is reduced then ϕ is bijective and it follows from the above
diagram that E ∼= S⊗Q. If E is not reduced then there is a splitting E = E0⊕ ((kerϕ)∗⊗OX),
where E0 is the reduced summand of E and the (F0, F1)-Steiner bundle corresponding to the
bijection Imϕ−̃→S∗⊗H0(F∨0 ) (recall Lemma 1.6). Hence, E0 = S⊗Q and E = (S⊗Q)⊕OpX ,
with p = dim(kerϕ) = t− sh0(F∨0 ).

Conversely, suppose that E ∼= (S ⊗ Q) ⊕ OpX , for some p ≥ 0. If p = 0 then E ∼= S ⊗ Q
and hence ϕ ⊗ idX is bijective. In particular, ϕ is bijective and thus surjective. If p > 0 then
E is not reduced, S ⊗Q is its reduced summand and p = dim(kerϕ). In particular, we have a
diagram

T ∗

π

��

ϕ // S∗ ⊗H0(F∨0 )

T ∗/(kerϕ)

ϕ′

77
,

with π and ϕ′ surjective maps. Then ϕ is also surjective.

Definition 1.10. Let E be an (F0,OX)-Steiner bundle on a smooth projective variety X. E
is a trivial (F0,OX)-Steiner bundle (TSB) if ϕ is surjective, i.e. if E ∼= (S ⊗Q)⊕OpX , for some
p ≥ 0.
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Next proposition determines a low bound for the rank of an (F0,OX)-Steiner bundle which
is not TSB, and thus a necessary condition for its existence.

Theorem 1.11. Let E be a non-TSB (F0,OX)-Steiner bundle on a smooth projective variety
X such that each Chern class of S ⊗Q is non-zero, where Q is as defined in (1). Then

rk(E) ≥ dimX.

Proof. Suppose E is reduced and consider the following diagram:

0

��

0

��
0 // E∨

��

// T ∗ ⊗OX

ϕ⊗idX
��

// S∗ ⊗ F∨0
'
��

// 0

0 // S∗ ⊗Q∨

��

// S∗ ⊗H0(F∨0 )⊗OX

��

// S∗ ⊗ F∨0 // 0

S∗⊗H0(F∨0 )
T∗ ⊗OX

��

' // S
∗⊗H0(F∨0 )

T∗ ⊗OX

��
0 0

Then rk(E) ≤ s · rk(Q), with rk(E) = s · rk(Q) if and only if E ∼= S ⊗Q. Since E is non-TSB
then we must have rk(E) < s · rk(Q).

Now, let α be the vector bundle morphism defined by

S ⊗ F0
α−→ T ⊗OX 99K E.

Let f0 = rk(F0) and consider the degeneracy locus of α,

Dα = {x ∈ X | rk(αx) ≤ sf0 − 1} ,

i.e. the set of points x of X such that the rank of the morphism αx is not maximal. We know
that E is a Steiner bundle if and only if α is injective in each fiber, that is, if and only if Dα = ∅.

By Porteous’ formula we have that the expected codimension of the degeneracy locus is equal
to

t− sf0 + 1 = rk(E) + 1.

Hence, it is clear that when rk(E) + 1 > dimX, or equivalently, when rk(E) ≥ dimX, we can
ensure that α is injective.

Otherwise, when rk(E) + 1 ≤ dimX, i.e. rk(E) < dimX, the degeneracy locus will be
empty if and only if its fundamental class, given by the Chern class cr+1(S ⊗Q), is zero. From
our hypothesis on the Chern classes of S ⊗ Q, this holds if and only if r + 1 > rk(S ⊗ Q), i.e
rk(E) ≥ s · rk(Q), leading us to a contradiction.

Therefore, rk(E) ≥ dimX.
If E is not reduced then there is a splitting E = EK ⊕ (K∗ ⊗OX), where EK is a reduced

(F0,OX)-Steiner bundle. So by the previous argument, rk(E) ≥ rk(EK) ≥ dimX.
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Remark 1.12. Let us analyze in more detail the reason we required all Chern classes of S⊗Q
to be non-zero.
Suppose, on the contrary, that there exists a zero Chern class, i.e. ci(S ⊗ Q) = 0 for a fixed
i. Observe that it is always possible to obtain, by Porteous formula as before, a short exact
sequence of the form

0 −→ S ⊗ F0
α−→ T ⊗OX −→ E −→ 0

with rk(E) = dimX. Since E is globally generated and has ci(E) = ci(S ⊗ Q) = 0, we get a
short exact sequence of bundles (see Lemma 4 of [Tan76])

0 −→ OdimX−i+1
X −→ E −→ F −→ 0,

with rk(F ) < dimX.
Hence, without our hypotheses on the Chern classes in Theorem 1.11 we would be looking for
vector bundles whose rank is lower than the dimension of the base variety. This represents a
different and challenging problem in the study of vector bundles and in this paper we will not
deal with it.

Remark 1.13. It follows from Theorem 1.11 and its proof that given an (F0,OX)-Steiner
bundle E on X such that each Chern class of S ⊗Q is non-zero and rk(E) < dimX one must
have E ∼= (S ⊗Q)⊕OpX , for some p ≥ 0 and dimX > rk(E) ≥ srk(Q).

2 Generalized Schwarzenberger on smooth projective vari-
eties

Our goal in this section is to generalize Schwarzenberger bundles on the projective space
and on the Grassmann variety G(k, n), as defined in [Arr10] and [AM14], respectively, to any
smooth projective variety X.

We first recall the definition of Schwarzenberger bundles on G(k, n), following [AM14]. Let
L,M be two globally generated vector bundles over a projective variety Z, with h0(M) = n+ 1

and the identification Pn = P(H0(M)∗). Consider the composition

H0(L)⊗ U −→ H0(L)⊗H0(M)⊗OG −→ H0(L⊗M)⊗OG.

We want this composition to be injective, that is we want it be injective in each fiber. This is
equivalent to fixing k+1 independent global sections {σ1, . . . , σk+1} inH0(M) in correspondence
to the point Γ = [< σ1, . . . , σk+1 >] ∈ G(k, n) and requiring the injectivity of the following
composition

H0(L)⊗ < σ1, . . . , σk+1 >−→ H0(L)⊗H0(M) −→ H0(L⊗M),

given by multiplication with the global section subspace < σ1, . . . , σk+1 >.
If the injectivity holds for each point of the Grassmannian then a Schwarzenberger bundle

F = F (Z,L,M) on G = G(k, n) is the (U ,OG)-Steiner bundle defined by the resolution

0 −→ H0(L)⊗ U −→ H0(L⊗M)⊗OG −→ F −→ 0.

The previous construction motivates the following definition of Schwarzenberger bundles
on a smooth projective variety X. Let F0 be a rank f0 bundle on X with F∨0 generated by

9



global sections and L a globally generated locally free sheaf on a projective variety Z. Take a
non-degenerate linearly normal morphism ψ : Z → G(f0, H

0(F∨0 )) and consider the composition

0→ H0(L)⊗F0 → H0(L)⊗H0(F∨0 )∗⊗OX → H0(L)⊗H0(ψ∗U∨)⊗OX → H0(L⊗ψ∗U∨)⊗OX ,

where U denotes the universal subbundle on G := G(f0, H
0(F∨0 )).

The first map is given by the monomorphism F0 ↪→ H0(F∨0 )∗ ⊗ OX (recall that F∨0 is
generated by global sections and thus there is an epimorphism H0(F∨0 ) ⊗ OX � F∨0 ). The
second map is just given by the fact that H0(F∨0 )∗ ∼= H0(U∨) ∼= H0(ψ∗U∨). The last map is
the one induced by the natural morphism H0(L)⊗H0(ψ∗U∨)→ H0(L⊗ ψ∗U∨).

Let us show that this composition is injective, i.e. that

η : H0(L)⊗ F0 → H0(L⊗ ψ∗U∨)⊗OX

is injective on each fiber. Given any x ∈ X, the composition (F0)x → H0(ψ∗U∨) of the first
two maps (on the second factor) is obviously injective. Observing that to give a morphism
(F0)x ↪→ H0(ψ∗U∨) is the same as to give a map (F0)x ⊗ OZ ↪→ ψ∗U∨, we deduce that
L ⊗ (F0)x ↪→ L ⊗ ψ∗U∨ is still injective. Finally, applying cohomology, we conclude that
ηx : H0(L)⊗ (F0)x ↪→ H0(L⊗ ψ∗U∨) is injective.

Therefore, we have just constructed an (F0,OX)-Steiner bundle on X defined by

0→ H0(L)⊗ F0 → H0(L⊗ ψ∗U∨)⊗OX → E → 0.

Furthermore, observe that, under the identification H0(F∨0 )∗ ∼= H0(ψ∗U∨), the associated linear
map ϕ : H0(L⊗ψ∗U∨)∗ → H0(L)∗⊗H0(F∨0 ) of E is nothing but the dual of the multiplication
map H0(L)⊗H0(ψ∗U∨)→ H0(L⊗ ψ∗U∨).

This construction allows us to generalize the notion of a Schwarzenberger bundle to any
smooth projective variety.

Definition 2.1. Let X be a smooth projective variety and F0 a rank f0 bundle on X such that
F∨0 is generated by global sections. Let Z be a projective variety together with a non-degenerate
linearly normal morphism ψ : Z → G(f0, H

0(F∨0 )), and L a globally generated vector bundle
on Z. A (Z,ψ, L)-Schwarzenberger bundle on X is an (F0,OX)-Steiner bundle E defined by the
short exact sequence

0→ H0(L)⊗ F0 → H0(L⊗ ψ∗U∨)⊗OX → E → 0

constructed above.

Remark 2.2. Observe that a Schwarzenberger bundle F = F (Y,L,M) on G(k, n) is a (Z,ψ, L)-
Schwarzenberger bundle in the sense of Definition 2.1, with Z = Y and ψ : Y → Pn =

P(H0(M)∗).

3 Jumping pairs of Steiner bundles

We would like to know when an (F0,OX)-Steiner bundle on a smooth projective variety X
is a (Z,ψ, L)-Schwarzenberger bundle on X. In order to answer to this question we will look
for a distinctive feature of the Schwarzenberger bundles. More precisely, we will show that a
(Z,ψ, L)-Schwarzenberger bundle on X associates a special subspace of H0(F∨0 ) to each point
z ∈ Z.
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If E is a (ψ,Z, L)-Schwarzenberger bundle on X, we have

S = H0(L), T = H0(L⊗ ψ∗U∨),

and we already observed that the associated map ϕ : H0(L ⊗ ψ∗U∨)∗ → H0(L)∗ ⊗H0(F∨0 ) of
E is the dual of the multiplication map. Denote rk(L) = a.

For each z ∈ Z, the surjective morphisms H0(ψ∗U∨) � (ψ∗U∨)z and H0(L) � Lz induce,
respectively, an f0-dimensional subspace (ψ∗U)z ⊂ H0(ψ∗U∨)∗ ∼= H0(F∨0 ) and a subspace
L∗z ⊂ H0(L)∗ of dimension a. Since ϕ maps H0(Lz ⊗ (ψ∗U∨)z)

∗ isomorphically into H0(Lz)
∗⊗

H0((ψ∗U∨)z)
∗ ∼= L∗z ⊗ (ψ∗U)z, then each point z ∈ Z yields a pair of subspaces (L∗z, (ψ

∗U)z)

such that Lz ⊗ (ψ∗U)z ∈ Imϕ.
This property of the Schwarzenberger bundles motivates the following definitions.

Definition 3.1. Let E be an (F0,OX)-Steiner bundle on a smooth projective variety X. An
(a, b)-jumping subspace of E is a b-dimensional subspace B ⊂ H0(F∨0 ) for which there exists an
a-dimensional subspace A ⊂ S∗ such that A⊗B is in the image T ∗0 of ϕ : T ∗ → S∗ ⊗H0(F∨0 ).
Such a pair (A,B) is called an (a, b)-jumping pair of E.

We will write Ja,b(E) and J̃a,b(E) to denote, respectively, the set of (a, b)-jumping subspaces
and the set of (a, b)-jumping pairs of E. Moreover, we will write Σa,b(E) to denote the set of
a-dimensional subspaces A ⊂ S∗ for which there exists a b-dimensional subspace B ⊂ H0(F∨0 )

such that (A,B) is an (a, b)-jumping pair of E.

It turns out that the set of jumping pairs has a geometric interpretation similar to the
one obtained in Lemma 2.4 in [Arr10] and that endows J̃a,b(E) with a natural structure of a
projective variety. Consider the natural generalized Segre embedding

ν : G(a, S∗)×G(b,H0(F∨0 ))→ G(ab, S∗ ⊗H0(F∨0 ))

given by the tensor product of subspaces. Then, we can state the following result (we will omit
the proof for it is essentially the same as that of Lemma 2.4 in [Arr10]).

Lemma 3.2. Let E be an (F0,OX)-Steiner bundle on a smooth projective variety X and let
T ∗0 = imϕ. Then:

(i) the set J̃a,b(E) of jumping pairs of E is the intersection of the image of ν with the subset
G(ab, T ∗0 ) ⊂ G(ab, S∗ ⊗H0(F∨0 )), i.e.

J̃a,b(E) = Im ν ∩G(ab, T ∗0 ).

(ii) If π1 and π2 are the respective projections from J̃a,b(E) to G(a, S∗) and G(b,H0(F∨0 )),
then Σa,b(E) = π1(J̃a,b(E)) and Ja,b(E) = π2(J̃a,b(E)).

(iii) Let A, B and Q be the universal quotient bundles of respective ranks a, b and ab of G(a, S∗),
G(b,H0(F∨0 )) and G(ab, T ∗0 ). Assume that the natural maps

α : H0(G(a, S∗),A)→ H0(J̃a,b(E), π∗1A)

β : H0(G(b,H0(F∨0 )),B)→ H0(J̃a,b(E), π∗2B)

γ : H0(G(ab, T ∗0 ),Q)→ H0(J̃a,b(E),Q|J̃a,b(E))

are isomorphisms. Then the reduced summand E0 of E is the (J̃a,b(E), |π∗2B|, π∗1A)-
Schwarzenberger bundle.
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We can also deduce the following:

Lemma 3.3. Let E be an (F0,OX)-Steiner bundle on X. Then

J̃a,b(E) = J̃a,b(E0),

where E0 is the reduced summand of E. In particular, Ja,b(E) = Ja,b(E0).

Proof. In Lemma 1.6 we saw that E = E0 ⊕ (kerϕ)∗ ⊗ F1 and that E0 is the (F0,OX)-Steiner
bundle corresponding to the linear map ϕ′ : T ∗/ kerϕ → S∗ ⊗ H0(F∨0 ). The statement now
follows immediately, since T ∗0 = Imϕ = Imϕ′.

We will now restrict to the case of (1, f0)-jumping subspaces of an (F0,OX)-Steiner bundle
E on X.

Following the notation set in Definition 3.1, we will denote the set of (1, f0)-jumping sub-
spaces by J(E), the set of (1, f0)-jumping pairs by J̃(E), and by Σ the set of 1-dimensional
subspaces A ⊂ S∗ for which there exists an f0-dimensional subspace B ⊂ H0(F∨0 ) such that
(A,B) is a (1, f0)-jumping pair of E.

By abuse of notation, we will denote the jumping locus both as vectorial and projectivized.
Therefore, the projectivization of the Segre embedding

ν : G(1, S∗)×G(f0, H
0(F∨0 )) −→ G(f0, S

∗ ⊗H0(F∨0 ))

is
ν : P(S)×G

(
f0 − 1,P

(
H0(F∨0 )∗

))
−→ G

(
f0 − 1,P

(
S ⊗H0(F∨0 )∗

))
.

It follows from the definition of jumping pair that

J̃(E) = Im ν ∩G(f0 − 1,P(T0)), (2)

where T0 = (imϕ)∗. We can immediately obtain a lower bound for the dimension of J̃(E)

by computing the expected dimension of the intersection (the case when we have a complete
intersection):

dim J̃(E) ≥ f0

(
t0 − f0 + h0(F∨0 )(1− s)

)
+ s− 1,

where t0 denotes the dimension of T0.

Remark 3.4. Observe that the previous inequality implies that the dimension of the jumping
variety can be negative, which means that J̃(E) can be empty. In this case the corresponding
Steiner bundle E cannot be a Schwarzenberger bundle.

4 The tangent space of the jumping variety

Our main purpose in this section is to obtain an upper bound for the subspace J̃(E) of
jumping pairs of an (F0,OX)-Steiner bundle E. Our result will allow us to classify in the next
section all Steiner bundles such that J̃(E) has maximal dimension.

If E is defined by the sequence

0→ S ⊗ F0 → T ⊗OX → E → 0,
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we will denote, as in the previous sections, the dimensions of S and T by s and t, respectively.
Recall, furthermore, that Q denotes the vector bundle in (1).

Consider a jumping pair Λ in J̃(E). Then Λ is an f0-dimensional vector space that can be
written as s0 ⊗ Γ ⊂ S∗ ⊗ H0(F∨0 ) ' Hom(H0(F∨0 )∗, S∗). In addition, recall that the tangent
space of the jumping variety at Λ = s0 ⊗ Γ is the set

TΛJ̃(E) =
{
ψ ∈ Hom

(
Λ, T

∗

Λ

)
| ∀ ϕ ∈ Λ, (ψ(ϕ))(kerϕ) ⊂< s0 >

and ∃A ⊃< s0 > withA ⊂ S∗,dimA = 2 such that Imψ(ϕ) ⊂ A} ,

as proved in [AM14], Theorem 4.4.
Since Λ is a morphism in Hom(H0(F∨0 )∗, S∗), we can construct three bases, {λi}f0i=1 for Λ,

{ui}N+1
i=1 for H0(F∨0 )∗, with N + 1 := h0(F∨0 ), and {vi}si=1 for S∗, with v1 = s0, and such that

λi : H0(F∨0 )∗ → S∗

λi(uj) =

{
v1 if i = j,

0 if i 6= j.

In [AM14] the authors proved that the tangent space of the jumping variety at a jumping pair
can be also described as

TΛJ̃(E) =

{
ψ ∈ Hom

(
Λ,
T ∗

Λ

)
| (ψ(λi))(kerλi) ⊂ 〈v1〉,

(ψ(λi))(ui) ≡ (ψ(λj))(uj) mod v1, i 6= j

}
. (3)

Using this description, we are able to obtain an upper bound for the dimension of TΛJ̃(E) and
hence an upper bound for the dimension of J̃(E).

Note that when E ∼= S ⊗Q, where Q is as in (1), J̃(E) is the Segre variety. So, in this case
dim J̃(S ⊗Q) = s− 1 + (h0(F∨0 )− f0)f0. For reduced non-TSB Steiner bundles on X we get:

Theorem 4.1. Let E be a reduced non-TSB (F0,OX)-Steiner bundle on a smooth projective
variety X and let σ : X → G(f0−1,P(H0(F∨0 ))) be the natural morphism. For every Λ ∈ J̃(E),

dimTΛJ̃(E) ≤ f0 (t− dimσ(X)− f0s+ 1) .

In particular, dim J̃(E) ≤ f0 (t− dimσ(X)− f0s+ 1).

Proof. Recall that the tangent space of the jumping variety at a jumping point is a vector
subspace of Hom

(
Λ, T

∗

Λ

)
. We will prove the statement by defining independent elements in

Hom
(

Λ, T
∗

Λ

)
which are also independent modulo TΛJ̃(E). In order to do so, we will look for

morphisms in T∗

Λ which do not satisfy the conditions in (3).
Let us consider the following diagram

T ∗
� � ϕ //

����

Hom
(
H0(F∨0 )∗, S∗

)
����

T∗

Λ

ϕ1 // Hom
(
H0(F∨0 )∗, S

∗

〈v1〉

)
Observe that the linear map ϕ1 also defines an (F0,OX)-Steiner bundle Ẽ.
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We want to estimate the dimension of the image of ϕ1. We first note that Hom
(
H0(F∨0 )∗, S

∗

〈v1〉

)
can be identified with the vector space of global sections of the bundle

S

〈v1〉∗
⊗ U∨ −→ G(f0 − 1,P(H0(F∨0 ))).

Then, the image of ϕ1 can be identified with the space of global sections of the restriction of the
previous bundle to σ(X), where σ is the natural morphism σ : X −→ G(f0 − 1,P(H0(F∨0 ))).
Consider the bundle morphism

Oασ(X)

g //

##

S∗

〈v1〉 ⊗ U
∨
|σ(X)

yy
σ(X)

By Porteous’ formula, the morphism g is not surjective if α ≤ dimσ(X) + (s − 1)f0 − 1.
We thus have at least dimσ(X) + (s − 1)f0 independent morphisms in Imϕ1 (and hence
µ1, . . . , µdimσ(X)+(s−1)f0 morphisms in T ∗/Λ).

Let us construct morphisms ψi,j belonging to Hom
(

Λ, T
∗

Λ

)
in the following way:

ψi,j : Λ→ T ∗/Λ

ψi,j(λk) =

{
µj if i = k,

0 if i 6= k,

for i = 2, . . . , f0 and j = 1, . . . ,dimσ(X)+(s−1)f0. Then we have (f0−1)(dimσ(X)+(s−1)f0)

of such independent morphisms and it can be easily verified that they do not satisfy any of the
conditions in the definition of the tangent space.

Let us now extend the previous diagram to the following one:

T ∗
� � ϕ //

����

Hom
(
H0(F∨0 )∗, S∗

)
����

T∗

Λ

ϕ1 //

ϕ2

&&

Hom
(
H0(F∨0 )∗, S

∗

〈v1〉

)
����

Hom
(

kerλ1,
S∗

〈v1〉

)
We want to estimate the dimension of the image of ϕ2. As before, Hom

(
H0(F∨0 )∗, S

∗

〈v1〉

)
can

be identified with the vector space of global sections of the bundle S
〈v1〉∗ ⊗ U

∨ on G(f0 −
1,P(H0(F∨0 ))), and the image of ϕ1 can be identified with the global sections’ vector space of the
restriction of this bundle to σ(X). Finally, if we take the subgrassmannianG(f0−1,P((kerλ1)∗)),
the image of ϕ2 can be identified with the space of global sections of the vector bundle

S

〈v1〉
⊗ U∨|(σ(X)∩G(f0−1,P(kerλ1)∗)) −→ σ(X) ∩G(f0 − 1,P(kerλ1)∗).
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Denote W = σ(X) ∩G(f0 − 1,P(kerλ1)∗) and consider the bundle morphism

OαW
g //

  

S∗

〈v1〉 ⊗ U
∨
|W

zz
W

Using Porteous’ formula again we see that the morphism g is not surjective if α ≤ dimσ(X) +

(s−2)f0−1. This means that we can find at least dimσ(X)+(s−2)f0 independent morphisms
in the image of ϕ2 and hence µ̃j ∈ T ∗/Λ, with j = 1, . . . ,dimσ(X) + (s−2)f0. So we can define
a new set {ψ1,j}dimσ(X)+(s−2)f0

j=1 ⊂ Hom
(

Λ, T
∗

Λ

)
by

ψ1,j : Λ→ T ∗/Λ

ψ1,j(λk) =

{
µ̃j if k = 1,

0 if k 6= 1,

and not satisfying the conditions defining the tangent space.
We have thus just constructed a minimum of f0(dimσ(X)−f0+f0s−1) linearly independent

morphisms ψi,j in the complementary vector space of TΛJ̃(E). In particular, dimTΛJ̃(E) ≤
f0(t − f0) − f0(dimσ(X) − f0 + f0s − 1) = f0 (t− dimσ(X)− f0s+ 1) and the theorem is
proved.

5 The classification

In this section we classify all (F0,OX)-Steiner bundles whose jumping variety has maximal
dimension. In particular, we prove that they are always Schwarzenberger bundles.

Let E be an (F0,OX)-Steiner bundle on a smooth projective variety X, where F0 is a rank
f0 vector bundle on X. Recall again that we have (see (1)) an exact sequence given by

0 −→ F0 −→ H0(F∨0 )∗ ⊗OX −→ Q −→ 0.

Moreover, following the notation in Lemma 3.2, let π1 and π2 denote respectively, the projections
from J̃(E) to G(1, S∗) and G(f0, H

0(F∨0 )). Then Σ(E) = π1(J̃(E)) and J(E) = π2(J̃(E)).
We will first state the theorem. The rest of the section will be devoted to its proof.

Theorem 5.1. Let E be a reduced (F0,OX)-Steiner bundle on a smooth projective variety X
such that the jumping locus J̃(E) has maximal dimension. Suppose that the morphism σ : X −→
G(f0 − 1,P(H0(F∨0 ))) is generically finite.

If E is TSB then E ' S ⊗Q.
If E is non-TSB then it is one of the following.

i) A Schwarzenberger bundle given by the triple(
J̃(E), |π∗2(OPN (1))|, π∗1(OP1(s− 1))

)
.

In this case f0 = 1, J̃(E) is a rational normal curve and the natural projections are

J̃(E)
π1−→ Σ(E) ' P1

J̃(E)
π2−→ PN

with N = h0(F∨0 )− 1.
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ii) A Schwarzenberger bundle given by the triple(
J̃(E), |π∗2(U∨)|, π∗1(OP(S)(1))

)
.

In this case s ≤ f0 + 1, J̃(E) is the projectivization of a Grassmannian bundle constructed
from a rational normal scroll and the natural projections are

J̃(E)
π1−→ Σ(E) ' P(S)

J̃(E)
π2−→ G

(
f0 − 1,P(H0(F∨0 ))

)
.

iii) A Schwarzenberger bundle given by the triple(
J̃(E), |π∗2(U∨)|,OJ̃(E)(1))

)
.

In this case f0 > 1, J̃(E) ' Σ(E) and we have the natural projection

J̃(E)
π2 // G

(
f0 − 1,P(H0(F∨0 ))

)
.

iv) A Schwarzenberger bundle given by the triple(
J̃(E), |π∗2(OP1(1))|, π∗1(OΣ(E)(1))

)
.

In this case f0 = 1, s ≥ 3, J̃(E) is a rational normal scroll and the natural projections are

J̃(E)
π1−→ Σ(E)

J̃(E)
π2−→ J(E) ' P1.

v) A Schwarzenberger bundle given by the triple(
J̃(E), |π∗2(OP2(1))|, π∗1(OP2(1))

)
.

In this case f0 = 1, s = 3, J̃(E) is a Veronese surface and the natural projections are

J̃(E)
π1−→ Σ(E) ' P2

J̃(E)
π2−→ J(E) ' P2.

Remark 5.2. If the morphism σ : X −→ G(f0−1,P(H0(F∨0 ))) is surjective, then an (F0,OX)-
Steiner bundle E on X induces a (U ,OG)-Steiner bundle Ē on the Grassmannian, with E =

σ∗(Ē). Moreover, J̃(E) has maximal dimension if and only if J̃(Ē) has maximal dimension,
according to the respective bounds. Therefore, when σ is surjective and J̃(E) has maximal
dimension, all Steiner bundles on X are Schwarzenberger bundles given by the pullback of the
corresponding Schwarzenberger bundle on G(f0−1,P(H0(F∨0 ))), classified in [AM14]. Therefore,
we can suppose, from now on, that σ is not surjective.

Let E be a reduced (F0,OX)-Steiner bundle.
The first statement in the theorem, when E ∼= S ⊗Q, follows from Proposition 1.9, the fact

that J̃(E) = P(S)×G
(
f0 − 1,P

(
H0(F∨0 )∗

))
and Lemma 3.2, (iii).
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Suppose now that E is non-TSB. Take Λ = s0 ⊗ Γ ∈ J̃(E). We have the following commu-
tative diagram:

T ∗
� � ϕ //

��

S∗ ⊗H0(F∨0 )

pr⊗id
��

T∗

Λ

ϕ′ // S∗
〈s0〉 ⊗H

0(F∨0 )

(4)

The morphism ϕ′ defines a new (F0,OX)-Steiner bundle E′, whose defining vector spaces S′ and
T ′ have dimension s− 1 and t− f0, respectively. Let E′0 be its reduced summand. Iterating this
process, which we will call induction technique, we will see that eventually we always arrive to
a known case of a reduced (F0,OX)-Steiner bundle that can be described as a Schwarzenberger
bundle.

Moreover, we also have a diagram

J̃(E)

π1

{{ ��
Σ(E)

prs0

��

J̃(E′0)

π′1

{{
Σ(E′0)

(5)

Properties in Theorems 4.3 and 4.4 in [AM14] will still hold. In particular, Σ(E) will always
be a minimal degree variety, J̃(E′0) is birational to Σ(E) and the morphism prs0 is a projection
from an inner point s0 ∈ Σ(E). Hence dim Σ(E′0) ≤ dim Σ(E) ≤ dim Σ(E′0) + 1.

The generic fibers of π1 and π′1, and the further first component projections given by the
induction technique, have respectively dimension either 0 or at least f0.

We will next prove statements i) − v) by analyzing two cases. First, we will look at the
special case when s ≥ f0 +1 and prove ii). Second, we will look at the general case, by studying
the cases when f0 = 1 and f0 > 1, and prove i), iii)− v).

5.1 The case s ≤ f0 + 1

Suppose that s ≤ f0 + 1 and consider a non-TSB (F0,OX)-Steiner bundle E on X whose
jumping variety J̃(E) has maximal dimension, i.e.

dim J̃(E) = f0 (t− dimX − sf0 + 1) .

Proposition 5.3. Let E be a non-TSB (F0,OX)-Steiner bundle E on a smooth projctive variety
X whose jumping variety J̃(E) has maximal dimension. If s ≤ f0 + 1 then the projection
π1 : J̃(E) −→ P(S) is surjective.

Proof. Suppose that π1 is not surjective, which implies that dim Σ(E) < s− 1 ≤ f0. Hence, for
each s0 ∈ Σ(E), we have that dimπ−1

1 (s0) = dim J̃(E)−dim Σ(E) > f0(t−dimX− sf0). Since
π−1

1 (s0) ' G(f0,
(
〈s0〉 ⊗H0(F∨0 )

)
∩T ∗), we get that dim

((
〈s0〉 ⊗H0(F∨0 )

)
∩ T ∗

)
> t−dimX+
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(s−1)f0. Consider the following diagram, obtained by taking a jumping pair Λ = s0⊗Γ ∈ J̃(E):

0

��
〈s0〉 ⊗H0(F∨0 )

��
T ∗

π
����

ϕ′′

99

� � ϕ // S∗ ⊗H0(F∨0 )

��
T∗

Λ

ϕ′ // S∗
〈s0〉 ⊗H

0(F∨0 )

��
0

Being Im ϕ′′ '
(
〈s0〉 ⊗H0(F∨0 )

)
∩ T ∗, we have dim Imϕ′ = dim Imϕ − dim Imϕ′′ < dimX +

(s− 1)f0.
Recall that dimX < (s−1) · rk(Q). Since ϕ′ also defines a Steiner bundle E′, it follows from

Theorem 1.11 that rk(E′) ≥ dimX and therefore dim Imϕ′ ≥ dimX + (s− 1)f0, leading us to
contradiction.

Remark 5.4. Since E is a non-TSB Steiner bundle, one deduces from the previous proposition
that under the given hypothesis all fibers π−1

1 (s0), for each s0 ∈ P(S), have the same dimension,
namely f0(t − dimX − sf0 + 1) − (s − 1). Hence, when s ≤ f0 + 1, the jumping variety J̃(F )

is the projectivization of a Grassmannian bundle constructed from a rational scroll on P(S). In
particular, it is smooth.

Consider the two natural projections J̃(E)
π1−→ P(S) and J̃(E)

π2−→ G(f0 − 1,P(H0(F∨0 )∗)).
By Lemma 3.2 we obtain the following result.

Theorem 5.5. Let E be a reduced non-TSB (F0,OX)-Steiner bundle on a smooth projective
variety X such that J̃(E) has maximal dimension and σ : X −→ G(f0 − 1,P(H0(F∨0 ))) is
generically finite. If s ≤ f0 + 1 then E is a Schwarzenberger bundle defined by the triple

(J̃(E), |π∗2(U∨)|, π∗1(OP(S)(1))),

where U −→ G(f0 − 1,P(H0(F∨0 )∗)) denotes the rank f0 universal bundle.

This proves part (ii) of Theorem 5.1.

5.2 The general case

Recall diagram (5) and the fact that each first component projection has dimension either 0

or at least f0. We will thus divide the classification in the cases f0 = 1 and f0 > 1.

5.2.1 Case f0 = 1

If f0 = 1 and s = 2 we have already proved in Theorem 5.5 that J̃(E) is a rational normal
scroll, Σ(E) = P1 and, moreover, E is Schwarzenberger bundle.
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It was proved in [AM14] that if π1 is not birational then each further projection on the first
component, given by the iteration process, is not birational.

Let us consider first the case when all projections π1 are birational. Applying the induction
technique until the case s = 2, we obtain that J̃(E) is a rational normal curve because it is
birational to P1. So, considering the following diagram

J̃(E)

π1

��

π2 // P(H0(F∨0 )) =: PN

P1

we get, by Lemma 3.2, that E is Schwarzenberger bundle on X defined by the triple(
J̃(E), |π∗2(OPN (1))|, π∗1(OP1(s− 1))

)
.

Let us suppose now that the birationality is broken at some step of the induction. Without
loss of generality, we can focus on such step and we are in the following situation (+1 will denote
that the fiber is one dimensional):

J̃(E)

bir

xx
bir
��

step s Σ(E)

+1

��

bir
J̃(E′0)

��

+1

xx
step s− 1 Ps−2 ' Σ(E′0)

��

J̃(Ē0)

+1

xx
step 2 P1

From the classification of the case s = 2, we have that J̃(Ē0) is a surface. One can prove that
it is a quadric surface, which implies that J(Ē) ' P1. Therefore, also J(E) ' P1 and J̃(E) is a
rational normal scroll over P1. Denoting as usual π1 : J̃(E) −→ Σ(E) and π2 : J̃(E) −→ P1, we
obtain by Lemma 3.2 that, if s ≥ 4, E is the Schwarzenberger bundle defined by the triple(

J̃(E), |π∗2(OP1(1))|, π∗1(OΣ(E)(1))
)
.

Let us consider the only left case when f0 = 1, that is the case s = 3, described by the
following diagram:

J̃(E)

bir

}}
bir
��

π2

##
step 3 P2

prs0

��

J̃(E′0)

+1

}}

+1

##

J(E)

step 2 P1 J(E′0)
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We have already proved that J̃(E′0) is a rational normal scroll of dimension 2, and, as shown
in [AM14], the variety J̃(E) can be either a Hirzebruch surface or a Veronese surface.
In the first case E is the Schwarzenberger bundle given by the triple(

J̃(E), |π∗2(OP1(1))|, π∗1(OΣ(E)(1))
)
.

In the second case we have that E is the Schwarzenberger bundle given by the triple(
J̃(E), |π∗2(OP2)|, π∗1(OP2(1))

)
.

This proves parts (i), (iv) and (v) of Theorem 5.1.

5.2.2 Case f0 > 1

Let us study now the case with f0 > 1. Looking at the Diagram (5), we recall it is impos-
sible to get dim Σ(E) = dim Σ(E′0) + 1, because we have already noticed that the fiber of the
projections of type π1 has dimension either zero or greater equal than f0, which would lead to
contradiction. This means that all the projections involved in the diagram are birational. Recall
the following lemma proved in [AM14], that also applies in the current situation.

Lemma 5.6. Let E be a reduced non-TSB (F0,OX)-Steiner bundle on a smooth projective
variety X and J̃(E) its jumping locus. Suppose that J̃(E) is birational to Σ(E) and, fixed a
jumping pair s0 ⊗ Γ, consider the first step of the induction (Diagram (5)). If the morphism π′1
is an isomorphism then also π1 is an isomorphism.

The combination of this lemma and the birationality of the projections imply that J̃(E) '
Σ(E), and so E is the Schwarzenberger bundle given by the triple(

J̃(E), |π∗2(U∨)|,OJ̃(E)(1)
)
,

proving (iii) in the theorem.

We have completed the study of all possible cases and we have thus proved Theorem 5.1.
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