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OPERATORS WITH A GIVEN PART

OF THE NUMERICAL RANGE

JANKO BRAČIČ* AND CRISTINA DIOGO**

Abstract. Sets of operators which have a given set of numbers in the

numerical range are studied. We prove an interesting result which charac-

terizes the set of operators that have 0 in the convex hull of its spectrum.
Along the way we give a simpler proof of the well known Hilbebrandt’s

theorem.

1. Introduction and preliminaries

Let H be a complex Hilbert space, B(H ) be the Banach algebra of all
bounded linear operators on H , and I be the identity operator. Denote by
SH = {x ∈ H ; ‖x‖ = 1} the unit sphere of H . The numerical range of
A ∈ B(H ) is

W (A) = {〈Ax, x〉; x ∈ SH }.
It is obvious that W (A) is a non-empty subset of C which is contained in the

closed disk D(0, ‖A‖) = {z ∈ C; |z| ≤ ‖A‖}. If dim (H ) < ∞, then W (A) is a
closed set. However, if H is not finite-dimensional, then the numerical range is
not closed, in general. For instance, the numerical range of the backward shift
on `2 is the open unit disk D(0, 1).

If A∗ ∈ B(H ) is the adjoint operator of A ∈ B(H ), then W (A∗) = {λ; λ ∈
W (A)}. Thus, an operator A is selfadjoint if and only if its numerical range
consists of real numbers.

One among the basic properties of the numerical range is its convexity.

Theorem 1.1. For every A ∈ B(H ), the numerical range W (A) is a convex
set.

The proof of this statement, which is usually called The Toeplitz-Hausdorff
Theorem, relies on the following two results. The first is The Elliptical Range
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2 JANKO BRAČIČ AND CRISTINA DIOGO

Theorem which gives the complete description of the numerical range of a 2-by-2
matrix and can be stated as follows.

Theorem 1.2. The numerical range of A =
[
λ ω
0 µ

]
is the elliptical disk with foci

at λ and µ, the eigenvalues of A, and with the semi-axes

a = 1
2

√
|ω|2 + |λ− µ|2 and b = 1

2 |ω|.
The second result is that the numerical range of any compression of A ∈ B(H ) is
included inW (A), that is, if M is a closed subspace of H and P is the orthogonal
projection on M , then W (PAP ) ⊆ W (A). Note that PAP is considered as an
operator on M .

More information about numerical ranges can be found in [1] and [2], for
instance.

The aim of this paper is to study sets of operators with a prescribed part
of the numerical range. More precisely, we are interested in sets WE = {A ∈
B(H ); E ⊆ W (A)}, where E ⊆ C is a given set. In Section 2, we present
some basic properties of these sets. It is shown, through an example, that we
cannot expect that WE carries a “usual” algebraic structure; for instance, it is
not closed for addition or multiplication. However, we give an example when
WE has a nice and interesting algebraic property: we are able to characterize
the set of all operators A such that 0 ∈ W (PA) for every positive semidefinite
operator P . In the proof of our main result, we use Hildebrandt’s Theorem.
This result is usually proved by The Rota Theorem, which says that every strict
contraction on a Hilbert space is similar to a part of a backward shift (see [7],
for instance). In the rest of this section, we present a different and simpler proof
of Hildebrant’s Theorem which relies on a lemma proved by Murphy and West.

Let σ(A) be the spectrum of A ∈ B(H ) and r(A) be the spectral radius. For
an arbitrary set E ⊆ C, let conv(E) be the convex hull of E. It is easily seen that
every eigenvalue of A is in W (A), which in the finite-dimensional case already
gives conv(σ(A)) ⊆ W (A). This inclusion, with W (A) replaced by its closure,
actually holds for every operator. To prove it one has to invoke the notion
of approximate eigenvalues and use the fact that each point in the boundary
∂σ(A) is an approximate eigenvalue for A. Since the spectrum is preserved by
similarities one has

conv
(
σ(A)

)
⊆

⋂
S∈B(H )
invertible

W (SAS−1), (1.1)

for every A ∈ B(H ). Hildebrandt [3] observed that (1.1) is actually an equality.
The following lemma is from [6]; for the sake of completeness we include its

proof.

Lemma 1.1. For A ∈ B(H ) and ε > 0, there exists an invertible operator S
such that ‖SAS−1‖ < r(A) + ε.
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Proof. Let B = 1
r(A)+εA. Then r(B) < 1, that is, lim

n→∞
‖Bn‖1/n < 1, us-

ing the Gelfand-Beurling formula (see [5, Theorem I.22]). Hence, the series
∞∑
n=0
‖(Bn)∗Bn‖ =

∞∑
n=0
‖Bn‖2 converges — use the Cauchy root test. It follows

that C =
∞∑
n=0

(Bn)∗Bn ∈ B(H ) and C ≥ I. Let S =
√
C. Then S ≥ I, which

means that it is invertible. Since 0 ≤ I − S−2 ≤ I, we have

‖SBS−1‖2 = ‖S−1B∗S2BS−1‖ = ‖S−1
∞∑
n=1

(Bn)∗BnS−1‖

= ‖S−1(S2 − I)S−1‖ = ‖I − S−2‖ = r(I − S−2) < 1.

It is obvious now that ‖SAS−1‖ < r(A) + ε. �

Theorem 1.3 (Hildebrandt’s Theorem). For every A ∈ B(H ),

conv
(
σ(A)

)
=

⋂
S∈B(H )
invertible

W (SAS−1).

Proof. One inclusion has already been established in (1.1). To prove the other
inclusion, let λ ∈ C\conv

(
σ(A)

)
. Since conv

(
σ(A)

)
is a compact convex set there

exists a disk D(µ, ρ) such that λ /∈ D(µ, ρ) and conv
(
σ(A)

)
⊆ D(µ, ρ). Hence

λ−µ /∈ D(0, ρ) and conv
(
σ(A−µI)

)
⊆ D(0, ρ), which means that r(A−µI) < ρ.

Let ε > 0 be such that r(A − µI) + ε < ρ. By Lemma 1.1, there exists an
invertible operator S such that ‖S(A−µI)S−1‖ < r(A−µI) + ε < ρ. It follows

that λ− µ /∈W (S(A− µI)S−1) and consequently λ /∈W (SAS−1). �

2. Sets of operators with a given set in the numerical range

For a set E ⊆ C, let WE be the collection of all operators which contain E in
the closure of the numerical range, that is,

WE = {A ∈ B(H ); E ⊆W (A)}.

It is obvious that W∅ = B(H ) and that WE = ∅ if and only if E is an unbounded
set. Note that WE1

⊇ WE2
whenever E1 ⊆ E2; in particular, WE ⊇ W

conv(E)
.

However, since conv(E) ⊆ W (A) if E ⊆ W (A) one has WE = W
conv(E)

. There-

fore we may assume without loss of generality that E is a bounded, closed and
convex set. Let C (C) be the family of all bounded, closed and convex subsets
of C. It is easily seen that C (C) is a lattice for the operations

E1 ∧ E2 = E1 ∩ E2 and E1 ∨ E2 = conv(E1 ∪ E2),
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where E1, E2 ∈ C (C) are arbitrary. Let W = {WE ; E ∈ C (C)}. Then W has
a natural lattice structure, which is given by

WE1
∨WE2

= WE1∧E2
and WE1

∧WE2
= WE1∨E2

. (2.1)

Proposition 2.1. For every E ∈ C (C), the set WE is nonempty and uniformly
closed.

Proof. It is obvious that WE is nonempty. Let {An}∞n=1 ⊆ WE be a sequence
which converges to A ∈ B(H ) and let λ ∈ E. If ε > 0, then there exists
an index nε such that ‖A − An‖ < ε for all n ≥ nε. Let n0 ≥ nε and let
x ∈ SH be such that |〈An0x, x〉 − λ| < ε. It follows that |〈Ax, x〉 − λ| ≤
|〈Ax, x〉−〈An0

x, x〉|+ |〈An0
x, x〉−λ| < 2ε. Since ε is arbitrary we may conclude

that λ ∈W (A) and consequently E ⊆W (A). �

Let k be a positive integer. A set S ⊆ B(H ) is said to be k-transitive if
for every linearly independent vectors x1, . . . , xk ∈ H and for every set of k
vectors {y1, . . . , yk} ⊆ H there exists an operator S ∈ S such that Sxi = yi
(i = 1, . . . , k).

Proposition 2.2. Let E ∈ C (C). If dim(H ) ≥ k + 2, then WE is k-transitive.

Proof. Let x1, . . . , xk ∈ H be linearly independent and let {y1, . . . , yk} ⊆ H
be an arbitrary set of k vectors. Since dim(H ) ≥ k + 2 there exist orthogonal
vectors e1, e2 ∈ SH such that xi ⊥ ej (i = 1, . . . , k and j = 1, 2). Denote by H1

the linear span of {e1, e2} and let P be the orthogonal projection onto H1. Let
λ, µ, ω ∈ C be such that the elliptical disk E with foci at λ and µ and with semi-
axes a = 1

2

√
|ω|2 + |λ− µ|2 and b = 1

2 |ω| contains E. Since e1, e2, x1, . . . , xk
are linearly independent there exists A ∈ B(H ) such that Ae1 = λe1, Ae2 =
ωe1 + µe2 and Axi = yi (i = 1, . . . , k). By Theorem 1.2, the numerical range
of the compression PAP is the disk E . Thus, E ⊆ W (PAP ) ⊆ W (A) and
therefore A ∈ WE . �

Let F : C→ C be an affine transformation which is given by

F : u+ iv 7→ au+ bv + e+ i(cu+ dv + f) (u, v ∈ R), (2.2)

where a, b, c, d, e, f are real numbers such that ad − bc 6= 0. It is easily seen
that F is bijective and that its inverse F−1 is an affine transformation as well.
Mappings F and F−1 are continuous, thus F maps open sets into open sets and
closed sets into closed sets. It follows that F (E) = F (E), for every nonempty
set E ⊆ C.

For A ∈ B(H ), let A = H+ iK be its Cartesian decomposition. If F is given
by (2.2), then F (A) is defined by

F (A) = aH + bK + eI + i(cH + dK + fI).

It is easily seen that the following proposition holds.
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Proposition 2.3. If F is an affine transformation, then W
(
F (A)

)
= F

(
W (A)

)
,

for any A ∈ B(H ).

Taking this into account, we have the following result.

Proposition 2.4. Let E ∈ C (C). If F is an affine transformation, then
WF(E) = F

(
WE

)
.

Proof. If A ∈ WE , then F (E) ⊆ F
(
W (A)

)
= W (F (A)), by Proposition 2.3.

Therefore, F (A) ∈ WF(E). On the other hand, if A ∈ WF(E), using Propo-

sition 2.3 again, we have E = F−1
(
F (E)

)
⊆ F−1

(
W (A)

)
= F−1(W (A)) =

W
(
F−1(A)

)
. Thus, F−1(A) ∈ WE and therefore A ∈ F

(
WE

)
. �

Lemma 2.1. Let F be an affine transformation. Then F (E) ∈ C (C), for every
E ∈ C (C). Moreover, F is a lattice isomorphism of C (C), which means that

F (E1 ∧ E2) = F (E1) ∧F (E2) and F (E1 ∨ E2) = F (E1) ∨F (E2)

for all E1, E2 ∈ C (C).

Proof. Let F be given by (2.2). If E ∈ C (C) and u1 + iv1, u2 + iv2 ∈ E, then
F
(
t(u1 + iv1) + (1− t)(u2 + iv2)

)
= tF (u1 + iv1) + (1− t)F (u2 + iv2), for every

t ∈ [0, 1]. Hence F (E) ∈ C (C).
Let E1, E2 ∈ C (C) be arbitrary nonempty sets. It is easily seen that F (E1 ∧

E2) = F (E1) ∧F (E2). If u + iv ∈ E1 ∨ E2, then there exist u1 + iv1 ∈ E1,
u2 + iv2 ∈ E2, and t ∈ [0, 1] such that u + iv = t(u1 + iv1) + (1 − t)(u2 + iv2).
Hence F (u+ iv) = tF (u1 + iv1) + (1− t)F (u2 + iv2) ∈ F (E1) ∨F (E2). The
opposite inclusion is proved similarly by using the inverse of F . �

Proposition 2.5. Every affine map F is a lattice isomorphism of W, that is,
for every E1, E2 ∈ C (C),

F
(
WE1∧WE2

)
= F

(
WE1

)
∧F

(
WE2

)
and F

(
WE1∨WE2

)
= F

(
WE1

)
∨F

(
WE2

)
.

Proof. By (2.1), Proposition 2.4 and Lemma 2.1, one has

F
(
WE1 ∧WE2

)
= F

(
WE1∨E2

)
= WF(E1∨E2) = WF(E1)∨F(E2)

= WF(E1) ∧WF(E2) = F
(
WE1

)
∧F

(
WE2

)
.

The second equality is proved similarly. �

Now we are looking for an algebraic structure of WE . However it is not hard
to see that WE cannot be closed for addition or multiplication. For instance,
assume that E ⊆ D(0, 1). This is not a big restriction as, by Proposition 2.4,
E can be replaced by λE + µ, where λ 6= 0, µ are arbitrary complex numbers.
Let e, f ∈ SH be orthogonal vectors and let M,N ∈ B(H ) be defined by
Me = 0 = Nf , Mf = 2e, Ne = 2f , and let they be zero on the orthogonal
complement of {e, f}. Note that M and N are unitarily equivalent. Since
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W (M) = W (N) = D(0, 1) we have M,N ∈ WE . However, M +N is selfadjoint
with W (M +N) = [−2, 2] and M2 = 0. Hence, M +N and M2 are in WE only
in a very particular cases of E.

Now we will look for an algebraic structure of WE which is given in the
following sense. Let P ⊆ B(H ) be a given set of operators. For E ∈ C (C),
determine the largest sets Q(P, E),R(P, E) ⊆ B(H ) such that

PQ(P, E) ⊆ WE and R(P, E)P ⊆ WE ,

where PQ(P, E) is the set of all products PQ with P ∈ P and Q ∈ Q(P, E) and
R(P, E)P has a similar meaning. It follows from the part (i) of the following
proposition that it is enough to study only one variant of the problem. We use
the following notation: for E ∈ C (C) let E∗ = {λ; λ ∈ E} and for A ⊆ B(H )
let A∗ = {A∗; A ∈ A}.

Proposition 2.6. Let E,E1, E2 ∈ C (C) and P,P1,P2 ⊆ B(H ) be arbitrary.
Then

(i) Q(P, E)∗ = R(P∗, E∗);
(ii) if I ∈ P, then Q(P, E) ⊆ WE;
(iii) if 0 ∈ P, then Q(P, E) = ∅ whenever E * {0};
(iv) Q(P, ∅) = B(H );
(v) if E1 ⊆ E2, then Q(P, E1) ⊇ Q(P, E2);
(vi) if P1 ⊆ P2, then Q(P1, E) ⊇ Q(P2, E).

Proof. We prove only (i) as the rest is easily seen. First observe that W ∗
E = WE∗ .

Thus, one has

A ∈ Q(P, E) ⇐⇒ PA ∈ WE (∀ P ∈ P) ⇐⇒
⇐⇒ A∗P ∗ ∈ WE∗ (∀ P ∗ ∈ P∗) ⇐⇒ A∗ ∈ R(P∗, E∗). �

Let B+ = {P ∈ B(H ); P ≥ 0} be the set of all positive semidefinite operators
on H . By statements (iii) and (iv) of Proposition 2.6, the only interesting case
to consider Q(B+, E) is for E = {0}.

Theorem 2.7. Q(B+, {0}) = {A ∈ B(H ); 0 ∈ conv(σ(A))}.

In the proof we need the following simple lemma. If F ⊆ C is a nonempty
set and w ∈ C, then let dist(w,F ) = inf{|w − z|; z ∈ F} and, for ε > 0, let
Fε = {w ∈ C; dist(w,F ) ≤ ε} denote the ε-hull of F .

Lemma 2.2. If ∅ 6= F ⊆ C, then
⋂
ε>0

Fε = F .

Proof. It is obvious that F ⊆ Fε for every ε > 0. If w ∈ C \F , then there exists
r > 0 such that D(w, r) ⊆ C \ F . It is clear that w /∈ Fr/2. �



OPERATORS WITH A GIVEN PART OF THE NUMERICAL RANGE 7

Proof of Theorem 2.7. Suppose that 0 ∈ conv(σ(A)). If A or P is not invertible,

then 0 ∈ σ(PA) ⊆ W (PA). Assume therefore that A and P are invertible. It

follows that there exists p > 0 such that W (P ) ⊆ [p,∞). Since 0 ∈ conv(σ(A))
there exist λ, µ ∈ ∂σ(A) such that 0 = tλ+(1−t)µ for some t ∈ [0, 1]. Numbers λ
and µ are approximate eigenvalues of A, which means that there exist sequences
{en}∞n=1, {fn}∞n=1 ⊆ SH such that lim

n→∞
‖(A − λI)en‖ = 0 and lim

n→∞
‖(A −

µI)fn‖ = 0. Let m be a positive integer. Then there exists an index nm such
that ‖(A−λI)en‖ < 1

m and ‖(A−µI)fn‖ < 1
m for all n ≥ nm. Fix n ≥ nm and

denote ωm = 〈Pen, en〉, ϑm = 〈Pfn, fn〉. Note that ωm ≥ p and ϑm ≥ p. One
has

|〈PAen, en〉 − λωm| = |〈P (A− λI)en, en〉| ≤ ‖P‖‖(A− λI)en‖ < ‖P‖
m

and, similarly, |〈PAfn, fn〉 − µϑm| < ‖P‖/m. Thus, λωm and µϑm are in the
‖P‖
m -hull of W (PA). Since {λωm}∞m=1 is a bounded sequence there exists a

convergent subsequence, say {λωmk
}∞k=1, which converges to λω. It is obvious

that this limit is in W (PA). Observe that ω ≥ p. The same reasoning gives

ϑ ≥ p such that µϑ ∈ W (PA). Denote s1 = tϑ/(tϑ + (1 − t)ω) ≥ 0 and
s2 = (1 − t)ω/(tϑ + (1 − t)ω) ≥ 0. It is easily seen that s1 + s2 = 1 and

s1(λω) + s2(µϑ) = 0, which means that 0 ∈W (PA).
Assume now that A ∈ Q(B+, {0}). Let S ∈ B(H ) be an arbitrary invertible

operator. Denote P = S∗S ∈ B+. Let ε > 0 be arbitrary. Since 0 ∈ W (PA)
there exists x ∈ SH (which may depend on ε) such that |〈PAx, x〉| < ε. Let
y = 1

‖Sx‖Sx ∈ SH . One has |〈SAS−1y, y〉| = ‖Sx‖−2|〈SAS−1Sx, Sx〉| =

‖Sx‖−2|〈PAx, x〉| < ‖Sx‖−2ε ≤ ‖S−1‖2ε. Since ε is arbitrary we conclude

that 0 ∈ W (SAS−1). As S is an arbitrary invertible operator we have, by the
Hildebrandt’s Theorem, 0 ∈ conv(σ(A)). �
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