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Abstract

This thesis develops a new econometric mechanism to predict spec-
ulative bubbles. Along history price exuberance has been an important
source of economic recessions. Thus it is very important for regulators
and policy makers to possess an ex ante tool capable of anticipating
such events, enabling them to act accordingly. The main objective is
infer about a significant probability of exuberance at least one step
ahead of a bubble peak. When compared with other approaches this
provides a combination of asset pricing equilibrium and non station-
arity analysis. Using the former components as inputs of a dynamic
probit specification, one develops a mechanism where the fundamen-
tals contained in the asset abnormal return judge the explosiveness
in the price. Simulations reveal good statistical properties and the
mechanism is able to successfully anticipate the "technological bub-
ble" observed in the 90’s estimating probabilities higher than 85% five
periods before the bubble peak. (Speculative Bubbles, Asset Pricing,
Macroeconometrics, Adaptive Learning) (JEL C22, G17)



Resumo

Nesta dissertação é proposto um novo mecanismo econométrico para a
previsão de bolhas especulativas. Ao longo da história a especulação finan-
ceira tem se revelado uma causa importante de recessões económicas. Neste
sentido, é muito importante para as instituições reguladoras a obtenção de
uma ferramenta ex ante capaz de antecipar tais eventos. O principal obje-
tivo deste mecanismo é inferir sobre a probabilidade de existência de uma
bolha especulativa, pelo menos, um período antes do pico dessa mesma bolha.
Quando comparado com outras abordagens o procedimento proposto propor-
ciona uma inovação que se baseia na combinação entre modelos financeiros
de equilíbrio e de análise macroeconométrica. Usando os resultados de cada
um dos modelos anteriores como variáveis independentes num modelo Pro-
bit dinâmico, obtém-se um mecanismo em que os fundamentais contidos no
retorno anormal conseguem diferenciar se o tipo de aceleração que se ob-
serva no preço se deve de facto a uma bolha especulativa. As simulações
revelam boas propriedades estatísticas e o mecanismo é capaz de antecipar
com sucesso a "bolha tecnológica" observada na década de 90, estimando
uma probabilidade superior a 85 % cinco períodos antes do pico da bolha.
(Bolhas Especulativas, Modelos Financeiros de Equilíbrio, Macroeconome-
tria, Aprendizagem Adaptativa) (JEL C22, G17)
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1 Introduction & Motivation

Since the first documented event of price exuberance, the "Tulipoma-
nia"1, that economists have been trying to understand how investors react
in such market conditions. Modern Finance theory is grounded on the con-
cept of market efficiency Fama (1970), in which market price reflects all
the available information. In fact standard economic theory advocates the
price system has the most efficient mean for consumers utility maximization.
Considering the existence of speculative bubbles it’s easy to understand that
they constitute an exception to the former reasoning, and by consequence
they need to be properly identified. The price of stock today is the infinite
sum of all their expected future dividends, which means the stock will only
worth a certain amount of money if the underlying fundamentals are able
to generate a certain value of dividends. When price exuberance ends one
perceives a considerable gap between the observed price and the underlying
fundamentals supporting that same price, giving rise to the creation of spec-
ulative bubbles. In line with this it’s very important for the market as a
whole, to identify this type of event when it is happening and not in an ex
post analysis, because in this situation the price alone cannot provide
the best decision input for the consumer perform his utility maximization.

As presented in the next section the challenge inherent to this exercise, is
the proper identification of fundamentals in the observed price acceleration,
so that the bubble can be properly anticipated and both agents and policy
makers can act accordingly. Developing the presented mechanism also pushes
the literature one step further towards the elimination of a persistent gap
which is the negligence of unobserved fundamentals.

This dissertation is structured as follows: Section (2) I discuss the most
influential literature on speculative bubbles. Section (3) presents a review

1This speculative event happened in Holland in 1637 and was characterize by the pre-
posterous increase of the tulip bulbs price, in which the most collectible bulbs reached
prices equivalent of luxury real states.
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of the most important concepts underlying the new anticipation procedure
ranging from asset pricing theory to macroeconometrics. Section (4) provides
a complete description of the new procedure and its contribution towards the
established literature. Section (5) offers a single, highly detailed, simulation
replica of the new procedure as well the Monte Carlo results obtained from
one hundred replicas. Finally in Section (6) the new procedure is applied to
Apple and Nasdaq Composite monthly data from 1990 to 2014.

2 Literature Review

The literature concerning asset bubbles is quite extensive and the existent
approaches can be roughly separated between theoretical macroeconomics,
econometric modeling or a tune of both. The idea of extrinsic variables
leading asset prices is somehow controversial, most authors start with a com-
mon framework and usually arrive at significant different conclusions about
bubble’s existence.

The emergence of rational expectations in the seventies motivated litera-
ture like (Shiller, 1981), where the author derives theoretical limits for asset
prices variation considering the underlying dividends (fundamentals). An
empirical application with S&P 500 data, revealed an exaggerated volatil-
ity, which the author does not link to price exuberance, implying the poor
capability of the general asset pricing equation as theorized in Gurkaynak
(2005). Using the same framework, Blanchard (1979), pioneered the "peri-
odically collapsing bubbles" stochastic processes, by allowing the common
exponential growth process to periodically collapse according to some fixed
probability. Their importance would only come to be recognized latter down
the way, mainly due to robust theoretical restrictions against price exuber-
ance. The most notorious examples are Tirole (1982) in which bubbles are
ruled out through the violation of the transversality condition and Diba &
Grossman (1988b) where investors’ free asset disposal leads to demonstrate
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the following reasoning: If a bubble exists then it should had started in the
first day of trading and by consequence when it bursts it can not re-initiate..
Another important aspect of an asset price is given in Hamilton (1986)where
he demonstrates the determining of price bubbles being caused by explo-
sive behavior in underlying unobserved fundamentals, like taxes, which are
anticipated by economic agents but not by statisticians.

Pioneering the simulation analysis of price exuberance, Diba & Grossman
(1988a) built two arguments against the existence of rational bubbles: First
if dividends and prices are stationary in first differences then bubbles are not
present, otherwise even if differentiated n times the price process will still
have explosive behavior. Secondly if prices and dividends are co-integrated
then bubbles are not present. The first test corresponds to an application
of Dickey & Fuller (1979), as the second was developed in Engle & Granger
(1998). It is emphasized in the paper that even if these tests reveal the pres-
ence of bubbles there is always the case of explosive unobserved fundamentals
as pointed out in Hamilton (1986). In response to this line of argumentation,
a very strong result is presented in Evans (1991), the author uses simula-
tion to demonstrate the reduced power of unit root and co-integration tests,
when periodically collapsing bubbles alla Blanchard (1982) are present in
the data generating process (DGP), instead of standard bubble innovation
process used by Diba & Grossman (1988a). The intuition for this result is
quite simple: Since there are several bubble collapses in the simulated sam-
ple, the process will "appear" to be stationary and the discriminatory power
of the former tests do not reveal the explosiveness presented in the data,
even if the former explosive process is present. This paper sets the literature
in an endeavor for finding proper econometric tests towards the detection of
asset price exuberance. In an attempt to solve the power issues presented
in Evans (1991), a modified version of the basic ADF regression is devel-
oped in Hall et al. (1999), by incorporating a Markov-Switching mechanism
where the parameters are allowed to change from a stationary to an explosive
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process imitating the behavior of periodically collapsing bubbles. Using the
same stochastic process as in Evans (1991), a simulation test reveals that in
65% of the cases the test can correctly identify the correct regimes, where
as the standard ADF failed to identify any explosiveness. In line with this
there is also Phillips (2012), in which he developed not only a recursive Aug-
mented Dickey Fuller statistic (SADF) but also a date stamp estimator for
the eruption and collapsing period of the bubble. The test is performed for
different sub-samples and in each one, the mildly explosive null hypothesis
(ρ ≤ 1) is tested against the explosive alternative (ρ > 1). The application
to simulated data as in Evans (1991) revealed good power properties deal-
ing with periodically collapsing bubbles comparing with the standard ADF,
nevertheless it is still dependent on the probability of collapse. Applied to
the NASDAQ Composite index the test not only revealed explosive behavior,
but it could date stamp reasonably well the "dotcom" exuberance. Alongside
the former approach other tests have been develop to analyze the presence
of bubbles in the data. In Homm & Jorg (2012) they are all reviewed and
compared. Using a time varying AR(1) process the authors test for ran-
dom walk under the null (ρt = 1∀t) against random walk to explosiveness
switching under the alternative (ρ = 1 until [τ ∗T] then ρ > 1 from [τ ∗T] to
T, where T is the sample size and τ ∗ ∈ [0,1]). Five different statistics are
analyzed: a modified version of the one presented in Bhargava (1986), the
Kim statistic developed in Kim (2000), the supBT which is also a modified
version of the one presented in Busetti & Taylor (2004), the formerly pre-
sented supDF developed in Phillips (2012) and the DFC statistic which is
a modified version of the one presented in Dickey & Fuller (1979), allowing
for structural breaks in data. To do the comparisons a simulated sample is
generated using the same DGP as in Evans (1991) revealing the most pow-
erfull statistic as the supDF, followed by supDFC and supBT. According
to the author, this result is intuitive because in its construction the supDF
does not include bubble collapses in the testing sub-sample as the others
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do. Eliminating collapses from the sample the supDFC and supBT would
outperform the supDF. Considering the data stamping estimation, this pa-
per finds the supDFC estimator the most reliable one, as the supDF tends
to estimate the breaking dates to early and is less efficient. An improved
version of the supDF and a new date stamping methodology is presented in
Phillips et al. (2013). The main novelty is the rolling sub-sample, meaning
that instead of a fixed point in the beginning of the sample and the other one
moving forward, now both points move, which constitutes a generalization
of the test presented in Phillips (2012), originating the GSADF(Generalized
Supreme Augmented Dickey Fuller). Besides the improved size distortions,
the GSADF has a greater discriminatory power than its predecessor. Per-
forming the same simulations as in Evans (1991) the authors found that the
new GSADF is quite less sensitive to bubble collapses in the data, as the
SADF only found bubbles in a collapse free truncated version of the sam-
ple. In an empirical application with the S&P 500 price-dividend ratio from
1871 to 2010 both tests revealed explosive sub-periods but only the GSADF
statistic could date stamp all episodes of asset price exuberance since 1900.

The main drawback in the literature’s approaches is the lack of a com-
plete framework capable of explaining the bubble phenomena. In fact all the
former approaches represent different ways of capturing price explosion and
not necessarily price exuberance. The model presented in Branch & Evans
(2011) provides a complete theoretical structure to explain the bubble phe-
nomena. The beginning of exuberance occurs when investors under estimate
price variance, which eventually overcomes a certain threshold and forces in-
vestors to sell off the asset due to utility loss. The former dynamic, occurs as
the investor constantly re-estimates his learning rule Evans & Honkapohja
(2001) using a recursive least squares algorithm Young (2011).

Another alternative to bubble testing is given in Fry (2014), in which the
price is modeled by a differential equation constantly comparing the current
price with the long term one. The authors also pioneered a generalization
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approach capable of estimating bubble contagion between different markets.
An empirical application to bitcoin data from 2010 until 2014 revealed that
the currency intrinsic value is zero. Cheah & Fry (2015)

3 Theoretical Foundations

In the next sections, I review some established literature about asset pric-
ing, rational bubbles and macroeconometrics. Section (3.1) serves as the
base platform for the asset pricing theory from which one obtains the gen-
eral pricing equation. Applying the Rational Expectations theory, discussed
in Section (3.2), one arrives at the main pricing equation in bubbles litera-
ture. In Section (3.3) the possibility of speculative bubbles under rational
expectations is fully explored along with different bubble processes. Section
(3.4) exposes the Learning theory as the generalization of Rational Expecta-
tions and it’s higher suitability regarding the bubble phenomena. In Section
(3.5) and (3.6) is present the core explanation of the asset pricing model and
the non stationary statistic utilized in the new mechanism.

3.1 Consumption Based Asset Pricing

The pricing equation presented in Cochrane (2005)(p.6) is a general spec-
ification of all asset pricing theory, capable of yielding a price for any asset
class in the economy. It is the result of the following inter temporal maxi-
mization:

max
ξt
{u(Ct) + βEt[u(Ct+1)]}

s.t

Ct = et − Ptξt
Ct+1 = et+1 − xt+1ξt

(1)

Where Pt is the asset price at time, β represents the investor’s subjective
discount, et is the investor’s endowment and Et represents the expectation
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conditioned on all available information at time t, which can also be repre-
sented by Et[.] = E[.|Φt], where Φt represents the available information at
time t.

At each point in time the investor maximizes his expected utility by
choosing how much of the asset (ξt) he will hold from one period to the next
(t→ t+ 1). The level of consumption in both periods (ct and ct+1) depends
on the investment level (ξt) and the asset payoff (xt+1). The former problem
will yield as solution the following pricing equation, whose derivation is fully
outline in Section (9.2.1):

Pt = Et[mt+1xt+1] (2)

Wheremt+1 ≡ β u
′(ct+1)
u′(ct)

= β
du(ct)
dct

du(ct+1)

ct+1

, represents the Stochastic Discount Factor

(SDF) and xt+1 represents a generic asset payoff. Intuitively the equation is
telling the investor what is the price he should pay today (period t), according
to his expected marginal utility growth Et[

u′(ct+1)
u′(ct)

] and the asset expected
payoff, Et[xt+1]. All properly discounted at the subjective rate (β), which
reflects the investor’s impatience to postpone his consumption to period (t+

1).
It is quite clear that no assumptions were made concerning the investor’s

utility function (u(.)) as well as the asset class, giving to equation (2) the
proficiency to link all asset pricing theory, from Stocks to Options, in
one simple equation completely founded in Microeconomic rational behavior.

3.2 Rational Expectations & Asset Pricing

Having obtained the general asset pricing equation (2), we can access the
most widely used equation in bubbles testing literature, by simply assuming
a linear structure of the utility function, the derivation is presented in Section
(9.2.2):
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Assuming the linearity of the investor’s utility function, implying: u′(ct) =

u′(ct+1) = c ∈ <, we obtain the asset pricing equation presented in Lucas

(1978).

Pt = (
1

1 + r
)Et[Pt+1 +Dt+1] (3)

The price specification given by (3), holds the same strong intuition as the

general pricing equation (2) but now is applied to a general stock, so the

future payoff (xt+1) will be the future price (pt+1) plus future dividends (dt+1).

One can see, from equation (3), that the investor should have a law to

produce his expectations.

We assume rational expectations, as developed in (Muth, 1967), which, in

an intuitive manner, states that our investor’s expectation about tomorrow’s

payoff, will be exactly the same as the relevant economic model used to

explain that reality. In this particular case, this model is given by equation

(3). Furthermore the investor calculates a conditional expectation, in which

he makes use of all publicly available information, mathematically this

can be represented by Et[Pt+1] ≡ E[Pt+1|Φt], in which Φt corresponds to

a set containing all the available information. To solve (3), using rational

expectations, one can use a number of different methods (see Section (9.2.5)).

The most simple one is iterating forward n times the difference equation

(3), and the result will be:

Pt =
n∑
i=0

[(
1

1 + r
)i × Et[Dt+i]] + (

1

1 + r
)nEt{Pt+n} (4)
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However, (4), is still dependent on the discounted expected price n periods

ahead from today, ( 1
1+r

)nEt[Pt+n], which may be the cause for speculative

bubbles2 as demonstrated in the next section. For that reason the model

is completely closed only when the equation (3) is iterate forward by an

infinite number of times (n→ +∞), this will yield the fundamental price of

the stock :

Ft =
+∞∑
i=1

[(
1

1 + r
)i × Et[Dt+i]] (5)

Considering r > 0 =⇒ ( 1
1+r

) < 1, the second portion of equation’s (4) right

hand side will become negligible. If we further assume a mathematical speci-

fication for the stochastic process governing dividends, Et[Dt+i], it’s possible

to present today’s price (Pt) depending only on parameters (i.e reduced form).

The most common choice is the first order auto regressive process. (See for

example Phillips et al. (2013) and Evans (1991)). In Section (5.1), the math-

ematical law used to simulate the fundamental price of the bubbled security

and the broad index is identical to the one demonstrated below.

Assuming that the dividends can be represented by a stochastic process

such as: Dt = µ+Dt−1 + εt, εt ∼ N(o, σ2), the price process will be given by:

Pt =

(
1 + r

r2

)
µ+

(
1

r

)
Dt (6)

2In other fields, as for example in policy design, it might be called "sunspot"
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3.3 Rational Bubbles

As previously mentioned, the rise of speculative bubbles is consistent with
the rational expectations hypothesis. This result is supported by the general
idea that any investor is willing to pay a price above the fundamental value,
as long the price will get even higher. In the present section this property will
be fully explored by reviewing the most common Bubble processes employed
in the literature as well as their importance in the simulation procedure of
the new anticipation mechanism.

Its possible to write the current price (Pt) as the sum of two different
contributions, as such:

Pt = Ft +Bt (7)

At any given point in time the price encapsulates both fundamentals and an
extrinsic variable (i.e Bubble).

Equation (7) constitutes a valid solution to the difference equation given

by (3), if the stochastic process driving the bubble component (Bt) respects

the following specification:

Bt+1 = (1 + r)Bt + ε =⇒ Et[Bt+1] = (1 + r)Bt (8)

The lack of empirical truth regarding the process (8) is very clear. Ac-
cording to Kindleberger & Aliber (2005), the price exuberance will stop at
a certain point in time, where the former process continues to explode as
time goes to infinity. To overcome such lack of reality, the literature presents
alternative bubble specifications as presented next.

3.3.1 Bubbles a la Blanchard (1979)

The base for all exuberance testing across the literature is the stochastic pro-
cess developed in Blanchard (1979), known by periodically collapsing bubbles.
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The specification of such process is presented below:

Bt+1 =


1+r
π
Bt + εt, with probability π

εt, with probability (1− π)

(9)

In contrast with (8) , the bubble component can assume two distinct
processes: in the first it can grow at rate (1+r

π
) which is higher than (1 + r)

but at a certain point in time it can collapse with probability (π) and it will
become a white noise process (εt).

The stochastic process defined by (9) satisfies the condition given by (8)

and by consequence is also a solution for equation (3) and (7). The math-

ematical demonstration of the former statement can be found in Section

(9.2.6).

3.3.2 Bubbles a la Evans (1991)

The specification given by equation (9) is the base structure on which the

Evans (1991) process was built on, however in the former, it is possible to

control two additional aspects beyond the probability of a collapse (π):

Bt+1 =


(1 + r)×Bt × ut+1 if Bt ≤ α

[δ + (1+r)
π
× θt+1 × (Bt − δ

(1+r)
)]× ut+1 if Bt > α

(10)
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When varying the parameters (α > 0) and (δ > 0), one is controlling
for the bubbles average length before they collapse and the frequency for
which the bubbles erupt, respectively. In both processes, (9) and (10) , the
probability of occurring a collapse (π ∈ [0, 1]) controls the exuberance scale,
however in (10), this parameter’s influence acts through a Bernoulli trial
(θt+1) occurring in each period, which can allow the on going bubble (Bt >

α) to continue even further or collapse the whole process to the restarting
value δ. Last but not least, the multiplicative disturbance is given by: ut =

exp[yt − τ2

2
], yt ∼ N(0, τ 2), E[ut+1] = 1

The stochastic process defined by (10) satisfies the condition given by (8)

and consequently is also a solution for equation (3) and (7).
The former process is by far the most influential in bubbles literature and

has a major role in the simulation of the new anticipation mechanism as its
demonstrated in section (5.1).

3.4 The ’Adaptive Learning’ Theory

The most influential literature on price exuberance was built on Rational
Expectations, however this method of generating expectations imply some
far-fetched assumptions, namely the agent’s complete knowledge and under-
standing of the economy’s structure, regardless its high level of complexity.

The ’Adaptive Learning’ Theory provides a more realist framework, that
enables economists to relax this assumption. The underlying intuition estab-
lish economic agents as to that try to include the most recent data in their
expectations by constantly updating them as newly data is released. From
a modeling perspective this means that agents constantly re-estimate their
set of structural parameters instead of performing calibration or simply as-
sume a certain value. To emphasize how the Learning Theory offers a robust
a proper theoretical extension, Bray (1982), demonstrates the parameters’
asymptotic convergence towards the Rational Expectations equilibrium, as
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the agents sample size increases to infinity. Establishing a seminal paper for
this approach is quite a challenge in it self however the reader can find a
complete treatment of this subject in Evans & Honkapohja (2001).

As one might expect, the estimation methods applied in ’Adaptive Learn-
ing’ extends beyond the standard ordinary least squares. Instead of a full
sample approach where parameters are not allowed to change, the estimation
is performed through a set of updating equations that are fed when newly
data is available, thus originating a new set of point estimates. Recursive
estimation implies specific techniques to deal with parameters variation. To
illustrate this estimation method I follow Evans & Honkapohja (2001) how-
ever a full formalization on the subject is presented in Young (2011).

The procedure starts with obtaining an expectation for a given economic
variable (Y e

t ) which depends on a set of other independent variables (Xt) and
parameters estimates (θ̂t−1), this translates mathematically into:

Y e
t = Ψ(Xt, θ̂t−1) (11)

The main difference between R.E and Adaptive learning is on how agents
obtain estimates for θ̂t−1. Instead of assuming a certain value for the param-
eters’ set3, the agents will constantly update their estimates with new data
according to the following algorithm:

θ̂t = θ̂t−1 + γQ(t, θ̂t−1,Xt) (12)

Where γ is a measure of how the algorithm (12) should respond to new data
and Q represents the specification of the updating equation.

It is easy to anticipate the relevance of the ’Learning’ approach when mar-
ket conditions start to reveal the presence of a speculative bubble. Neverthe-
less the importance of this subject regarding the new anticipation mechanism
will be fully discussed in section (4.1).

3This technique is called calibration
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3.5 CAPM Equilibrium Model

A very important part of the proposed anticipation mechanism relates
with the utilization of an asset pricing model to provide a financial meaning to
the observed price explosiveness. The Capital Asset Pricing Model (CAPM)
presented in Sharpe (1964) constitutes the most sought out equilibrium model
in finance. In basic terms this model yields the equilibrium rate of return
of a given security under a set of assumptions. The most notorious, spec-
ify that all market participants should maximize their reward to volatility
ratio, which is the same as stating they build their portfolios as developed
in Markowitz (1952). Although this portfolio construction method is the
baseline for modern portfolio theory its hardly utilized due to its grotesque
number of estimations related to the cross correlation between different as-
sets. The CAPM’s main specification is given by:

Et[Ri,t]
CAPM = rf + β(Et[RM,t]− rf ) (13)

Where Et[Ri,t]
CAPM represents the stock i equilibrium return at time t; β ≡

COV (Ri,t,RM,t)

V AR[RM ]
is a measure of risk that shows the contribution of the asset’s

volatility to the total market volatility at time t; rf is a risk free rate of

return and finally Rm,t is the total market return at time t.
The specification (13) possess a serious limitation: the market return is

not observable, due to its theoretical nature. In Sharpe (1963) the author
proposes an alternative approach to the Markowitz (1952) algorithm which
is also a commonly used solution to the CAPM’s theoretical Market port-
folio. The Single Index Model (SIM) makes uses of the following statistical
regression:

Ri,t − rf = α + β(RI,t − rf ) + εt, et ∼ N(0, σ2) (14)
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Where α and β are fixed parameters and RI,t is the return at time t of a
benchmark portfolio4, which can be used to proxy the CAPM’s Market port-
folio. As one would expect the β is identical to the one in specification (13)
and α is the CAPM’s abnormal return prediction for the stock i. The main
limitation of the SIM relies in its simplicity, because it’s a linear regression
it should satisfy the underlying assumptions to provide trustworthy results.

3.6 The Backward Supreme Augmented Dickey Fuller

Statistic (BSADFS)

A very important part of the proposed anticipation mechanism is how it
captures the observed price acceleration. The most effective way to complete
this task is using the BSADFS date stamp strategy developed in Phillips
et al. (2013). In basic terms this statistic selects the highest value of the
standard Augmented Dickey Fuller test in various increasing sub samples.
The estimators will identify the fractional beginning of exuberance (r̂e) by the
first period in which the BSADFS is higher than the simulated critical value
and its fractional ending (r̂f ) for the first period in which the BSADFS is
lower than the simulated critical value. In mathematical terms the estimated
fractional begining and termination of a bubble is given by equation (15) and
(16), respectively:

r̂e = inf
r2∈[0,1]

{r2 : BSADFSr2(r0) > scvβTr2 } (15)

r̂f = inf
r2∈[r̂e+δ log(T )/T,1]

{r2 : BSADFSr2(r0) < scvβTr2 } (16)

Where (r̂e) and (r̂f ) represent, respectively, the fractional beginning and
termination of exuberance. The value given by r0 represent the percentage
of the total sample used to initiate the calculation of the BSADF whereas

4The Benchmark is very often a Broad Equity Index like the Nasdaq Composite
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r2 represent the last point of the sub sample in test, given as a percentage
of the total sample size (T). The BSADF statistic performs a comparison
between backward expanding sub samples in which the starting point varies
from 0 to (r2−r0). One can obtain the exact estimated period for the bubble
outbreak and its respective termination by calculating r̂e × T and r̂f × T .
Finally scvβTr2 represents a simulated critical value which depends on given
significance level (βT ) and total sample size (T).

4 A New Bubble Anticipation Mechanism

Now that the reader is familiarized with the concepts presented above, I
will demonstrate how they can compose a new system capable of anticipating
a speculative bubble. For ease of reference the new anticipation mechanism
will be called MMBA (Moreira Martins Bubble Anticipator).

4.1 Designing the MMBA Mechanism

The novelty underlying this thesis is forecasting price exuberance through
the combination of statistical analysis and asset pricing equilibrium. The ob-
jective behind the mechanism, is generating a one step ahead probability
forecast towards the existence of a speculative bubble, using a dynamic pro-
bit model. The adequacy of a binary response model to a problem such as
this is justified by our inability to directly observe an ongoing bubble.
In fact we can only observe a sudden phenomenon of great acceleration in
the security price as showed in Franses (2013). This kind of behavior is
easily captured through the BSADF statistic as demonstrated in Phillips et
al. (2013). The main challenge is differentiating between explosive un-
observable fundamentals and a speculative bubble Hamilton (1986).
The new MMBA mechanism tries to tackle this gap by using the following
approach: Lets apply an asset pricing equilibrium model and a non station-
arity statistic to the same data stretch and collect their predictions under

16



the same econometric specification. This not only allows the investor to
estimate the specific contributions of the former components to the bubble
structure, but also constitutes a powerful tool in the ex ante optimization of
the portfolio. In sum, the MMBA will grant a robust method to perform a
"bubble surf" strategy highly adopted in this type of events as demonstrated
in Brunnermeier & Abreu (2003).

4.2 The MMBA Procedure

The main econometric model is given by: bubble∗t = β1 + β2Υ
∗
t−1 + β3D

BSADFS
t−1 + εt, εt ∼ N(µ, σ2)

DBSADFS
t = I(bubble∗t > 0)

(17)

Where the latent variable (bubble∗t ) is a function of the current abnor-
mal return, of a given asset pricing model (Υ∗t−1) and a dummy variable
accounting for today’s price explosiveness:

DBSADFS
t−1 =

 1 if BSADFSt−1 > s.c.vBSADFS

0 if BSADFSt−1 ≤ s.c.vBSADFS

Where s.c.vBSADFS represents the simulated critical value for a given sig-
nificance level 5 and εt is a Normal distributed error with mean µ and variance
σ2. The indicator function (I(.)) assumes the value one if the unobserved
bubble exists (i.e, bubble∗t > 0) and the value zero if the bubble does not
exist (i.e, bubble∗t ≤ 0). The intuition is similar to the one in equation (7), if
bubbles assume a null or negative value, which in practice means they don’t
exist (Bt = 0), then the asset price is equal to the respective fundamental
price (Pt = Ft).

5For each significance level, 1%, 5% and 10% was performed a simulation of 5000
replicas of a CUMSUM process with total sample size of 1000.
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Intuitively, the specification given in (17) answers the following question:
What is the probability of tomorrow’s price containing a bubble, given today’s
abnormal return and the value of the BSADF statistic ?.

Defining Ωt−1 ≡ (1,Υ∗t−1, D
BSADFS
t−1 ), β′ ≡ (β1, β2, β3) and assuming Nor-

mal distributed disturbances, εt ∼ N(µ, σ2) , the conditional probability of oc-

curring a bubble one period ahead is given by: ̂P [bubblet |Ωt−1] = Φ(βΩt−1),

where Φ(.) ≡Normal Cumulative Distribution Function.
The estimation procedure of specification (17) is totally identical to the

standard probit model. Nevertheless, the parameter estimation as well as the
assymptotic properties of dynamic binary choice models can be validated in
de Jong & Woutersen (2011).

The MMBA initiates with the estimation of its two main components: the
abnormal returns (Υ̂t−1) and the BSADFS. The first component is obtained
through the difference between the investor’s subjective expectation for the
asset return and the equilibrium return given by an asset pricing model, like
the CAPM Sharpe (1964)6. The second component provides the exuberance
estimators (r̂e and r̂e) that will generate a dummy variable that proxies a
speculative bubble (DBASDFS

t−1 ). When this two components are plugged in
the specification (17), one obtains three different point estimates: the regres-
sion intercept (β̂1), the contribution of the current abnormal returns to the
probability of exuberance (β2) and the contribution of current price acceler-
ation to the probability of exuberance (β3). Using the former estimates the
new procedure will yield a probability towards the existence of a speculative
bubble one period ahead from which the estimation took place:

̂Pt−1[Bt = 1|Ωt−1] = Φ[β̂′t−1Ωt−1] (18)

The former expression contains an abuse of notation in order to provide a
6One can use several other asset pricing models for this purpose
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higher intuitiveness to the estimate probability. The correct notation should
be ̂Pt−1[DBSADFS

t = 1|Ωt−1] and not has presented in equation (18).
The recursive nature of the MMBA implies the re-estimation of (17) each

time new data is available, in order to provide a probability that incorporates
all available information, which not only increases the model’s accuracy but
is the correct approach to capture changing parameters. A highly detailed
simulation of the MMBA is presented from section (5.1) to section (5.4).

4.3 Contribution to the literature

The former mechanism tries to tackle two persistent gaps in the specula-
tive bubbles literature. The first one is concern with the incapability of exist-
ing econometric methods to differentiate between imperceptible fundamen-
tals and price exuberance, as extensively discussed in Hamilton (1986) and
in Gurkaynak (2005). The new mechanism links non stationarity (BSADFS)
and the abnormal returns generated with an asset pricing equilibrium model
prediction (Υ∗t−1). By doing so, the model can now judge the explosiveness
in the observed price, using the same fundamentals that generate the equi-
librium rate of return, thus providing a much clearer conclusion towards the
existence of a bubble. In basic terms, one can state that what BSADFS
once identified as simply non stationary price behavior, has now a financial
meaning through the asset pricing model.

The second gap is the ability to capture what Shiller (2000) stated as a
"feedback loop". According to this article, an important part of a speculative
bubble rests in its social component, that generates a dynamic behavior that
feeds the bubble until its inevitable collapse. The econometric specification
given in (17) can capture this process through the lagged dependent variable,
because the current value of the variable helps determinate the value of that
same variable in the future.

Finally an essential part of the MMBA involves generating expectations
using Learning instead of R.E, which provides a substantial update to the
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most influential literature.

5 Simulation Procedure

The following sections explain in great detail the designed simulation
procedure to test the mechanism effectiveness in anticipating price exuber-
ance. The presented and following sections are totally based on Matlab ®
programming. From Section (5.1) to (5.4) the results of a single replica
are meticulously presented. In Section (5.5) I comment on the one hundred
replicas performed to the MMBA procedure, in order to derive its asymp-
totic properties. Table 1, presented next, illustrates the standard choice of
parameters for a single replica and for the monte carlo simulations in section
(5.5).

Table 1: Standard Parameters

Parameter Description Standard Values

Sample Size T = 1000
MMBA Initial Sample 20%× T = 200

Security Price P S
0 = F S

0 = 100 DS
0 = 1.3 µ = 0.0000746 σ2

DS = 0.0003148
Index Price P I

0 = F I
0 = 1000 DI

0 = 10 µ = 0.0373 σ2
DI = 0.1574

Evans (1991) D.G.P B0 = 0, α = 1, δ = 0.5, π = 0.85
Risk Free Rate r = 5%

BSADF Significance Level β = 5%
Constant Gains γ = 0.2

Asset Pricing Model Contribution β̂2 6= 0
P-Value Validity Yes

5.1 Generating Price Exuberance

The whole procedure initiates by simulating two structurally different
time series, one for the security and other for the benchmark index. First
the fundamental component alone of the former is simulated according to the
law given by (6). To obtain the observed market price, given by equation (7),
we sum it to the bubble process represented in (10). The discount factor was
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deemed constant and was estimated using 6 Months Treasury Bills monthly
data from 1960 to 2014. The simulation total sample size is eight hundred
(T=800), however the BSADF statistic consumes a variable mandatory initial
sample of (r0 ∗ T − 1), where r0 = 0.01 + 1.8√

T
. As the simulations in Section

(5.5) indicates, the MMBA also performs better with an initial sample, for
which the best results occur with 20% × T . Subtracting both of this from
the total sample size (T) will yield a final sample size of 583 showed in all
figures.

Figure 1: Simulated Security Price according to (6), (7) and (10), T=583

To emphasize the graphical effect of price exuberance both graphs also
exhibit the discounted dividend stream (fundamental price). One can cer-
tainly check the existence of three major peaks to be anticipated. One in the
beginning of the sample, another one around the 100th period and a final one
around the 400th period. The following estimated variables should exhibit a
very specific behavior around this periods which will help the MMBA predict
one step ahead.
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Figure 2: Simulated Benchmark Price according to (6), (7) and (10), T=583

5.2 ’Adaptive Learning’ & Abnormal Returns

The next step is based on the recursive estimation of the security’s ab-
normal return. This value can be calculated by comparing a subjective pre-
diction of the security’s return with the equilibrium return generated by a
given asset pricing equilibrium model. Due to its generalized influence the
following simulation will make use of the CAPM equilibrium return. However
one can use any equilibrium model deemed fit to the analyzed security. The
subjective prediction of return will result from the adaptive learning theory,
as discussed in section (3.4).

The choice of the learning rule is strongly related with the type of security
analyzed. For general purposes the learning process will be based on the mean
rate of return of the security:

Rt+1 = Rt + εt+1, εt+1 ∼ N(0, σ2) (19)

Where Rt+1 is the security return at period t+1 and can be obtained by:
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Rt+1 = Pt+1−Pt

Pt
. The εt+1 represents a white noise disturbance.

The learning rule (19) will be updated according to the following recursive
algorithm:

R̄t = R̄t−1 + γ[Rt − R̄t−1] (20)

R̄t ≡ Asset Mean Return until time t
γ ≡ Constant Gain Parameter
It’s easy to verify that the algorithm (20) represents a particular case of the
one represented by (12).

In each period the abnormal return is estimated using the following equa-
tion:

Υ̂∗t = R̄t − E[Rt]
CAPM (21)

In intuitive terms, the abnormal return, represented in figure (5) is the
difference between the investor’s expectations given in figure (4) and the
asset fundamentals represented by the CAPM equilibrium prediction which
can be observed in figure (3). Each of the former variables will be updated
each time new data is available.
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Figure 3: Security CAPM Equilibrium Return (E[RCAPM
t ]), T=583

Figure 4: Security Mean Return (R̄t) - Learning Rule, T=583

The huge peaks observed in the abnormal returns are a direct result from
the learning rule estimation approach. Estimating expectations with
constant gains is essential to the MMBA, because it’s an effective way
to incorporate the significant structural breaks induced by price exuberance
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Figure 5: Security Abnormal Return (Υ̂t), T=583

Figure 6: Security Abnormal Return P-Value, T=583

in the equilibrium variables. Considering an econometric perspective, the
abnormal returns benefit from a robust statistical significance in any of the
problematic periods, demonstrating the estimation effectiveness in capturing
structure changes induced by exuberance.
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5.3 Measuring explosiveness with BSADFS

The Next step will measure the current price (Pt) acceleration with the
BSADFS. As its demonstrated in section (5.5), feeding this information to
the MMBA will significantly improve predictability. Once again, figure 7
exhibits maximum values in the quoted periods, which largely surpass the
1% critical value, implying an extreme price acceleration similar to the ones
observed in real world events.

Figure 7: BSADFS - Security Price, T=583

5.4 Dynamic Probit Estimation

Arriving at the procedure’s last stage, the data signals obtained in sec-
tions 5.2 and 5.3 are fed into the MMBA specification (17) detailed in section
(4.2). This exercise will yield three different point estimates beside the one
step ahead probability: the regression intercept (β̂1) presented in figure (8),
the abnormal return contribution (β̂2) which can be observed in figure (10)
and finally the BSADFS contribution (β̂3) given in figure (12). In each period

26



a standard T test is perform for each of the former estimates, the associated
p-values can be observed in figures (9), (11) and (13).

Figure 8: MMBA Intercept Estimation (β̂1), T=583

Figure 9: MMBA Intercept T-test P-Value, T=583

Once again, the parameter’s sharp increase in the referenced periods is a
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Figure 10: MMBA Abnormal Return Parameter Estimation (β̂2), T=583

Figure 11: MMBA Abnormal Return T-test P-Value, T=583

direct result from bubble’s occurrence, which also leads to salient increases
in their statistical significance across all parameters.

In each period the MMBA yields a one step ahead probability, however
this result is only trustworthy if and only if all parameters are statistical
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Figure 12: MMBA BSADF Statistic Parameter Estimation (β̂3), T=583

Figure 13: MMBA BSADF Statistic T-test P-Value, T=583

significant, because it’s not rational for any investor to perform changes in
his portfolio if his/her decision model is lacking good statistical properties.
For this reason figure 8 presents two types of probability considered jointly:
a simple one given by ̂Pt−1[Bt = 1|Ωt−1] and validation measure represented
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Figure 14: MMBA One Step Ahead Probability, T=583

( ̂Pt−1[Bt = 1|Ωt−1])

Figure 15: MMBA One Step Ahead Validated Probability, T=583
( ̂P ∗t−1[Bt = 1|Ωt−1])

by:

̂P ∗t−1[Bt = 1|Ωt−1] =

 ̂Pt−1[Bt = 1|Ωt−1] if Validityt−1 = 1

0 if Validityt−1 = 0
(22)
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Where the variable Validityt−1 is defined as:

Validityt−1 =

1 if Pvalue (tβ̂1 , tβ̂2 , tβ̂3) ≤ 10%

0 if Pvalue (tβ̂1 , tβ̂2 , tβ̂3) > 10%
(23)

This probability, P̂ ∗t−1, will be the one considered when testing for antici-
pation capability. A simple observation of the figure’s right hand side reveals
that the MMBA procedure was able to yield a high probability one period
before the referenced peaks. Taking in consideration that its a validated
probability one can state that the MMBA has successfully anticipated
the three bubbles generated in this sample simulation.

The difference between both probabilities, P̂ ∗t−1 and P̂t−1 is being cause
by the abnormal return P-Value since all the other parameters are statistical
significant across all periods. This fact leads to a very important conclusion:
If the observed abnormal return does not have statistical significance then
it’s impossible for the MMBA to fully distinguish and purge the fundamen-
tals from the observed price. To fully understand this conclusion, one needs
to recall that the abnormal return results from the difference between the
fundamentals given by the asset pricing model and the investor’s subjective
expectations (see Section 5.2). A lack of statistical significance implies that
at least one of the former components is not capturing the observed data,
leaving no choice but to ignore the one step ahead probability.

5.5 Monte Carlo Simulations

In this sub section, a monte carlo exercise is performed to infer about the
MMBA statistical properties. These were performed with a standard set of
parameters illustrated in table 1, which only suffer modifications when the
specific simulation requires. The standard set was in accordance to Evans
(1991) and allows the reader to do the necessary comparisons. With the ex-
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ception of table 2 that describes the variables in use, all other tables contain
three statistical measures: Mean (X̄), Standard Deviation (Σ(X)) and Me-
dian (Med(X)). Furthermore they are divided into 5 major areas: General
descriptive statistics, whose purpose is providing a Birdseye view for each
simulation; All Bubble Statistics which provides the MMBA’s behavior for
all bubbles in the sample; End Sample Bubbles Statistics whose purpose is
identical to the former one but only for the last bubble in the sample; All
bubbles probability distribution that illustrates how the MMBA probabili-
ties perform before a peak for all the bubbles in sample and finally the End
Sample probability distribution which is identical but only for the last bub-
ble in the sample. Along the present section the reference probability for
measuring MMBA’s anticipation power is the 90% threshold. All tables are
contained in the appendix section and each one of them contain the results
of one hundred repetitions (N = 100), except table 1 presented in section
(5).

An important aspect of any econometric procedure is how it reacts to
different sample sizes, table 3 provides evidence of how the MMBA predictive
power behaves to various samples sizes. It is an obvious conclusion that
the new procedure will perform better with larger sample sizes, however this
result is not only due to mechanism characteristics but it is also a consequence
from the data generating process, which tends to generates a low number
of bubbles in small samples (T = 200, T = 400). This can be seen by
the quantity #(B1,..,T = 1), presenting a mean value of 1.5 bubbles and 5
bubbles for the smallest and largest sample, respectively. This means the
most accurate simulations are going to be the ones with the highest sample
size, which is T = 1000. In fact, one can also observe a huge difference in valid
probabilities when comparing sample sizes of T = 200 against T = 1000,
which is 8.20% and 84.95 %, respectively. The MMBA’s need for a large
sample size does not constitute an issue because the type of financial data
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necessary to run the procedure can be easily obtained7. The new mechanism
also reveals a desired learning dynamic, resulting in higher predictive power
towards the last bubble in the sample. The simulations showed a mean value
of 77.88% for the last bubble against a mean value of 66.44% for all bubbles
in the sample, considering a one step ahead probability higher than 60%.
Another important consequence of a larger sample size, is the mechanism’s
ability to present significant probabilities until the fifth period before the
bubble peak, which helps execute a better surfing strategy. In one hundred
simulations with the largest sample size (T = 1000), more than half can yield
a probability higher than 60% five periods before the bubble peak, but when
one considers the same probability with the lowest sample size (T = 200),
the former value remains at 24.35%. Last but not least it’s possible to testify
the one step ahead probability convergence towards the mean value of 70%
as the sample size increases.

A closely related subject is the MMBA initial sample presented in ta-
ble 4. This table exposes how the mechanism react when different sample
sizes are used to calculate the first one step ahead probability (P̂t−1). The
most important result of this simulation is the positive relation between an-
ticipation power and initial sample size, which is in line with the learning
dynamic formerly observed. Ilustrating with an example, if one considers a
total sample size of one thousand (T=1000), the MMBA will predict better
if one utilizes a sample of 200 (20%×T ) to generate the first one step ahead
probability (P̂t−1) than if one utilizes a sample of only 100 (10%×T ) for the
same effect. The results revealed that the MMBA could provide a one step
ahead probability higher than 90% (P ∗t−1[Bt = 1|Ωt−1] ≥ 90%) for 41% of
all the bubbles and 57% for the end bubbles, when the mechanism does not
consume any data to provide the first one step ahead probability, meaning
(0% × T ). When using 20% of the total sample (20% × T ) the mechanism

7The Bloomberg® Professional Service is a good example of easy one can obtain fi-
nancial data
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could anticipate 54% of all bubbles and 61 % of the end sample bubbles with
the same level of probability, which represents the best result. The MMBA
yields a higher percentage of valid predictions when 40% of total sample size
is consumed, but the anticipation power as a whole is much smaller than the
former ones.

The importance of how the abnormal returns are estimated is absolutely
crucial for the mechanism’s effectiveness. As a consequence its important
to observe how the MMBA reacts to different constant gains values (γ).
Focusing on table 5 one perceives some sensitivity of the prediction power
towards this parameter, especially for the highest value considered (γ = 0.4).
In this last setting the MMBA can provide a one step ahead probability higher
than 90% (P ∗t−1[Bt = 1|Ωt−1] ≥ 90%) for approximately 47% of all generated
bubbles and 43% of the 100 end sample bubbles whereas if one considered the
standard value (γ = 0.2)8 the MMBA is able to capture approximately 55%
of all bubbles and 62% of the 100 end sample bubbles with the same level
of probability. This is not a surprising result because this parameter is able
to control how the investor perceives structural change in his/her learning
rule. If this value is too high then it is his constantly overestimating
changes, which ultimately diminishes predicting power.

The most important result in the whole set is given in table 6, because it
emphasizes how important the asset pricing model prediction is for a robust
anticipation. At first glance both settings look very similar to each other,
however an indepth observation reveals a very interesting pattern. Without
an equilibrium model in its specification the MMBA can only provide a one
step ahead probability higher than 90 %, for 17% of all bubbles and 10% of the
end sample bubbles. In fact this means that the mechanism looses its learning
ability by delivering worst results in the last portion of the sample. When
considering a five steps ahead probability, the MMBA without fundamentals
cannot predict with a probability higher than 90% more than 5% of the

8The simulations results considering γ = 0.1 and γ = 0.2 are quite similar
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end sample bubbles whereas for the same probability threshold but with
fundamentals, the MMBA can predict 45% of the end sample bubbles, which
represents a 900% improvement. The main conclusion is: The MMBA
presents a higher prediction power when the asset pricing model
prediction is included in its specification. This result has never been
found in the literature.

In this final stage it’s important to study the MMBA’s predictive power
viewing different types of bubbles. In line with this reasoning, tables 8, 9 and
10 outline the impact by significant variations in the three DGP parameters
presented in section (3.3.2). In table 8 its possible to perceive what happens
to the MMBA’s predictive power when the average duration of exuberance
is modified. One can perceive some significant differences between the sim-
ulations. First there is a sharp decrease in the number of valid probabilities
when the average duration of each bubble is high (α = 10). It’s not an intu-
itive result, when this setting presents the highest percentages of end bubble
predictability, yielding a 90 % five steps ahead probability for exactly 65%
of the 100 end sample bubbles, representing 30% more than the standard
duration (α = 1) and 70% more than the lowest duration setting (α = 0.1).
In line with this result, the MMBA probability distributions present a mean
value of 90% and very small standard deviations when compared with the
lowest duration settings. This value also tends to increase as the step ahead
gets larger. One can then conclude that the MMBA will perform bet-
ter with high duration bubbles. In section 6, this can be observed at
the large length of the "Technological Bubble". The small length settings
(α = 0.1 and α = 1) yield similar results for all bubbles in the sample, how-
ever there are sharp differences regarding the prediction of the last bubbles
in the sample. Considering the standard bubble length (α = 1) the MMBA
can deliver a one step probability higher than 90% for 62% of the end sample
bubbles.

Equally important is how sensitive the MMBA is to different bubble
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scales. The statistics are presented in table 10. By looking at the results
the results is possible to verify how insensitive the MMBA is to small scale
bubbles, by the dramatically decline in its prediction power. In the smallest
scale setting (π = 0.5) the mechanism can only predict 1% of all the bubbles
in sample and 4% of the end sample bubbles, which invalidates the mecha-
nism’s capability to detect small bubbles. The most obvious conclusion is
the positive relation between anticipation power and bubble scale.
In the larger scale setting (π = 0.99) the MMBA yields the best results of all
the performed simulations by anticipating 83% of all bubbles in sample for
all probabilities thresholds and anticipation periods. The former results are
quite intuitive since the lower the collapse probability (1− π) gets the more
closer the DGP gets to an exponential process where collapses cease to exist.
Finally one should note how the MMBA executed a perfect learning dynamic
in the highest bubble scale (π = 0.99), predicting 100% of the end sample
bubbles for the five periods ahead with the highest probability threshold.

Last but not least it’s important to understand how the procedure re-
sponds to different bubble eruption frequencies. Table 9 shows a weak per-
formance if there is a large number of bubble eruptions, which might seem
contradictory to the learning dynamic formerly described but one should
consider the following fact: In Evans (1991) it’s emphasized how the D.G.P
tends to generate a higher number of smaller scale bubbles when δ is larger
than α, which is the case. As demonstrated before the MMBA can only
predict bubbles of a certain scale hence it will perform badly for this com-
bination of parameters. Considering the case where the number of bubble
eruptions is smaller, the D.G.P will have an opposite behavior, because δ < α

Evans (1991). In this situation the new procedure delivers a proper anticipa-
tion power, which leads to the following conclusion: The MMBA learning
dynamic is more responsive to a single large scale bubble than to
several small scale bubbles.
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6 Application to Real Data

Having shown the mechanism’s capability with simulated data, the fol-
lowing question pops up: Can the MMBA anticipate real world bubbles ?

To answer this question, we will apply it to roughly thirty years of Apple
and NASDAQ Composite monthly data and test if it can anticipate the "dot-
com" bubble by providing a significant one step ahead probability towards
the bubble peak.

Figures 16 and 17 shows the price plot for the Apple Stock Price and
Nasdaq Composite Index, respectively. The exuberance episode in reference
takes place around the year 2000.

Figure 16: Apple Stock Price from 1990 to 2014

One can easily understand the exacerbated acceleration each security
takes in the quoted period. If the investor expects the price to go higher, he
will want to take a long position in the apple stock as soon as possible and
close that position just before the price starts to collapse and return to its fair
value, which means he surfs the bubble as in Brunnermeier & Abreu (2003).
In line with section 4.1, the investor starts by building his expectations using
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Figure 17: Nasdaq Composite Price from 1990 to 2014

as learning rule the apple’s mean return9, which can be observed in figure 18.
These expectations are then compared with the recursive estimation of the
CAPM presented in figure 19 , thus yielding the expected abnormal return
for the apple stock illustrated in figure 20.

The results are quite similar to the simulations performed in section 5,
around the year 2000 one can observe sharp increases in all MMBA param-
eters and respective statistical significance, emphasizing the idea of a robust
estimation mechanism supporting the one step ahead probability. This esti-
mations can be observed in figures 22, 23,24, 25, 26 and 27. The observed
level of noise in the Apple and NASDAQ data is much higher than the sim-
ulated price in section (5.1), revealing a desired characteristic in the MMBA
mechanism, which is the mechanism’s robustness to data variance. It
is worth noting the evolution of the abnormal return and its statistical sig-
nificance in the referenced period, because it’s a revealing indicator of the
proper estimation of both fundamentals and subjective rate of return.

9As stated before the investor may choose any learning rule to calculate his/her expec-
tations
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Figure 18: Apple’s Mean Return (R̄t), from 1990 to 2014

Figure 19: Apple’s CAPM Return (E[Rt]
CAPM) , from 1990 to 2014

At the validated one step ahead probability, illustrated by figure 29, one
perceives that the MMBA mechanism was able to perform a complete antic-
ipation of the "technological bubble", yielding probabilities higher than 85%
five months before the bubble peak and a probability higher than 90% one
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Figure 20: Apple’s Abnormal Return (Υ̂t), from 1990 to 2014

Figure 21: Apple’s Abnormal Return T-Statistic P-Value from 1990 to 2014

month before the bubble peak.
Considering the former results one perceives that the MMBA could pro-

vide an enormous advantage for two different perspectives operating in the
same market: the investors which are interest in maximizing the returns
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from their portfolio and market regulators10 whose job is maintain market
efficiency. Looking at the specific case of the "Tech Bubble" if an investor
would made his/her portfolio adjustments according to the MMBA he/she
would have made an enormous profit due to the mechanism high predictive
power. In practical terms the investor would have to proceed in the following
way: He/She runs the MMBA for the Apple stock, if the result was a one step
ahead probability which surpasses a high threshold, for example 80%, then
he/she would have a strong incentive to increase the relative weight of the
apple stock in the portfolio, which one month from that time would generate
a high rate of return. The investor could repeat the strategy until he/she
got a clear signal that exuberance has stopped. In a regulator’s perspective
it’s quite reasonable to assume most investors will try to adopt this type of
strategy which would have justify a temporary suspension towards the apple
stock to avoid a market crash.

Figure 22: Apple’s MMBA Intercept (β̂1), from 1990 to 2014

10One can consider the Portuguese market authority CMVM
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Figure 23: Apple’s MMBA Intercept T-Statistic P-Value, from 1990 to 2014

Figure 24: Apple’s MMBA Asset Pricing Model Parameter (β̂2), from 1990
to 2014
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Figure 25: Apple’s MMBA Asset Pricing Model Parameter T-Statistic P-
Value, from 1990 to 2014

Figure 26: Apple’s MMBA BSADFS Parameter (β̂3), from 1990 to 2014
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Figure 27: Apple’s MMBA BSADFS Parameter T-Statistic P-Value, from
1990 to 2014

Figure 28: Apple’s MMBA One Step Ahead Probability, from 1990 to 2014
( ̂Pt−1[Bt = 1|Ωt−1])
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Figure 29: Apple’s MMBA One Step Ahead Validated Probability, from 1990
to 2014 ( ̂P ∗t−1[Bt = 1|Ωt−1])
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7 Further Extensions

There are several forms of extending and improving the application of the
newly proposed mechanism, namely the components from which one draws
the probability of exuberance: the abnormal return and the non stationarity
statistic. At this moment the MMBA can only anticipate exuberance in
common stocks. However if one considers a different equilibrium model other
than the CAPM, for example the model developed in Fry (2014), then the
MMBA becomes completely general. The former framework can calculate for
any type of asset in the financial markets, how much of the observed price is
due to exuberance. This would allow one to replace the abnormal return in
the MMBA’s specification and estimate the next period’s bubble probability.

Another important aspect is how the subjective rate of return is esti-
mated, that is the choice of the learning rule. For generalization matters the
learning rule utilized was basically a recursively updated mean rate of return.
However one can consider far more complicated learning rules.

Finally it’s also possible to alter the statistic used to capture price accel-
eration. Nonetheless one should consider both effectiveness and efficiency of
the choice, otherwise the MMBA’s anticipation power is affected because the
identification of possible exuberance starts with unusual price acceleration
and the chosen statistic should identify the event with the minimum data
consumption. At this moment, the BSADF statistic Phillips et al. (2013)
remains the best choice for this job.11

11Further simulations reveal significant differences in the MMBA predictions when using
the BADF Phillips (2012) and its updated version BSADF Phillips et al. (2013)
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8 Conclusion

The Moreira-Martins Bubble Anticipator (MMBA) is an econometric
mechanism capable of anticipating price exuberance by providing a signifi-
cant probability at least one step ahead of the bubble peak and whose main
novelty, is the incorporation of fundamentals contain in asset pricing theory
into the field of bubble testing. Another methodological innovation is the
ability to incorporate the social feedback loop Shiller (2000) by the usage of
a dynamic econometric specification.

The monte carlo simulations revealed that the fundamentals are quite es-
sential to a better prediction, representing an improvement of 900% when one
includes the estimated abnormal return into the econometric specification.
The MMBA presents a mean anticipation of 60% for the highest probability
threshold (90%) and exhibits an interesting learning dynamic in which the
last bubble in the sample is easier to anticipated than all the others. As
expected the mechanism presents a higher anticipation power when bubbles
are larger in length and scale. For the higher scale bubbles the MMBA was
able to predict 100% of the end sample bubbles with the highest probability
threshold five periods before the peak.

Finally the application to Apple and NASDAQ Composite monthly data
from 1990 to 2014 revealed the MMBA’s effectiveness using real data, by
providing valid probabilities higher than 85% five months and higher than
90% one month before the "technological bubble" peak, allowing any investor
to perform a very profitable surfing strategy.

The new procedure can provide an important contribution for both in-
vestors and market regulators due to its Ex Ante nature. This would allow
them both to anticipate exuberance one step ahead and act accordingly to
their own objectives.
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9 Appendix

9.1 MMBA Monte Carlo Simulation Tables

Table 2: Simulation Variables Description

Variables Description

Simulation Overview

P ∗/T Valid MMBA Predictions in Total Sample Size (%)
#(B1,. . . ,T ) # Of Bubbles Per Simulation

#(P ∗t−1[Bt]|Ωt−1] ≥ 60) # Of Predictions For All Bubbles Per Simulation
#(P ∗T−1[BT |ΩT−1] ≥ 60) # Of Predictions For End Sample Bubbles Per Simulation

All Sample Bubbles Monte Carlo Statistics

P ∗t−1[Bt = 1|Ωt−1] ≥ 60% % Of MMBA One Step Ahead Predictions With Probiblity higher than 60%
P ∗t−1[Bt = 1|Ωt−1] ≥ 75% % Of MMBA One Step Ahead Prediction With Probiblity higher than 75%
P ∗t−1[Bt = 1|Ωt−1] ≥ 90% % Of MMBA One Step Ahead Prediction With Probiblity higher than 90%
P ∗t−2[Bt = 1|Ωt−2] ≥ 60% % Of MMBA Two Step Ahead Prediction With Probiblity higher than 60%
P ∗t−2[Bt = 1|Ωt−2] ≥ 75% % Of MMBA Two Step Ahead Prediction With Probiblity higher than 75%
P ∗t−2[Bt = 1|Ωt−2] ≥ 90% % Of MMBA Two Step Ahead Prediction With Probiblity higher than 90%
P ∗t−3[Bt = 1|Ωt−3] ≥ 60% % Of MMBA Three Step Ahead Prediction With Probiblity higher than 60%
P ∗t−3[Bt = 1|Ωt−3] ≥ 75% % Of MMBA Three Step Ahead Prediction With Probiblity higher than 75%
P ∗t−3[Bt = 1|Ωt−3] ≥ 90% % Of MMBA Three Step Ahead Prediction With Probiblity higher than 90%
P ∗t−4[Bt = 1|Ωt−4] ≥ 60% % Of MMBA Four Step Ahead Prediction With Probiblity higher than 60%
P ∗t−4[Bt = 1|Ωt−4] ≥ 75% % Of MMBA Four Step Ahead Prediction With Probiblity higher than 75%
P ∗t−4[Bt = 1|Ωt−4] ≥ 90% % Of MMBA Four Step Ahead Prediction With Probiblity higher than 90%
P ∗t−5[Bt = 1|Ωt−5] ≥ 60% % Of MMBA Five Step Ahead Prediction With Probiblity higher than 60%
P ∗t−5[Bt = 1|Ωt−5] ≥ 75% % Of MMBA Five Step Ahead Prediction With Probiblity higher than 75%
P ∗t−5[Bt = 1|Ωt−5] ≥ 90% % Of MMBA Five Step Ahead Prediction With Probiblity higher than 90%

End Sample Bubbles Monte Carlo Statistics

P ∗T−1[BT = 1|ΩT−1] ≥ 60% % Of MMBA One Step Ahead Prediction With Probiblity higher than 60%
P ∗T−1[BT = 1|ΩT−1] ≥ 75% % Of MMBA One Step Ahead Prediction With Probiblity higher than 75%
P ∗T−1[BT = 1|ΩT−1] ≥ 90% % Of MMBA One Step Ahead Prediction With Probiblity higher than 90%
P ∗T−2[BT = 1|ΩT−2] ≥ 60% % Of MMBA Two Step Ahead Prediction With Probiblity higher than 60%
P ∗T−2[BT = 1|ΩT−2] ≥ 75% % Of MMBA Two Step Ahead Prediction With Probiblity higher than 75%
P ∗T−2[BT = 1|ΩT−2] ≥ 90% % Of MMBA Two Step Ahead Prediction With Probiblity higher than 90%
P ∗T−3[BT = 1|ΩT−3] ≥ 60% % Of MMBA Three Step Ahead Prediction With Probiblity higher than 60%
P ∗T−3[BT = 1|ΩT−3] ≥ 75% % Of MMBA Three Step Ahead Prediction With Probiblity higher than 75%
P ∗T−3[BT = 1|ΩT−3] ≥ 90% % Of MMBA Three Step Ahead Prediction With Probiblity higher than 90%
P ∗T−4[BT = 1|ΩT−4] ≥ 60% % Of MMBA Four Step Ahead Prediction With Probiblity higher than 60%
P ∗T−4[BT = 1|ΩT−4] ≥ 75% % Of MMBA Four Step Ahead Prediction With Probiblity higher than 75%
P ∗T−4[BT = 1|ΩT−4] ≥ 90% % Of MMBA Four Step Ahead Prediction With Probiblity higher than 90%
P ∗T−5[BT = 1|ΩT−5] ≥ 60% % Of MMBA Five Step Ahead Prediction With Probiblity higher than 60%
P ∗T−5[BT = 1|ΩT−5] ≥ 75% % Of MMBA Five Step Ahead Prediction With Probiblity higher than 75%
P ∗T−5[BT = 1|ΩT−5] ≥ 90% % Of MMBA Five Step Ahead Prediction With Probiblity higher than 90%

All Sample Bubbles MMBA Probability distribution

P ∗t−1[Bt|Ωt−1] Probability One Step Ahead Every Bubble Peak
P ∗t−2[Bt|Ωt−2] Probability Two Steps Ahead Every Bubble Peak
P ∗t−3[Bt|Ωt−3] Probability Three Steps Ahead Every Bubble Peak
P ∗t−4[Bt|Ωt−4] Probability Four Steps Ahead Every Bubble Peak
P ∗t−5[Bt|Ωt−5] Probability Five Steps Ahead Every Bubble Peak

End Sample Bubbles MMBA Probability distribution

P ∗T−1[BT |ΩT−1] Probability One Step Ahead Last Bubble Peak
P ∗T−2[BT |ΩT−2] Probability Two Steps Ahead Last Bubble Peak
P ∗T−3[BT |ΩT−3] Probability Three Steps Ahead Last Bubble Peak
P ∗T−4[BT |ΩT−4] Probability Four Steps Ahead Last Bubble Peak
P ∗T−5[BT |ΩT−5] Probability Five Steps Ahead Last Bubble Peak
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Table 3: MMBA With Different Sample Sizes, N = 100

Variables Sample Size Monte Carlo Simulation

Parameters T = 200 T = 400 T = 600 T = 800 T = 1000

Statistics X̄ ΣX Med(X) X̄ ΣX Med(X) X̄ ΣX Med(X) X̄ ΣX Med(X) X̄ ΣX Med(X)

P ∗/T 8.20 11.34 0.04 30.71 28.85 0.24 57.02 30.84 0.62 74.75 18.77 0.79 84.95 16.42 91.63
#(B1,. . . ,T ) 1.41 0.53 1.00 2.67 1.05 3.00 3.15 1.19 3.00 4.14 1.39 4.00 4.98 1.79 5.00

#(P ∗t−1[Bt]|Ωt−1] ≥ 60) 0.50 0.57 0.00 1.22 1.01 1.00 1.98 0.96 2.00 2.66 1.18 3.00 3.23 1.31 3.00
#(P ∗T−1[BT |ΩT−1] ≥ 60) 0.40 0.49 0.00 0.60 0.49 1.00 0.82 0.39 1.00 0.69 0.47 1.00 0.77 0.42 1.00

All Sample Bubbles Statistics

P ∗t−1[Bt = 1|Ωt−1] ≥ 60% 36.52 43.08 0.00 49.42 38.18 50.00 66.72 29.46 66.67 67.32 25.20 66.67 66.44 23.08 66.00
P ∗t−1[Bt = 1|Ωt−1] ≥ 75% 35.65 42.80 0.00 48.17 39.10 50.00 66.21 29.16 66.67 64.25 27.04 66.67 62.88 25.05 64.00
P ∗t−1[Bt = 1|Ωt−1] ≥ 90% 33.04 41.83 0.00 40.11 37.69 33.33 58.10 30.37 50.00 51.15 29.96 50.00 54.83 26.76 57.00
P ∗t−2[Bt = 1|Ωt−2] ≥ 60% 33.48 41.74 0.00 47.97 37.31 50.00 62.69 31.23 66.00 61.99 27.83 63.33 59.95 24.98 60.00
P ∗t−2[Bt = 1|Ωt−2] ≥ 75% 33.48 41.74 0.00 45.33 38.05 50.00 61.67 31.64 66.00 58.56 28.64 60.00 56.60 26.17 58.00
P ∗t−2[Bt = 1|Ωt−2] ≥ 90% 27.83 39.29 0.00 33.25 36.01 25.00 51.82 31.72 50.00 44.53 30.65 33.33 49.07 27.68 50.00
P ∗t−3[Bt = 1|Ωt−3] ≥ 60% 31.30 41.60 0.00 38.67 36.60 41.67 58.41 32.39 60.00 55.29 27.72 60.00 55.11 25.85 60.00
P ∗t−3[Bt = 1|Ωt−3] ≥ 75% 29.57 40.77 0.00 36.86 36.42 33.33 55.72 32.60 50.00 51.99 29.58 50.00 52.24 25.46 59.00
P ∗t−3[Bt = 1|Ωt−3] ≥ 90% 23.91 38.24 0.00 28.25 33.74 10.00 46.21 33.40 33.00 39.18 30.01 33.33 44.79 27.86 59.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 60% 26.96 39.89 0.00 33.75 36.09 33.33 53.74 33.27 50.00 46.88 30.55 45.00 50.39 26.19 50.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 75% 25.22 38.83 0.00 31.53 34.92 25.00 50.41 33.16 50.00 44.02 31.04 40.00 48.00 26.84 50.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 90% 20.44 36.21 0.00 25.00 33.51 0.00 39.56 36.45 33.00 31.84 30.11 25.00 40.86 28.05 40.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 60% 24.35 39.89 0.00 29.86 36.09 25.00 46.85 33.27 33.00 39.79 30.55 33.33 43.79 26.19 50.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 75% 21.30 38.83 0.00 26.53 34.92 0.00 45.26 33.16 33.00 36.88 31.04 29.17 41.70 26.84 46.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 90% 18.70 36.21 0.00 20.28 33.51 0.00 34.00 36.45 25.00 27.50 30.11 25.00 36.28 28.05 33.00

End Sample Bubbles Statistics

P ∗T−1[BT = 1|ΩT−1] ≥ 60% 40.00 49.20 0.00 60.00 49.40 100.00 81.54 39.10 100.00 68.57 46.76 100.00 77.38 42.09 100.00
P ∗T−1[BT = 1|ΩT−1] ≥ 75% 39.13 49.02 0.00 56.67 49.97 100.00 81.54 39.10 100.00 67.14 47.31 100.00 73.81 44.23 100.00
P ∗T−1[BT = 1|ΩT−1] ≥ 90% 36.52 48.36 0.00 43.33 49.97 0.00 66.15 47.69 100.00 52.86 50.28 100.00 61.91 48.85 100.00
P ∗T−2[BT = 1|ΩT−2] ≥ 60% 35.65 48.11 0.00 60.00 49.40 100.00 76.92 42.46 100.00 64.29 48.26 100.00 71.43 45.45 100.00
P ∗T−2[BT = 1|ΩT−2] ≥ 75% 35.65 48.11 0.00 53.33 50.31 100.00 73.85 44.29 100.00 61.43 49.03 100.00 65.48 47.83 100.00
P ∗T−2[BT = 1|ΩT−2] ≥ 90% 29.57 45.83 0.00 38.33 49.03 0.00 58.46 49.66 100.00 44.29 50.03 0.00 54.76 50.07 100.00
P ∗T−3[BT = 1|ΩT−3] ≥ 60% 33.91 47.55 0.00 45.00 50.17 0.00 69.23 46.51 100.00 58.57 49.62 100.00 61.91 48.85 100.00
P ∗T−3[BT = 1|ΩT−3] ≥ 75% 32.17 46.92 0.00 43.33 49.97 0.00 64.62 48.19 100.00 57.14 49.84 100.00 59.52 49.38 100.00
P ∗T−3[BT = 1|ΩT−3] ≥ 90% 24.35 43.11 0.00 35.00 48.10 0.00 52.31 50.34 100.00 41.43 49.62 0.00 47.62 50.24 0.00
P ∗T−4[BT = 1|ΩT−4] ≥ 60% 28.70 45.43 0.00 38.33 49.03 0.00 67.69 47.13 100.00 52.86 58.28 100.00 60.71 49.13 100.00
P ∗T−4[BT = 1|ΩT−4] ≥ 75% 26.96 44.57 0.00 35.00 48.10 0.00 63.08 48.64 100.00 50.00 58.36 50.00 59.52 49.38 100.00
P ∗T−4[BT = 1|ΩT−4] ≥ 90% 19.13 39.51 0.00 28.33 45.44 0.00 49.23 50.38 0.00 35.71 48.26 0.00 45.24 50.07 0.00
P ∗T−5[BT = 1|ΩT−5] ≥ 60% 24.35 45.43 0.00 33.33 49.03 0.00 58.46 47.13 100.00 45.71 50.28 0.00 53.57 49.13 100.00
P ∗T−5[BT = 1|ΩT−5] ≥ 75% 20.87 44.57 0.00 28.33 48.10 0.00 56.92 48.64 100.00 40.00 50.36 0.00 52.38 49.38 100.00
P ∗T−5[BT = 1|ΩT−5] ≥ 90% 17.39 39.51 0.00 21.67 45.44 0.00 43.08 50.38 0.00 32.86 48.26 0.00 45.24 50.07 0.00

All Sample Bubbles MMBA Probability Distribution

P ∗t−1[Bt|Ωt−1] 95.16 11.56 98.73 78.17 32.89 94.00 76.85 33.97 94.82 72.21 35.88 91.45 73.15 34.85 94.13
P ∗t−2[Bt|Ωt−2] 90.80 19.49 97.60 74.05 34.33 93.00 71.42 36.73 93.01 66.70 37.48 88.62 66.72 37.90 92.36
P ∗t−3[Bt|Ωt−3] 86.46 25.04 96.22 66.22 37.98 89.00 65.66 38.81 89.90 59.01 39.99 83.09 60.97 40.30 88.14
P ∗t−4[Bt|Ωt−4] 81.46 29.72 94.41 58.41 39.76 79.00 59.22 40.77 83.78 58.16 41.60 57.14 55.45 41.39 77.98
P ∗t−5[Bt|Ωt−5] 73.26 34.78 91.41 52.30 41.06 61.00 51.56 42.07 64.70 41.52 41.47 14.01 48.36 42.23 25.28

End Sample Bubbles MMBA Probability Distribution

P ∗T−1[BT |ΩT−1] 95.09 9.83 97.92 79.67 30.44 93.67 82.56 27.74 95.42 68.13 37.48 90.59 77.27 31.14 95.07
P ∗T−2[BT |ΩT−2] 90.34 19.08 96.61 76.33 31.77 92.89 77.13 32.26 93.96 63.74 39.46 86.83 71.52 34.81 93.04
P ∗T−3[BT |ΩT−3] 85.99 24.80 95.50 65.88 38.14 89.68 70.57 36.55 92.47 57.85 41.33 83.29 63.97 39.08 88.46
P ∗T−4[BT |ΩT−4] 80.74 29.54 93.76 57.61 40.34 80.71 67.81 38.16 91.24 51.93 42.55 75.11 61.81 40.09 86.88
P ∗T−5[BT |ΩT−5] 73.16 34.58 91.24 50.55 41.95 55.52 59.85 41.21 84.53 45.64 42.89 12.88 55.59 42.06 80.13
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Table 4: MMBA With Different Initial Sample Sizes, N = 100

Variables MMBA Initial Sample Monte Carlo Simulation

Parameters 0%× T 20%× T 40%× T

Statistics X̄ ΣX Med(X) X̄ ΣX Med(X) X̄ ΣX Med(X)

P ∗/T 61.15 19.51 0.65 84.95 16.42 91.63 89.53 13.65 0.95
#(B1,. . . ,T ) 6.14 2.04 6.00 4.98 1.79 5.00 4.50 1.45 4.50

#(P ∗t−1[Bt]|Ωt−1] ≥ 60) 2.98 1.36 3.00 3.23 1.31 3.00 2.93 0.92 3.00
#(P ∗T−1[BT |ΩT−1] ≥ 60) 0.73 0.45 1.00 0.77 0.42 1.00 0.50 0.52 0.50

All Sample Bubbles Statistics

P ∗t−1[Bt = 1|Ωt−1] ≥ 60% 51.01 22.28 50.00 66.44 23.08 66.00 68.55 21.75 69.05
P ∗t−1[Bt = 1|Ωt−1] ≥ 75% 49.93 23.18 50.00 62.88 25.05 64.00 63.32 28.70 69.048
P ∗t−1[Bt = 1|Ωt−1] ≥ 90% 41.12 25.81 37.50 54.83 26.76 57.00 48.96 31.89 50.00
P ∗t−2[Bt = 1|Ωt−2] ≥ 60% 47.95 22.99 50.00 59.95 24.98 60.00 62.53 22.22 63.33
P ∗t−2[Bt = 1|Ωt−2] ≥ 75% 46.27 24.39 50.00 56.60 26.17 58.00 56.11 28.87 58.57
P ∗t−2[Bt = 1|Ωt−2] ≥ 90% 35.70 26.01 33.33 49.07 27.68 50.00 36.33 29.40 33.33
P ∗t−3[Bt = 1|Ωt−3] ≥ 60% 44.01 23.42 42.86 55.11 25.85 60.00 49.56 28.17 50.00
P ∗t−3[Bt = 1|Ωt−3] ≥ 75% 41.60 24.20 38.75 52.24 25.46 59.00 46.94 31.16 50.00
P ∗t−3[Bt = 1|Ωt−3] ≥ 90% 31.53 24.58 25.00 44.79 27.86 59.00 39.37 28.67 26.79
P ∗t−4[Bt = 1|Ωt−4] ≥ 60% 39.32 24.38 35.42 50.39 26.19 50.00 44.56 32.16 50.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 75% 36.43 25.16 33.33 48.00 26.84 50.00 42.77 32.53 45.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 90% 28.34 25.37 20.00 40.86 28.05 40.00 23.76 27.63 18.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 60% 34.80 24.38 30.95 43.79 26.19 50.00 38.18 32.16 41.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 75% 32.29 25.16 25.00 41.70 26.84 46.00 36.99 32.53 41.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 90% 24.31 25.37 16.67 36.28 28.05 33.00 16.97 27.63 15.00

End Sample Bubbles Statistics

P ∗T−1[BT = 1|ΩT−1] ≥ 60% 72.73 44.79 100.00 77.38 42.09 100.00 50.00 51.89 50.00
P ∗T−1[BT = 1|ΩT−1] ≥ 75% 68.18 46.84 100.00 73.81 44.23 100.00 50.00 51.89 50.00
P ∗T−1[BT = 1|ΩT−1] ≥ 90% 56.82 49.82 100.00 61.91 48.85 100.00 42.86 51.36 0.00
P ∗T−2[BT = 1|ΩT−2] ≥ 60% 65.91 47.67 100.00 71.43 45.45 100.00 50.00 51.89 50.00
P ∗T−2[BT = 1|ΩT−2] ≥ 75% 62.50 48.69 100.00 65.48 47.83 100.00 50.00 51.89 50.00
P ∗T−2[BT = 1|ΩT−2] ≥ 90% 47.73 50.24 0.00 54.76 50.07 100.00 35.71 49.73 0.00
P ∗T−3[BT = 1|ΩT−3] ≥ 60% 59.09 49.45 100.00 61.91 48.85 100.00 28.57 46.88 0.00
P ∗T−3[BT = 1|ΩT−3] ≥ 75% 56.82 49.82 100.00 59.52 49.38 100.00 28.57 46.88 0.00
P ∗T−3[BT = 1|ΩT−3] ≥ 90% 40.91 49.45 0.00 47.62 50.24 0.00 28.57 46.88 0.00
P ∗T−4[BT = 1|ΩT−4] ≥ 60% 52.27 50.24 100.00 60.71 49.13 100.00 28.57 46.88 0.00
P ∗T−4[BT = 1|ΩT−4] ≥ 75% 50.00 50.29 50.00 59.52 49.38 100.00 28.57 46.88 0.00
P ∗T−4[BT = 1|ΩT−4] ≥ 90% 34.09 47.67 0.00 45.24 50.07 0.00 21.43 42.58 0.00
P ∗T−5[BT = 1|ΩT−5] ≥ 60% 44.32 50.24 0.00 53.57 49.13 100.00 28.57 46.88 0.00
P ∗T−5[BT = 1|ΩT−5] ≥ 75% 43.18 50.29 0.00 52.38 49.38 100.00 28.57 46.88 0.00
P ∗T−5[BT = 1|ΩT−5] ≥ 90% 30.68 47.67 0.00 45.24 50.07 0.00 21.43 42.58 0.00

All Sample Bubbles MMBA Probability Distribution

P ∗t−1[Bt|Ωt−1] 68.04 39.26 92.00 73.15 34.85 94.13 64.99 38.47 88.28
P ∗t−2[Bt|Ωt−2] 63.58 40.69 88.00 66.72 37.90 92.36 58.77 39.68 82.87
P ∗t−3[Bt|Ωt−3] 57.76 41.95 82.00 60.97 40.30 88.14 49.56 40.83 58.94
P ∗t−4[Bt|Ωt−4] 50.79 42.69 52.00 55.45 41.39 77.98 42.33 41.89 11.43
P ∗t−5[Bt|Ωt−5] 44.81 43.22 16.00 48.36 42.23 25.28 37.24 40.97 9.11

End Sample Bubbles MMBA Probability Distribution

P ∗T−1[BT |ΩT−1] 69.56 36.88 92.48 77.27 31.14 95.07 52.50 43.63 49.05
P ∗T−2[BT |ΩT−2] 64.87 39.34 88.48 71.52 34.81 93.04 51.10 43.68 46.47
P ∗T−3[BT |ΩT−3] 57.89 41.56 83.18 63.97 39.08 88.46 35.18 40.89 13.32
P ∗T−4[BT |ΩT−4] 51.56 42.50 74.82 61.81 40.09 86.88 32.51 41.48 18.17
P ∗T−5[BT |ΩT−5] 44.53 42.98 17.23 55.59 42.06 80.13 31.40 41.71 8.31
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Table 5: MMBA With Different Constant Gains, N = 100

Variables Constant Gains Monte Carlo Simulation

Parameters γ = 0.1 γ = 0.2 γ = 0.4

Statistics X̄ ΣX Med(X) X̄ ΣX Med(X) X̄ ΣX Med(X)

P ∗/T 68.049 30.113 0.73928 84.948 16.424 91.633 85.652 16.231 9.92925
#(B1,. . . ,T ) 4.0864 1.4849 4 4.9762 1.79 5 5.0988 1.8615 5

#(P ∗t−1[Bt]|Ωt−1] ≥ 60) 2.6173 1.2507 3 3.2262 1.3112 3 3.0247 1.3132 3
#(P ∗T−1[BT |ΩT−1] ≥ 60) 0.76543 0.42637 1 0.77381 0.42088 1 0.62963 0.48591 1

All Sample Bubbles Statistics

P ∗t−1[Bt = 1|Ωt−1] ≥ 60% 67.754 28.655 66 66.443 23.08 66 60.982 22.714 60
P ∗t−1[Bt = 1|Ωt−1] ≥ 75% 64.976 30.547 66 62.88 25.051 64 56.149 22.594 60
P ∗t−1[Bt = 1|Ωt−1] ≥ 90% 59.08 30.731 60 54.83 26.759 57 46.46 25.034 50
P ∗t−2[Bt = 1|Ωt−2] ≥ 60% 61.446 29.824 66 59.95 24.979 60 55.117 25.467 50
P ∗t−2[Bt = 1|Ωt−2] ≥ 75% 59.491 30.383 60 56.604 26.173 58 52.092 24.36 50
P ∗t−2[Bt = 1|Ωt−2] ≥ 90% 53.144 31.927 50 49.069 27.679 50 43.5 27.249 50
P ∗t−3[Bt = 1|Ωt−3] ≥ 60% 52.906 31.62 50 55.111 25.851 60 52.241 24.997 50
P ∗t−3[Bt = 1|Ωt−3] ≥ 75% 51.671 31.71 50 52.244 25.456 59 48.558 25.35 50
P ∗t−3[Bt = 1|Ωt−3] ≥ 90% 45.467 31.539 50 44.788 27.864 59 42.103 26.642 40
P ∗t−4[Bt = 1|Ωt−4] ≥ 60% 48.574 31.512 50 50.392 26.194 50 47.405 26.227 42.857
P ∗t−4[Bt = 1|Ωt−4] ≥ 75% 46.208 30.992 40 48 26.844 50 43.208 24.702 40
P ∗t−4[Bt = 1|Ωt−4] ≥ 90% 40.126 30.962 33.3 40.861 28.048 40 38.843 25.449 33.33
P ∗t−5[Bt = 1|Ωt−5] ≥ 60% 44.85 31.512 40 43.788 26.194 50 40.517 26.227 33.33
P ∗t−5[Bt = 1|Ωt−5] ≥ 75% 42.381 30.992 33.3 41.704 26.844 46 37.863 24.702 33.33
P ∗t−5[Bt = 1|Ωt−5] ≥ 90% 37.184 30.962 33.3 36.282 28.048 33 32.269 25.449 28.571

End Sample Bubbles Statistics

P ∗T−1[BT = 1|ΩT−1] ≥ 60% 76.543 42.637 100 77.381 42.088 100 62.963 48.591 100
P ∗T−1[BT = 1|ΩT−1] ≥ 75% 74.074 44.096 100 73.81 44.231 100 58.025 49.659 100
P ∗T−1[BT = 1|ΩT−1] ≥ 90% 67.901 46.976 100 61.905 48.854 100 43.21 49.845 0
P ∗T−2[BT = 1|ΩT−2] ≥ 60% 70.37 45.947 100 71.429 45.447 100 55.556 50 100
P ∗T−2[BT = 1|ΩT−2] ≥ 75% 69.136 46.481 100 65.476 47.83 100 54.321 50.123 100
P ∗T−2[BT = 1|ΩT−2] ≥ 90% 59.259 49.441 100 54.762 50.072 100 40.741 49.441 0
P ∗T−3[BT = 1|ΩT−3] ≥ 60% 59.259 49.441 100 61.905 48.854 100 50.617 58.308 100
P ∗T−3[BT = 1|ΩT−3] ≥ 75% 58.025 49.659 100 59.524 49.379 100 48.148 50.277 9
P ∗T−3[BT = 1|ΩT−3] ≥ 90% 51.852 50.277 100 47.619 50.243 0 40.741 49.441 0
P ∗T−4[BT = 1|ΩT−4] ≥ 60% 55.556 50 100 60.714 49.132 100 45.679 50.123 0
P ∗T−4[BT = 1|ΩT−4] ≥ 75% 53.086 50.216 100 59.524 49.379 100 43.21 49.845 0
P ∗T−4[BT = 1|ΩT−4] ≥ 90% 45.679 50.123 0 45.238 50.072 0 38.272 48.908 0
P ∗T−5[BT = 1|ΩT−5] ≥ 60% 50.617 50 100 53.571 49.132 100 39.506 50.123 0
P ∗T−5[BT = 1|ΩT−5] ≥ 75% 49.383 50.216 0 52.381 49.379 100 37.037 49.845 0
P ∗T−5[BT = 1|ΩT−5] ≥ 90% 44.444 50.123 0 45.238 50.072 0 29.63 48.908 0

All Sample Bubbles MMBA Probability Distribution

P ∗t−1[Bt|Ωt−1] 74.713 36.329 95.41 73.152 34.853 94.133 67.008 36.464 89.759
P ∗t−2[Bt|Ωt−2] 68.191 39.494 93.5 66.72 37.898 92.362 61.647 38.157 84.894
P ∗t−3[Bt|Ωt−3] 60.475 42.183 90.567 60.966 40.298 88.138 57.156 39.59 72.63
P ∗t−4[Bt|Ωt−4] 54.544 43.316 80.281 55.448 41.394 77.977 52.018 40.475 36.234
P ∗t−5[Bt|Ωt−5] 48.908 43.981 27.174 48.362 42.227 25.28 44.37 40.647 20.203

End Sample Bubbles MMBA Probability Distribution

P ∗T−1[BT |ΩT−1] 77.201 34.712 95.458 77.265 31.138 95.074 66.253 34.849 84.482
P ∗T−2[BT |ΩT−2] 71.04 38.389 94.151 71.519 34.805 93.044 60.475 37.452 80.879
P ∗T−3[BT |ΩT−3] 61.624 42.165 91.449 63.967 39.079 88.462 55.979 39.21 62.631
P ∗T−4[BT |ΩT−4] 57.005 43.679 88.569 61.812 40.093 86.876 51.511 40.09 45.772
P ∗T−5[BT |ΩT−5] 52.114 44.953 84.679 55.585 42.064 80.131 44.205 40.904 21.7
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Table 6: MMBA Without Asset Pricing Equilibrium Model, N = 100

Variables Asset Pricing Contribution Monte Carlo Simulation

Parameters No Equilibrium Model (β2 = 0) Full MMBA

Statistics X̄ ΣX Med(X) X̄ ΣX Med(X)

P ∗/T 97.76 3.1228 0.98503 84.948 16.424 91.633
#(B1,. . . ,T ) 5.2763 1.7405 5 4.9762 1.79 5

#(P ∗t−1[Bt]|Ωt−1] ≥ 60) 3.3026 1.1433 3 3.2262 1.3112 3
#(P ∗T−1[BT |ΩT−1] ≥ 60) 0.72368 0.45015 1 0.77381 0.42088 1

All Sample Bubbles Statistics

P ∗t−1[Bt = 1|Ωt−1] ≥ 60% 66.825 21.957 66.667 66.443 23.08 66
P ∗t−1[Bt = 1|Ωt−1] ≥ 75% 64.695 23.888 66.667 62.88 25.051 64
P ∗t−1[Bt = 1|Ωt−1] ≥ 90% 17.008 27.235 0 54.83 26.759 57
P ∗t−2[Bt = 1|Ωt−2] ≥ 60% 62.409 22.428 61.25 59.95 24.979 60
P ∗t−2[Bt = 1|Ωt−2] ≥ 75% 59.687 24.079 60 56.604 26.173 58
P ∗t−2[Bt = 1|Ωt−2] ≥ 90% 14.346 24.961 0 49.069 27.679 50
P ∗t−3[Bt = 1|Ωt−3] ≥ 60% 57.251 25.093 52.778 55.111 25.851 60
P ∗t−3[Bt = 1|Ωt−3] ≥ 75% 54.794 27.047 50 52.244 25.456 59
P ∗t−3[Bt = 1|Ωt−3] ≥ 90% 13.235 24.825 0 44.788 27.864 59
P ∗t−4[Bt = 1|Ωt−4] ≥ 60% 50.634 24.724 50 50.392 26.194 50
P ∗t−4[Bt = 1|Ωt−4] ≥ 75% 46.971 26.627 50 48 26.844 50
P ∗t−4[Bt = 1|Ωt−4] ≥ 90% 11.272 23.058 0 40.861 28.048 40
P ∗t−5[Bt = 1|Ωt−5] ≥ 60% 43.755 24.724 40 43.788 26.194 50
P ∗t−5[Bt = 1|Ωt−5] ≥ 75% 41.146 26.627 40 41.704 26.844 46
P ∗t−5[Bt = 1|Ωt−5] ≥ 90% 9.9781 23.058 0 36.282 28.048 33

End Sample Bubbles Statistics

P ∗T−1[BT = 1|ΩT−1] ≥ 60% 72.368 45.015 100 77.381 42.088 100
P ∗T−1[BT = 1|ΩT−1] ≥ 75% 71.053 45.653 100 73.81 44.231 100
P ∗T−1[BT = 1|ΩT−1] ≥ 90% 10.526 30.893 0 61.905 48.854 100
P ∗T−2[BT = 1|ΩT−2] ≥ 60% 64.474 48.177 100 71.429 45.447 100
P ∗T−2[BT = 1|ΩT−2] ≥ 75% 63.158 48.558 100 65.476 47.83 100
P ∗T−2[BT = 1|ΩT−2] ≥ 90% 10.526 30.893 0 54.762 50.072 100
P ∗T−3[BT = 1|ΩT−3] ≥ 60% 59.211 49.471 100 61.905 48.854 100
P ∗T−3[BT = 1|ΩT−3] ≥ 75% 57.895 49.701 100 59.524 49.379 100
P ∗T−3[BT = 1|ΩT−3] ≥ 90% 7.8947 27.145 0 47.619 50.243 0
P ∗T−4[BT = 1|ΩT−4] ≥ 60% 50 50.332 50 60.714 49.132 100
P ∗T−4[BT = 1|ΩT−4] ≥ 75% 48.684 50.315 0 59.524 49.379 100
P ∗T−4[BT = 1|ΩT−4] ≥ 90% 5.2632 22.478 0 45.238 50.072 0
P ∗T−5[BT = 1|ΩT−5] ≥ 60% 42.105 50.332 0 53.571 49.132 100
P ∗T−5[BT = 1|ΩT−5] ≥ 75% 40.789 50.315 0 52.381 49.379 100
P ∗T−5[BT = 1|ΩT−5] ≥ 90% 5.2632 22.478 0 45.238 50.072 0

All Sample Bubbles MMBA Probability Distribution

P ∗t−1[Bt|Ωt−1] 56.22 40.952 83.333 73.152 34.853 94.133
P ∗t−2[Bt|Ωt−2] 51.973 41.849 80.952 66.72 37.898 92.362
P ∗t−3[Bt|Ωt−3] 46.49 42.697 76.923 60.966 40.298 88.138
P ∗t−4[Bt|Ωt−4] 40.77 42.551 1.2626 55.448 41.394 77.977
P ∗t−5[Bt|Ωt−5] 34.675 41.614 1.0955 48.362 42.227 25.28

End Sample Bubbles MMBA Probability Distribution

P ∗T−1[BT |ΩT−1] 61.988 38.207 83.827 77.265 31.138 95.074
P ∗T−2[BT |ΩT−2] 55.272 40.807 82.64 71.519 34.805 93.044
P ∗T−3[BT |ΩT−3] 50.825 41.87 80.278 63.967 39.079 88.462
P ∗T−4[BT |ΩT−4] 43.16 42.704 37.047 61.812 40.093 86.876
P ∗T−5[BT |ΩT−5] 36.436 42.128 1.1143 55.585 42.064 80.131
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Table 7: MMBA Without P-Value Validation, N = 100

Variables P-Value Validation Monte Carlo Simulation

Parameters Unvalidated MMBA Validated MMBA

Statistics X̄ ΣX Med(X) X̄ ΣX Med(X)

P ∗/T 84.48 15.334 0.87755 84.948 16.424 91.633
#(B1,. . . ,T ) 5.3218 1.8708 5 4.9762 1.79 5

#(P ∗t−1[Bt]|Ωt−1] ≥ 60) 3.3793 1.2223 3 3.2262 1.3112 3
#(P ∗T−1[BT |ΩT−1] ≥ 60) 0.64368 0.48169 1 0.77381 0.42088 1

All Sample Bubbles Statistics

P ∗t−1[Bt = 1|Ωt−1] ≥ 60% 66.318 20.901 66.667 66.443 23.08 66
P ∗t−1[Bt = 1|Ωt−1] ≥ 75% 60.87 21.08 62.5 62.88 25.051 64
P ∗t−1[Bt = 1|Ωt−1] ≥ 90% 50.502 22.039 55.556 54.83 26.759 57
P ∗t−2[Bt = 1|Ωt−2] ≥ 60% 61.003 23.785 60 59.95 24.979 60
P ∗t−2[Bt = 1|Ωt−2] ≥ 75% 55.746 22.194 57.143 56.604 26.173 58
P ∗t−2[Bt = 1|Ωt−2] ≥ 90% 45.744 22.618 50 49.069 27.679 50
P ∗t−3[Bt = 1|Ωt−3] ≥ 60% 55.976 25.123 50 55.111 25.851 60
P ∗t−3[Bt = 1|Ωt−3] ≥ 75% 52.036 24.835 50 52.244 25.456 59
P ∗t−3[Bt = 1|Ωt−3] ≥ 90% 41.428 24.08 42.857 44.788 27.864 59
P ∗t−4[Bt = 1|Ωt−4] ≥ 60% 48.983 28.713 42.857 50.392 26.194 50
P ∗t−4[Bt = 1|Ωt−4] ≥ 75% 44.822 27.172 42.857 48 26.844 50
P ∗t−4[Bt = 1|Ωt−4] ≥ 90% 37.935 25.688 40 40.861 28.048 40
P ∗t−5[Bt = 1|Ωt−5] ≥ 60% 44.43 28.713 40 43.788 26.194 50
P ∗t−5[Bt = 1|Ωt−5] ≥ 75% 40.866 27.172 40 41.704 26.844 46
P ∗t−5[Bt = 1|Ωt−5] ≥ 90% 34.252 25.688 33.333 36.282 28.048 33

End Sample Bubbles Statistics

P ∗T−1[BT = 1|ΩT−1] ≥ 60% 64.368 48.169 100 77.381 42.088 100
P ∗T−1[BT = 1|ΩT−1] ≥ 75% 59.77 49.32 100 73.81 44.231 100
P ∗T−1[BT = 1|ΩT−1] ≥ 90% 47.126 50.207 0 61.905 48.854 100
P ∗T−2[BT = 1|ΩT−2] ≥ 60% 58.621 49.537 100 71.429 45.447 100
P ∗T−2[BT = 1|ΩT−2] ≥ 75% 55.172 50.02 100 65.476 47.83 100
P ∗T−2[BT = 1|ΩT−2] ≥ 90% 42.529 49.725 0 54.762 50.072 100
P ∗T−3[BT = 1|ΩT−3] ≥ 60% 55.172 50.02 100 61.905 48.854 100
P ∗T−3[BT = 1|ΩT−3] ≥ 75% 50.575 50.287 100 59.524 49.379 100
P ∗T−3[BT = 1|ΩT−3] ≥ 90% 37.931 48.803 0 47.619 50.243 0
P ∗T−4[BT = 1|ΩT−4] ≥ 60% 49.425 50.287 0 60.714 49.132 100
P ∗T−4[BT = 1|ΩT−4] ≥ 75% 42.529 49.725 0 59.524 49.379 100
P ∗T−4[BT = 1|ΩT−4] ≥ 90% 36.782 48.501 0 45.238 50.072 0
P ∗T−5[BT = 1|ΩT−5] ≥ 60% 42.529 50.287 0 53.571 49.132 100
P ∗T−5[BT = 1|ΩT−5] ≥ 75% 40.23 49.725 0 52.381 49.379 100
P ∗T−5[BT = 1|ΩT−5] ≥ 90% 33.333 48.501 0 45.238 50.072 0

All Sample Bubbles MMBA Probability Distribution

P ∗t−1[Bt|Ωt−1] 65.698 37.505 90.259 73.152 34.853 94.133
P ∗t−2[Bt|Ωt−2] 60.044 38.945 83.713 66.72 37.898 92.362
P ∗t−3[Bt|Ωt−3] 54.602 40.263 66.966 60.966 40.298 88.138
P ∗t−4[Bt|Ωt−4] 46.989 41.127 25.164 55.448 41.394 77.977
P ∗t−5[Bt|Ωt−5] 41.391 41.276 17.556 48.362 42.227 25.28

End Sample Bubbles MMBA Probability Distribution

P ∗T−1[BT |ΩT−1] 65.036 38.515 89.161 77.265 31.138 95.074
P ∗T−2[BT |ΩT−2] 60.438 39.109 82.718 71.519 34.805 93.044
P ∗T−3[BT |ΩT−3] 56.505 40.217 75.483 63.967 39.079 88.462
P ∗T−4[BT |ΩT−4] 50.114 41.468 30.732 61.812 40.093 86.876
P ∗T−5[BT |ΩT−5] 44.629 41.811 21.966 55.585 42.064 80.131
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Table 8: MMBA With Different Average Length Thresholds (α), N = 100

Variables Bubble Trigger Monte Carlo Simulation

Parameters α = 0.1 α = 1 α = 10

Statistics X̄ ΣX Med(X) X̄ ΣX Med(X) X̄ ΣX Med(X)

P ∗/T 80.28 20.33 0.87 84.95 16.42 91.63 65.93 31.68 0.76
#(B1,. . . ,T ) 5.47 2.31 6.00 4.98 1.79 5.00 5.49 2.07 6.00

#(P ∗t−1[Bt]|Ωt−1] ≥ 60) 3.02 1.46 3.00 3.23 1.31 3.00 3.28 2.39 3.00
#(P ∗T−1[BT |ΩT−1] ≥ 60) 0.54 0.50 1.00 0.77 0.42 1.00 0.75 0.44 1.00

All Sample Bubbles Statistics

P ∗t−1[Bt = 1|Ωt−1] ≥ 60% 60.77 28.20 60.00 66.44 23.08 66.00 55.75 34.88 60.00
P ∗t−1[Bt = 1|Ωt−1] ≥ 75% 58.14 28.42 56.35 62.88 25.05 64.00 55.75 34.88 60.00
P ∗t−1[Bt = 1|Ωt−1] ≥ 90% 46.83 30.93 42.85 54.83 26.76 57.00 34.73 25.54 35.42
P ∗t−2[Bt = 1|Ωt−2] ≥ 60% 54.82 29.77 50.00 59.95 24.98 60.00 56.74 35.42 64.58
P ∗t−2[Bt = 1|Ωt−2] ≥ 75% 51.71 30.60 50.00 56.60 26.17 58.00 56.74 35.42 64.58
P ∗t−2[Bt = 1|Ωt−2] ≥ 90% 40.88 30.74 33.00 49.07 27.68 50.00 40.32 27.79 46.43
P ∗t−3[Bt = 1|Ωt−3] ≥ 60% 50.77 30.46 44.00 55.11 25.85 60.00 57.73 35.03 66.66
P ∗t−3[Bt = 1|Ωt−3] ≥ 75% 47.42 31.18 40.00 52.24 25.46 59.00 57.73 35.03 66.66
P ∗t−3[Bt = 1|Ωt−3] ≥ 90% 38.41 30.67 33.00 44.79 27.86 59.00 42.59 29.04 50.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 60% 45.47 31.57 34.00 50.39 26.19 50.00 59.09 35.92 66.66
P ∗t−4[Bt = 1|Ωt−4] ≥ 75% 43.73 31.97 33.00 48.00 26.84 50.00 58.59 35.70 66.66
P ∗t−4[Bt = 1|Ωt−4] ≥ 90% 34.68 30.55 25.00 40.86 28.05 40.00 45.72 30.71 50.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 60% 40.88 31.57 33.00 43.79 26.19 50.00 59.94 35.92 71.42
P ∗t−5[Bt = 1|Ωt−5] ≥ 75% 38.87 31.97 33.00 41.70 26.84 46.00 59.94 35.70 71.42
P ∗t−5[Bt = 1|Ωt−5] ≥ 90% 31.80 30.55 25.00 36.28 28.05 33.00 48.13 30.71 50.00

End Sample Bubbles Statistics

P ∗T−1[BT = 1|ΩT−1] ≥ 60% 54.00 50.09 100.00 77.38 42.09 100.00 75.00 43.52 100.00
P ∗T−1[BT = 1|ΩT−1] ≥ 75% 50.00 50.25 50.00 73.81 44.23 100.00 75.00 43.52 100.00
P ∗T−1[BT = 1|ΩT−1] ≥ 90% 31.00 46.48 0.00 61.91 48.85 100.00 44.00 49.89 0.00
P ∗T−2[BT = 1|ΩT−2] ≥ 60% 47.00 50.16 0.00 71.43 45.45 100.00 76.00 42.92 100.00
P ∗T−2[BT = 1|ΩT−2] ≥ 75% 42.00 49.60 0.00 65.48 47.83 100.00 76.00 42.92 100.00
P ∗T−2[BT = 1|ΩT−2] ≥ 90% 24.00 42.92 0.00 54.76 50.07 100.00 57.00 49.76 100.00
P ∗T−3[BT = 1|ΩT−3] ≥ 60% 41.00 49.43 0.00 61.91 48.85 100.00 76.00 42.92 100.00
P ∗T−3[BT = 1|ΩT−3] ≥ 75% 37.00 48.52 0.00 59.52 49.38 100.00 76.00 42.92 100.00
P ∗T−3[BT = 1|ΩT−3] ≥ 90% 24.00 42.92 0.00 47.62 50.24 0.00 57.00 49.76 100.00
P ∗T−4[BT = 1|ΩT−4] ≥ 60% 35.00 47.94 0.00 60.71 49.13 100.00 76.00 42.92 100.00
P ∗T−4[BT = 1|ΩT−4] ≥ 75% 34.00 47.61 0.00 59.52 49.38 100.00 76.00 42.92 100.00
P ∗T−4[BT = 1|ΩT−4] ≥ 90% 22.00 41.63 0.00 45.24 50.07 0.00 61.00 49.02 100.00
P ∗T−5[BT = 1|ΩT−5] ≥ 60% 31.00 47.94 0.00 53.57 49.13 100.00 77.00 42.92 100.00
P ∗T−5[BT = 1|ΩT−5] ≥ 75% 27.00 47.61 0.00 52.38 49.38 100.00 77.00 42.92 100.00
P ∗T−5[BT = 1|ΩT−5] ≥ 90% 20.00 41.63 0.00 45.24 50.07 0.00 65.00 49.02 100.00

All Sample Bubbles MMBA Probability Distribution

P ∗t−1[Bt|Ωt−1] 60.41 39.85 83.68 73.15 34.85 94.13 92.46 5.33 93.05
P ∗t−2[Bt|Ωt−2] 53.54 41.27 71.82 66.72 37.90 92.36 92.96 5.34 93.77
P ∗t−3[Bt|Ωt−3] 47.80 42.08 23.42 60.97 40.30 88.14 93.44 5.35 94.60
P ∗t−4[Bt|Ωt−4] 42.30 42.10 13.98 55.45 41.39 77.98 93.91 5.33 95.21
P ∗t−5[Bt|Ωt−5] 37.37 41.34 9.14 48.36 42.23 25.28 94.12 6.62 95.58

End Sample Bubbles MMBA Probability Distribution

P ∗T−1[BT |ΩT−1] 63.13 37.99 84.15 77.27 31.14 95.07 91.67 3.46 92.08
P ∗T−2[BT |ΩT−2] 55.43 40.25 76.95 71.52 34.81 93.04 92.20 3.46 92.56
P ∗T−3[BT |ΩT−3] 48.49 42.28 24.33 63.97 39.08 88.46 92.72 3.42 93.21
P ∗T−4[BT |ΩT−4] 43.41 42.26 15.82 61.81 40.09 86.88 93.31 3.42 94.23
P ∗T−5[BT |ΩT−5] 37.74 41.74 6.94 55.59 42.06 80.13 93.82 3.39 95.04
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Table 9: MMBA With Different Frequencies of Bubble Eruptions (δ), N =
100

Variables Bubble Restarting Value Monte Carlo Simulation

Parameters δ = 0.05 δ = 0.5 δ = 5

Statistics X̄ ΣX Med(X) X̄ ΣX Med(X) X̄ ΣX Med(X)

P ∗/T 61.15 19.51 0.65 84.95 16.42 91.63 80.17 17.61 0.87
#(B1,. . . ,T ) 6.14 2.04 6.00 4.98 1.79 5.00 8.98 3.31 9.00

#(P ∗t−1[Bt]|Ωt−1] ≥ 60) 2.98 1.36 3.00 3.23 1.31 3.00 3.45 1.51 4.00
#(P ∗T−1[BT |ΩT−1] ≥ 60) 0.73 0.45 1.00 0.77 0.42 1.00 0.45 0.50 0.00

All Sample Bubbles Statistics

P ∗t−1[Bt = 1|Ωt−1] ≥ 60% 51.01 22.28 50.00 66.44 23.08 66.00 45.81 27.69 40.00
P ∗t−1[Bt = 1|Ωt−1] ≥ 75% 49.93 23.18 50.00 62.88 25.05 64.00 43.94 28.43 33.33
P ∗t−1[Bt = 1|Ωt−1] ≥ 90% 41.12 25.81 37.50 54.83 26.76 57.00 32.70 28.26 25.00
P ∗t−2[Bt = 1|Ωt−2] ≥ 60% 47.95 22.99 50.00 59.95 24.98 60.00 39.91 27.47 33.33
P ∗t−2[Bt = 1|Ωt−2] ≥ 75% 46.27 24.39 50.00 56.60 26.17 58.00 37.75 27.80 33.33
P ∗t−2[Bt = 1|Ωt−2] ≥ 90% 35.70 26.01 33.33 49.07 27.68 50.00 29.06 26.68 22.22
P ∗t−3[Bt = 1|Ωt−3] ≥ 60% 44.01 23.42 42.86 55.11 25.85 60.00 36.02 27.99 30.00
P ∗t−3[Bt = 1|Ωt−3] ≥ 75% 41.60 24.20 38.75 52.24 25.46 59.00 33.91 28.23 25.00
P ∗t−3[Bt = 1|Ωt−3] ≥ 90% 31.53 24.58 25.00 44.79 27.86 59.00 26.72 26.35 20.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 60% 39.32 24.38 35.42 50.39 26.19 50.00 32.41 27.75 25.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 75% 36.43 25.16 33.33 48.00 26.84 50.00 30.36 27.46 20.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 90% 28.34 25.37 20.00 40.86 28.05 40.00 24.55 26.56 14.30
P ∗t−5[Bt = 1|Ωt−5] ≥ 60% 34.80 24.38 30.95 43.79 26.19 50.00 27.73 27.75 20.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 75% 32.29 25.16 25.00 41.70 26.84 46.00 26.49 27.46 20.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 90% 24.31 25.37 16.67 36.28 28.05 33.00 20.76 26.56 11.11

End Sample Bubbles Statistics

P ∗T−1[BT = 1|ΩT−1] ≥ 60% 72.73 44.79 100.00 77.38 42.09 100.00 45.16 50.04 0.00
P ∗T−1[BT = 1|ΩT−1] ≥ 75% 68.18 46.84 100.00 73.81 44.23 100.00 43.01 49.78 0.00
P ∗T−1[BT = 1|ΩT−1] ≥ 90% 56.82 49.82 100.00 61.91 48.85 100.00 27.96 45.12 0.00
P ∗T−2[BT = 1|ΩT−2] ≥ 60% 65.91 47.67 100.00 71.43 45.45 100.00 36.56 48.42 0.00
P ∗T−2[BT = 1|ΩT−2] ≥ 75% 62.50 48.69 100.00 65.48 47.83 100.00 33.33 47.40 0.00
P ∗T−2[BT = 1|ΩT−2] ≥ 90% 47.73 50.24 0.00 54.76 50.07 100.00 24.73 43.38 0.00
P ∗T−3[BT = 1|ΩT−3] ≥ 60% 59.09 49.45 100.00 61.91 48.85 100.00 33.33 47.40 0.00
P ∗T−3[BT = 1|ΩT−3] ≥ 75% 56.82 49.82 100.00 59.52 49.38 100.00 32.26 47.00 0.00
P ∗T−3[BT = 1|ΩT−3] ≥ 90% 40.91 49.45 0.00 47.62 50.24 0.00 19.36 39.72 0.00
P ∗T−4[BT = 1|ΩT−4] ≥ 60% 52.27 50.24 100.00 60.71 49.13 100.00 30.11 46.12 0.00
P ∗T−4[BT = 1|ΩT−4] ≥ 75% 50.00 50.29 50.00 59.52 49.38 100.00 27.96 45.12 0.00
P ∗T−4[BT = 1|ΩT−4] ≥ 90% 34.09 47.67 0.00 45.24 50.07 0.00 17.20 37.95 0.00
P ∗T−5[BT = 1|ΩT−5] ≥ 60% 44.32 50.24 0.00 53.57 49.13 100.00 26.88 46.12 0.00
P ∗T−5[BT = 1|ΩT−5] ≥ 75% 43.18 50.29 0.00 52.38 49.38 100.00 23.66 45.12 0.00
P ∗T−5[BT = 1|ΩT−5] ≥ 90% 30.68 47.67 0.00 45.24 50.07 0.00 15.05 37.95 0.00

All Sample Bubbles MMBA Probability Distribution

P ∗t−1[Bt|Ωt−1] 68.04 39.26 92.00 73.15 34.85 94.13 43.98 40.49 18.09
P ∗t−2[Bt|Ωt−2] 63.58 40.69 88.00 66.72 37.90 92.36 37.78 39.97 11.95
P ∗t−3[Bt|Ωt−3] 57.76 41.95 82.00 60.97 40.30 88.14 32.90 39.21 8.00
P ∗t−4[Bt|Ωt−4] 50.79 42.69 52.00 55.45 41.39 77.98 28.58 38.03 6.08
P ∗t−5[Bt|Ωt−5] 44.81 43.22 16.00 48.36 42.23 25.28 24.51 36.38 4.17

End Sample Bubbles MMBA Probability Distribution

P ∗T−1[BT |ΩT−1] 69.56 36.88 92.48 77.27 31.14 95.07 46.60 41.23 18.85
P ∗T−2[BT |ΩT−2] 64.87 39.34 88.48 71.52 34.81 93.04 38.41 40.97 10.15
P ∗T−3[BT |ΩT−3] 57.89 41.56 83.18 63.97 39.08 88.46 35.55 41.03 7.77
P ∗T−4[BT |ΩT−4] 51.56 42.50 74.82 61.81 40.09 86.88 31.48 40.10 6.63
P ∗T−5[BT |ΩT−5] 44.53 42.98 17.23 55.59 42.06 80.13 27.94 38.92 4.00
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Table 10: MMBA With Different Bubble Scales (π), N = 100

Variables Bubble Scale Monte Carlo Simulation

Parameters π = 0.5 π = 0.85 π = 0.99

Statistics X̄ ΣX Med(X) X̄ ΣX Med(X) X̄ ΣX Med(X)

P ∗/T 16.75 20.93 0.09 84.95 16.42 91.63 80.40 23.70 0.85
#(B1,. . . ,T ) 4.27 1.62 4.00 4.98 1.79 5.00 1.63 0.74 1.50

#(P ∗t−1[Bt]|Ωt−1] ≥ 60) 0.16 0.37 8.00 3.23 1.31 3.00 1.25 0.46 1.00
#(P ∗T−1[BT |ΩT−1] ≥ 60) 0.08 0.27 0.00 0.77 0.42 1.00 1.00 0.00 1.00

All Sample Bubbles Statistics

P ∗t−1[Bt = 1|Ωt−1] ≥ 60% 4.595 11.164 0.000 66.44 23.08 66.00 83.33 23.57 100.00
P ∗t−1[Bt = 1|Ωt−1] ≥ 75% 3.041 9.906 0.000 62.88 25.05 64.00 83.33 23.57 100.00
P ∗t−1[Bt = 1|Ωt−1] ≥ 90% 1.464 6.375 0.000 54.83 26.76 57.00 83.33 23.57 100.00
P ∗t−2[Bt = 1|Ωt−2] ≥ 60% 2.140 8.510 0.000 59.95 24.98 60.00 83.33 23.57 100.00
P ∗t−2[Bt = 1|Ωt−2] ≥ 75% 1.239 6.119 0.000 56.60 26.17 58.00 83.33 23.57 100.00
P ∗t−2[Bt = 1|Ωt−2] ≥ 90% 0.450 3.875 0.000 49.07 27.68 50.00 83.33 23.57 100.00
P ∗t−3[Bt = 1|Ωt−3] ≥ 60% 0.450 3.875 0.000 55.11 25.85 60.00 83.33 23.57 100.00
P ∗t−3[Bt = 1|Ωt−3] ≥ 75% 0.450 3.875 0.000 52.24 25.46 59.00 83.33 23.57 100.00
P ∗t−3[Bt = 1|Ωt−3] ≥ 90% 0.000 0.000 0.000 44.79 27.86 59.00 83.33 23.57 100.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 60% 0.450 3.875 0.000 50.39 26.19 50.00 83.33 23.57 100.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 75% 0.000 0.000 0.000 48.00 26.84 50.00 83.33 23.57 100.00
P ∗t−4[Bt = 1|Ωt−4] ≥ 90% 0.000 0.000 0.000 40.86 28.05 40.00 83.33 23.57 100.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 60% 0.450 3.875 0.000 43.79 26.19 50.00 83.33 23.57 100.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 75% 0.000 0.000 0.000 41.70 26.84 46.00 83.33 23.57 100.00
P ∗t−5[Bt = 1|Ωt−5] ≥ 90% 0.000 0.000 0.000 36.28 28.05 33.00 83.33 23.57 100.00

End Sample Bubbles Statistics

P ∗T−1[BT = 1|ΩT−1] ≥ 60% 8.108 27.482 0.000 77.38 42.09 100.00 100 0 100
P ∗T−1[BT = 1|ΩT−1] ≥ 75% 6.757 25.272 0.000 73.81 44.23 100.00 100 0 100
P ∗T−1[BT = 1|ΩT−1] ≥ 90% 4.054 19.857 0.000 61.91 48.85 100.00 100 0 100
P ∗T−2[BT = 1|ΩT−2] ≥ 60% 5.405 22.767 0.000 71.43 45.45 100.00 100 0 100
P ∗T−2[BT = 1|ΩT−2] ≥ 75% 4.054 19.857 0.000 65.48 47.83 100.00 100 0 100
P ∗T−2[BT = 1|ΩT−2] ≥ 90% 1.351 11.625 0.000 54.76 50.07 100.00 100 0 100
P ∗T−3[BT = 1|ΩT−3] ≥ 60% 1.351 11.625 0.000 61.91 48.85 100.00 100 0 100
P ∗T−3[BT = 1|ΩT−3] ≥ 75% 1.351 11.625 0.000 59.52 49.38 100.00 100 0 100
P ∗T−3[BT = 1|ΩT−3] ≥ 90% 0.000 0.000 0.000 47.62 50.24 0.00 100 0 100
P ∗T−4[BT = 1|ΩT−4] ≥ 60% 1.351 11.625 0.000 60.71 49.13 100.00 100 0 100
P ∗T−4[BT = 1|ΩT−4] ≥ 75% 0.000 0.000 0.000 59.52 49.38 100.00 100 0 100
P ∗T−4[BT = 1|ΩT−4] ≥ 90% 0.000 0.000 0.000 45.24 50.07 0.00 100 0 100
P ∗T−5[BT = 1|ΩT−5] ≥ 60% 1.351 11.625 0.000 53.57 49.13 100.00 100 0 100
P ∗T−5[BT = 1|ΩT−5] ≥ 75% 0.000 0.000 0.000 52.38 49.38 100.00 100 0 100
P ∗T−5[BT = 1|ΩT−5] ≥ 90% 0.000 0.000 0.000 45.24 50.07 0.00 100 0 100

All Sample Bubbles MMBA Probability Distribution

P ∗t−1[Bt|Ωt−1] 27.60 34.15 6.08 73.15 34.85 94.13 98.93 0.97 99.25
P ∗t−2[Bt|Ωt−2] 14.50 28.40 1.34 66.72 37.90 92.36 99.01 0.74 99.19
P ∗t−3[Bt|Ωt−3] 7.66 21.19 0.77 60.97 40.30 88.14 98.99 0.85 99.19
P ∗t−4[Bt|Ωt−4] 3.61 13.47 0.71 55.45 41.39 77.98 99.02 0.76 99.12
P ∗t−5[Bt|Ωt−5] 2.30 10.06 0.67 48.36 42.23 25.28 99.14 0.60 99.38

End Sample Bubbles MMBA Probability Distribution

P ∗T−1[BT |ΩT−1] 29.65 37.44 4.18 77.27 31.14 95.07 98.89 0.61 99.01
P ∗T−2[BT |ΩT−2] 19.45 32.23 1.38 71.52 34.81 93.04 98.99 0.76 99.07
P ∗T−3[BT |ΩT−3] 10.68 23.08 0.88 63.97 39.08 88.46 99.09 0.69 99.32
P ∗T−4[BT |ΩT−4] 4.94 15.49 0.82 61.81 40.09 86.88 99.12 0.56 99.26
P ∗T−5[BT |ΩT−5] 2.58 8.55 0.75 55.59 42.06 80.13 99.21 0.59 99.37
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9.2 Mathematical Demonstrations

9.2.1 Obtaining the General Asset Pricing Equation

The former problem can be solved using dynamic programming, the Bellman
equation is presented next:

V (xt) ≡ max
{ct}
{u(ct) + βEtV (xt+1)} (24)

Next, we obtain the first order condition:

∂V (xt)

∂ct
= 0⇐⇒ u′(ct) + β

∂xt+1

∂ct
Et[V

′(xt+1)] = 0 (25)

We also need to evaluate the evolution of the state variable (xt):

V ′(xt) ≡
∂V (xt)

∂xt
= β

∂xt+1

∂xt
Et[V

′(xt+1)] (26)

Our objective is to arrive at the Euler equation, for that we rearrange 25

Et[V
′(xt+1)] = − u′(ct)

β ∂xt+1

∂ct

(27)

And now we plug on 26:

V ′(xt) ≡
∂V (xt)

∂xt
= β

∂xt+1

∂xt
× (− u′(ct)

β ∂xt+1

∂ct

) = u′(ct)×
∂xt+1

∂xt
∂xt+1

∂ct

(28)

Its possible to advance the equation 28 one period forward, and we obtain:

V ′(xt+1) ≡
∂V (xt+1)

∂xt+1

= u′(ct+1)×
∂xt+2

∂xt+1

∂xt+2

∂ct+1

(29)
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Plugin 28 and 29 in 26, we obtain the following:

u′(ct)×
∂xt+1

∂xt
∂xt+1

∂ct

= β
∂xt+1

∂xt
× Et[u′(ct+1)×

∂xt+2

∂xt+1

∂xt+2

∂ct+1

] (30)

Know, we take derivatives of proper functional form, but first we rearrange
the restriction of the problem, assuming we are in period t:

ct − yt = (pt + dt)xt − ptxt+1 ⇐⇒ xt+1 =
−ct
pt

+
yt
pt

+
(pt + dt)

pt
xt (31)

Now we take the required derivatives:

∂xt+1

∂ct
= − 1

pt
(32)

∂xt+1

∂xt
= −pt + dt

pt
(33)

Plugging back 32 and 33 in 30, and after rearranging we will obtain the Euler
equation:

u′(ct)×
−pt+dt

pt

− 1
pt

= β × (−pt + dt
pt

)Et[u
′(ct+1)×

−pt+1+dt+1

pt+1

− 1
pt+1

] (34)

And we will obtain the same Euler equation as in Gurkaynak (2005):

u′(ct)pt = Et[βu
′(ct+1)× xt+1]⇐⇒ pt = Et[β

u′(ct+1)

u′(ct)
xt+1] (35)

And finally the general asset pricing equation given in Cochrane (2005):

pt = Et[mt+1xt+1] (36)
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9.2.2 From The General Pricing Equation to Lucas (1978)

Assuming the linearity of the investor’s utility function, implying: u′(ct) =

u′(ct+1) = c ∈ <, we obtain the asset pricing equation presented in Lucas
(1978).

Pt = Et[mt+1xt+1]⇐⇒ Pt = Et[(
1

1 + r
)︸ ︷︷ ︸

β

×u′(ct+1)
u′(ct)

× (Pt+1 +Dt+1)]

⇐⇒ Pt = ( 1
1+r

)Et[(
c
c
)× Pt+1 +Dt+1]⇐⇒ Pt = ( 1

1+r
)Et[Pt+1 +Dt+1]

9.2.3 The Reduced Form Of The Price Process

Assuming the dividends can be represented by a stochastic process such
as: Dt = µ + Dt−1 + εt, εt ∼ N(o, σ2), the price process will be given by:
Pt = (1+r

r2
)µ+ (1

r
)Dt

9.2.4 Bubbles Are Consistent With R.E

Equation (7) constitutes a valid solution to the difference equation given by
(3), if the stochastic process driving the bubble component (Bt) respects the
following specification:

Bt+1 = (1 + r)Bt + ε =⇒ Et[Bt+1] = (1 + r)Bt (37)

Pt = ( 1
1+r

)Et[Pt+1 +Dt+1]⇐⇒

Ft +Bt = ( 1
1+r

)(Et[Ft+1] + Et[Bt+1] + Et[Dt+1])⇐⇒
Ft +Bt = ( 1

1+r
)(Et[Ft+1] + (1 + r)Bt + Et[Dt+1])⇐⇒

Ft +Bt −Bt = ( 1
1+r

)(Et[Ft+1] + Et[Dt+1])⇐⇒
Ft = ( 1

1+r
)(Et[Ft+1] + Et[Dt+1])⇐⇒

Ft =
∑+∞

i=1 [( 1
1+r

)i × Et[Dt+i]] = Pt
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9.2.5 Solving Lucas (1978) Pricing Equation With R.E

Lets solve the stochastic difference equation (3) using rational expectations.

Pt = (
1

1 + r
)Et[Pt+1 +Dt+1] (38)

The first iteration of the forward looking solution is:

Et[Pt+1] = ( 1
1+r

))Et[Pt+2 +Dt+2]

Pt = ( 1
1+r

)[( 1
1+r

)Et[Pt+2 +Dt+2]] + ( 1
1+r

)Et[Dt+1]⇐⇒

⇐⇒ Pt = ( 1
1+r

)2Et[Pt+2] + ( 1
1+r

)2[Dt+2] + ( 1
1+r

)Et[Dt+1]

Now moving to the second iteration:

Et[Pt+2] = ( 1
1+r

)Et[Pt+3 +Dt+3]

Pt = ( 1
1+r

)2[( 1
1+r

)Et[Pt+3 +Dt+3]] + ( 1
1+r

)2[Dt+2] + ( 1
1+r

)Et[Dt+1]⇐⇒

Pt = ( 1
1+r

)3Et[Pt+3] + ( 1
1+r

)3Et[Dt+3] + ( 1
1+r

)2[Dt+2] + ( 1
1+r

)Et[Dt+1]

Now its possible to identify the solution’s pattern:

Pt = ( 1
1+r

)NEt[Pt+N ] +
∑N

i=1(
1

1+r
)iEt[Dt+i]

If one look for the long run solution (i→ +∞), then:

Pt =
∑N

i=1(
1

1+r
)iEt[Dt+i]

The price will be strictly equal to the discounted dividends stream, as in

Lucas (1978).

9.2.6 Blanchard (1979) Type Of Bubbles

The stochastic process defined by (9) respects the condition given by (7) and

by consequence is also a solution for equation (3)
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Et[Bt+1] = π × Et[1+rπ Bt + εt] + (1− π)Et[εt]⇐⇒

Et[Bt+1] = π 1+r
π
Bt + Et[εt] + (1− π)× 0⇐⇒

Et[Bt+1] = (1 + r)Bt

9.2.7 Evans (1991) Type Of Bubbles

The stochastic process defined by (10) respects the condition given by (7) and

by consequence is also a solution for equation (3)

If Bt ≤ α

Et[Bt+1] = Et[(1 + r)Bt × ut] = (1 + r)Bt × Et[ut+1] = (1 + r)Bt

If Bt > α

Et[Bt+1] = πEt[(δ+
(1+r)
π
×θt+1︸︷︷︸

1

×(Bt− δ
(1+r)

))×ut+1]+(1−π)Et[δut+1]⇐⇒

Et[Bt+1] = π(δ+ (1+r)
π
× (Bt− δ

(1+r)
))×Et[ut+1] + (1−π)δ×Et[ut+1]⇐⇒

E[Bt+1] = πδ + (1 + r)Bt − δ + δ − πδ ⇐⇒

Et[Bt+1] = (1 + r)Bt
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