

School of Technology and Architecture

Department of Information Science and Technology

Checking and Improving Business Process Models

in BPMN2

Hugo Miguel Salva Barona

A dissertation presented in partial fulfilment of the requirements for the degree of

Master in Information Systems Business Management

Supervisor:

Fernando Brito e Abreu, PhD, Associate Professor, DCTI/ISCTE-IUL

December, 2015

Abstract

Business Process Modeling (BPM) is a systems engineering activity where we rep-

resent the processes of an enterprise, so they can be shared, understood and improved.

Despite the set of innovative tools for BPM modelling that exist in the market, they allow

modelers to introduce errors during the modelling process. As there is no idea which

errors the tools do not detect, what are the most recurrent errors and how could this prob-

lem be mitigated, this dissertation presents a study and a proposal to help solving this

problem. Firstly, a tool survey was developed to describe the state of the practice on the

ability of Modelling Tools to validate BPMN2 models and determine the most recurrent

defects introduced by BPMN modellers. Secondly, based on an empirical study using the

QUASAR validator we provide evidence on its ability to validate a set of well-formedness

rules and best practices and therefore detect errors in BPMN2 Models. Finally, we want

to understand if this metamodelling-based validation facility can be used to prevent intro-

ducing modelling errors, while speeding up the learning curve.

Keywords: BPMN models validation; business process models validation; business pro-

cess modeling error prevention.

i

[This page was intentionally left blank]

ii

Resumo

A Modelação de Processos de Negócio (MPN) é uma atividade de engenharia de sis-

temas onde representamos os processos de uma empresa, para que os mesmos possam ser

partilhados, compreendidos e melhorados. Apesar do elevado número de ferramentas de

MPN existentes no mercado, estas permitem aos modeladores introduzir erros du- rante

o processo de modelação. Como não existe uma ideia clara acerca de quais os erros

que as ferramentas não detetam, quais os erros cometidos mais recorrentemente e como

o problema pode ser resolvido, esta dissertação apresenta um estudo e uma pro- posta

para resolver o problema. Inicialmente foi efetuado um levantamento do estado da prática

da capacidade das ferramentas de modelação para validar os modelos em BPMN2, e

determinar os erros mais frequentemente introduzidos pelos modeladores. Em seguida,

baseado num estudo empı́rico, usando o validador QUASAR, fornecemos evidências so-

bre a sua capacidade para validar o conjunto de regras de boa formação e boas práticas

na modelação de processos de negócio e assim detetar os erros introduzidos nos modelos

em BPMN2. Finalmente, queremos compreender se esta facilidade de validação baseada

em metamodelos pode ser usada para prevenir a introdução de erros durante o processo

de modelação de processos de negócio, acelerando assim a curva de aprendizagem do

modelador.

Palavras-chave: validação modelos BPMN; validação de modelos de processos de negócio;

prevenção na modelação de processos de negócio.

iii

[This page was intentionally left blank]

iv

1. INTRODUCTION

1.1 Scope

Business process modeling (BPM) allows the user to represent business processes, so they

may be analysed and/or improved. Often, the main goal is to identify cost-intensive

activities, increase speed and/or quality, to reduce cycle time or costs. Several business

process modeling techniques are available such as flowcharts, data flows diagrams, gantt

charts, Petri nets, UML activity diagrams and much more. However, there has been an

increasing trend (see figures 1.1 and 1.2) for using BPMN (Business Process Modeling

Notation) for modeling business processes, as well as in other knowledge areas, such as

modeling software development processes [5] and [6], web service applications [7] or

ETL processes [8]. The BPMN modeling notation can be defined as a set of graphical

elements and rules defining connections between them. Existing BPMN modeling tools

allow the user to model their business processes, validate and simulate the execution of

those models. Those functionalities are expected to allow the user to better improve and

optimize its BPM models.

Fig. 1.1: BPMN Google Search Interest relatively other notations from 2004 to 2015.

1. Introduction 2

Fig. 1.2: BPMN Google Search Interest relatively other notations from 2004 to 2015.

BPMN is represented by syntax and semantic rules. Syntax and semantics of graphi-

cal notations can be expressed by well-formedness rules defined upon the corresponding

language metamodel. That has been a common practice for OMG’s (Object Managament

Group) metamodels, which uses a combination of UML (Unified Modelling Language)

and OCL (Object Constraints Language) invariants on that matter [9]. However, the of-

ficial BPMN2 (Business Process Modeling and Notation – version 2) metamodel only

presents those rules in natural language [10]. At the QUASAR (Quantitative Approaches

in Software Engineering and Reengineering) research group and in the scope of Anacleto

Correia PhD thesis work [11], was produced a formalization of both well-formedness

rules and best practices using OCL [12]. The resulting BPMN2 metamodel was used to

produce a validation mechanism for BPMN2 models, based on the USE (UML-based

Specification Environment) environment, accessed with the J-USE API (Application Pro-

gram Interface in Java). This initiative was the groundwork that allowed us to elicit the

set of research questions to be presented ahead.

1.2 Motivation

Business process modeling is an important instrument for business process management,

since it may allow that relevant stakeholders, such as managers, analysts, users and infor-

mation system designers to participate, and together, to improve an organization’s busi-

ness processes [13]. Business process models are expressed in a given process modeling

language and, although it exists for many years now, they were not deemed to be easily

used and understood by business and IT parties in order to communicate relevant busi-

ness process semantics. As so, the OMG commissioned the development of the BPMN,

currently standing as version 2. BPMN2 has become a de facto standard in industry and

services. According to the OMG, it may be usable and understandable for all busi- ness

users, from the business analysts that create the initial drafts of the processes, to the

technical developers responsible for implementing the technology that will perform those

processes, and finally to the business people who will manage and monitor those

1. Introduction 3

processes [10].

The effectiveness of a model, as a shared understanding of the problem domain, may

depend on two points of analysis: language expressiveness and model validity. In this

research work we will be concerned with the latter. Model validity concerns syntax and

semantic aspects. BPMN2 is a syntactically rich modeling language. While, for instance,

a UML activity diagram has around 20 different modeling constructs, a BPMN2 process

model diagram has around 100 different modeling constructs, including 51 events types,

8 gateway types, 7 data types, 4 types of activities, 6 activity markers, 7 task types, 4 flow

types, pools, lanes, etc. If BPMN2 modellers are given the freedom to combine such a

large plethora of modeling constructs, in the absence of a powerful validation or

recommendation mechanism, embedded in the modeling tool, it may arise inconsistencies

in designed models [12].

Regarding models semantics, the mix of constructs found in BPMN2 might make it

possible to obtain models with a wide range of semantic errors that make BPMN models

overly complex, difficult to understand and maintain. According to [14], there might be a

lack of discussion on bad smells in BPMN models. Several authors have tried to express

sets of BPMN modeling best practices to improve model semantics such as [15], [16] and

[17]. However, we are not yet aware of any facility to streamline those practices in the

modeling activity. Hereinafter, we will use the term ”model smell” as a synonym to a

violation of one such best practice or to a well-formedness rule defined in the BPMN2

standard. In other words, we can have as many BPMN2 model smells as the cardinality

of the union of best practices and well-formedness rules.

On the other side, the known studies related with comparison of BPM tools, are few,

or are very focused on a specific in a tool characteristic [18], or are very wide but don’t

consider to analysis the validation capacity of BPM tools [19].

1.3 Context

For illustration purposes, we describe three model smells examples, two related with well-

formedness rules and one related with best practices.

1.3.1 Outgoing Sequence Flow not allowed in an End Event.

The end event indicates where a process will end. In terms of sequence flows, the end

event ends the flow of the process, and thus, will not have any outgoing sequence flows.

1. Introduction 4

Fig. 1.3: Correct: End Event has no outgoing sequence flows.

Fig. 1.4: Wrong: End Event has an outgoing sequence flow.

1.3.2 Catch Error Event must trigger an exception flow

Error intermediate events cannot be used within normal sequence flows. This catching

event should trigger an exception flow.

Fig. 1.5: Correct: Error Event triggering an exception flow.

Fig. 1.6: Wrong: Error Event without an exception flow.

1. Introduction 5

1.3.3 Use explicitly Start Events and End Events

Process modeling best practices recommendations advise the explicit use of start and end

events.

Fig. 1.7: Use: Explicit of Start and End Events.

Fig. 1.8: Avoid: Use of Flow Nodes as implicit Start and End Events.

1.4 Research problems and expected contributions

1.4.1 Objective

The purpose of this dissertation is: first we want to characterize in detail the current state

of practice regarding the detection of design errors in BPMN2 modeling tools and, second,

to assess how a metamodeling facility can be used to improve such state of practice. To

reach the first objective a tool survey was carried out and is presented in this dissertation,

where the set of well-formedness rules and best practices rules defined in [12] were used

in order to validate if they are checked by a set of BPMN2 modeling tools. To fulfill the

second objective, we will integrate a metamodel-based validation facility, developed in

the QUASAR group, in an open-source BPMN2 tool and perform an empirical study to

check if such facility speeds up BPMN2 learning curve and reduce the resulting model

defects.

1.4.2 Contribution

We identified the following contributions in our work:

1. Introduction 6

• Description of the current state of practice in model validation facilities provided

by existing BPMN modeling tools.

• Characterization of the distribution of BPMN modeling smells (defects).

• Finding out if some model defects are less prone for detection than others.

• Finding out if a significant improvement in the process of validating BPMN models

can be obtained by applying our metamodel-based approach.

• Finding out if the learning curve in BPMN modeling can be flattened by using an

appropriate recommendation facility.

1.4.3 Research Questions

1. RQ1: Do current state-of-practice BPMN2 modeling tools detect the violation of

well-formedness rules, as defined in OMG’s metamodel?

2. RQ2: Do current state-of-practice BPMN2 modeling tools detect the violation of

known best practices?

3. RQ3: Can a metamodeling-based validation facility be used to prevent introducing

modeling errors?

4. RQ4: Can a metamodeling-based validation facility be used to speed up the learning

curve?

1.4.4 Research Methodology

The methodology that we followed encompassed the following steps:

1. Become proficient in BPMN2 modeling, namely on well-formedness rules

(a) Objective: obtain background knowledge to understand the problem domain

2. Perform an empirical survey of BPMN2 validation capabilities (blackbox) on

current state-of-the-practice tools (see section 2.1). This survey will encom-

pass data collection based upon a set of BPMN modeling smells identified and

represented as BPMN model snippets in [20]

(a) Objective: answer RQ1 and RQ2

3. Integrate the metamodel-based QUASAR validation mechanism for BPMN2

models to an open source BPMN modeling tool.

1. Introduction 7

(a) Objective: build a prototype environment to enable data collection for the last

step

4. Perform an experiment on the usage of the prototype to evaluate its effective-

ness in improving the business process modeling activity. A set of group works

developed by students in academy is going to be used to support the experi-

ment.

(a) Objective: answer RQ3 and RQ4

1. Introduction 8

[This page was intentionally left blank]

2. SYSTEMATIC BPMN TOOL ASSESSMENT

We have performed a systematic assessment of BPMN2 process modeling tools in order

to identify possible failures in validation of business process models. The analysis will

consist of design a model smell that do not respect the rule for each of the well-formedness

rules and best practices in each of the tools considered, and validate if the tool would

detect the validation defect or not. During this process we will collect information taking

into consideration the tool used and the well-formedness rule or best practice analysed,

and thereafter analyse the data and provide some conclusions and answers that could be

of value for our questions. In terms of defects, it was considered to analysis a total of one

hundred and twenty-two defects (122), which thirty (30) are defects in best practices

rules category and ninety-two (92) are defects in well-formedness rules category.

2.1 Tools Selection Process

Many BPMN tools exist nowadays. As early as in 2010, Gartner performed a com-

parative assessment of those tools (figure 2.2). As observed previously, BPMN has at-

tained a large popularity and is currently the most widely used process modeling notation,

and even increased number of BPMN tools, either proprietary, freeware or open source

have emerged in recent years, as reported by Wikipedia (https://en.wikipedia.org/

wiki/Comparison_of_Business_Process_Modeling_Notation_tools).

Due to time constraints we could not assess all tools, so we have performed a mix of

stratified and convenience sampling. The strata were (1) open source, (2) freeware tools

and (3) proprietary tools. Within each strata we used convenience sampling based on the

availability and installation ability. Indeed, some open source tools could not be installed

and some proprietary tools had no fully functional demo / trial versions for us to perform

our assessment exercise. The final list of tools that met our and availability criteria are

represented in table 2.1.

https://en.wikipedia.org/wiki/Comparison_of_Business_Process_Modeling_Notation_tools
https://en.wikipedia.org/wiki/Comparison_of_Business_Process_Modeling_Notation_tools

2. Systematic BPMN Tool Assessment 10

Table 2.1: BPMN2 Tools Final Selection

Tool Name Creator Version Licesing

Model

Aris Express Software AG 2.4 Freeware

Bizagi Process Modeler Bizagi 2.8 Freeware

Bonita BPM Bonitasoft 7.0 Open Source

Eclipse BPMN2 Modeler Eclipse 1.0 Open Source

Enterprise Architect Sparx Systems 11.1 Proprietary

Intalio Bpms Intalio N/A Freeware

jBPM Jboss project 6.1.0 Open Source

Modelio Modeliosoft 3.1.2 Open Source

Process Modeler for Microsoft

Visio

Itp commerce AG 5 Proprietary

Tibco Business Studio - BPM

Edition

TIBCO Software Inc. 3.9.0 Proprietary

Yaoqiang BPMN Editor Blenta (Sourceforge ID) 2.2.3 Open Source

Fig. 2.1: Gartner Magic Quadrant for BPMN Suite Tools 1

1(source: Adobe - [https://goo.gl/f48SJR])

http://www.ariscommunity.com/aris-express
http://www.bizagi.com/en/products/bpm-suite/modeler
http://www.bonitasoft.com/
https://www.eclipse.org/bpmn2-modeler/
http://www.sparxsystems.com/products/ea/
http://www.intalio.com/products/bpms/overview/
http://www.jbpm.org/
https://www.modelio.org/
http://www.itp-commerce.com/
http://www.itp-commerce.com/
http://www.tibco.com/products/automation/business-process-management/activematrix-bpm/business-studio
http://www.tibco.com/products/automation/business-process-management/activematrix-bpm/business-studio
http://bpmn.sourceforge.net/
https://goo.gl/f48SJR

2. Systematic BPMN Tool Assessment 11

Fig. 2.2: Bizagi Google Search Interest relatively other modeling tools from 2005 to 2015. 2

2.2 Data Collection

To assess the validation capabilities of each selected tool, data was collected for each tool

and for each well-formedness rule or best practice. Basically the information collected

indicates if the specific tool is able to identify the model smell tested. The figure 2.3

represents the distribution of model smells considered in this analysis for each category

of BPMN2 elements.

Fig. 2.3: Model Smells Distribution

2(source: [https://www.google.com.gi/trends/])

https://www.google.com.gi/trends/

2. Systematic BPMN Tool Assessment 12

2.2.1Existing Limitations

Based on the existing limitations of the BPM tools in terms of BPMN2 support, some

rules from the set of rules considered to this analysis were not possible to validate in the

tools, since these tools do not support them. To give a practical example of this limitation,

in the next table 2.2 we have two invariants expressed that were not possible to analyse

in Bizagi tool, since the tool does not support them. Both invariants belong to Gateway

scope, and are related with Gateway direction. The BPMN2 specification [10] defines

that a Gateway must have a direction defined, and this direction can only be one of two

options : converging or diverging. The first invariant with name converging validates if

all Gateway elements, with converging direction defined, do not have more than one

outgoing sequence flow, and have more than one incoming sequence flow. The second

invariant with name diverging validates if all Gateway elements, with diverging direction

defined, do not have more than one incoming sequence flow, and have more that one

outgoing sequence flow. On Bizagi tool, since there is no property in Gateway element

related with direction, it is not possible to specify a direction for Gateways. Therefore,

the tool does not support the validation of these invariants.

Table 2.2: Ivariant examples without support on Bizagi tool.

Invariant ID Invariant Scope Invariant Name

69 Gateway converging

70 Gateway diverging

The full list related with tools coverage for model smells considered into analysis is

available as appendix - figure B.1.

2.3 Data Analysis

We have performed the following analysis using the IBM SPSS Statistics Software tool.

Several graphs were produced to support our analysis.

2.3.1 Model Smells Detection per tool

The next sequence of figures from 2.4 to 2.14 represent the analysis of detection of model

smells in detail for each scope, where each figure represents the results of each tool con-

sidered for the analysis.

The next figure 2.4 doesn’t has represented the column for Detection equals one (1)

for best practice rules category, since there is no scope with detection for this category of

rules, consequently the column was omitted in order to facilitate the read of table’s

information.

2. Systematic BPMN Tool Assessment 13

Fig. 2.4: Defects detection analysis on Aris Express.

Fig. 2.5: Defects detection analysis on Intalio Designer.

2. Systematic BPMN Tool Assessment 14

Fig. 2.6: Defects detection analysis on Eclipse BPMN2 Modeler.

Fig. 2.7: Defects detection analysis on Bizagi Process Modeler.

2. Systematic BPMN Tool Assessment 15

Fig. 2.8: Defects detection analysis on Tibco Business Studio.

Fig. 2.9: Defects detection analysis on Bonita BPM.

The next figure 2.10 doesn’t has represented the column for Detection equals one (1)

for best practice rules category, since there is no scope with detection for this category of

rules, consequently the column was omitted in order to facilitate the read of table’s

information.

2. Systematic BPMN Tool Assessment 16

Fig. 2.10: Defects detection analysis on Enterprise Architect.

Fig. 2.11: Defects detection analysis on Process Modeler for Microsoft Visio.

2. Systematic BPMN Tool Assessment 17

Fig. 2.12: Defects detection analysis on jBPMN 6.

Fig. 2.13: Defects detection analysis on Modelio.

2. Systematic BPMN Tool Assessment 18

Fig. 2.14: Defects detection analysis on Yaoqiang Shi.

2.3.2 Model smells analysis per category and tool

The next sequence of figures from 2.15 to 2.25 represent the model smells analysis divided

in each category of rules, well-formedness and best practice rules, for each tool.

Each one of these figures is composed by three graphs : well-formedness rules detec-

tion, best practice rules detection and all rules detection, and represents the final results of

model smells detection for a specific tool. The purpose of these figures is to understand in

a easy way what was the final results and detection capabilities for each tool considered

for analysis.

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.15: Model Smells Analysis for Aris Express.

2. Systematic BPMN Tool Assessment 19

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.16: Model Smells Analysis for BizAgi.

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.17: Model Smells Analysis for Bonita Soft.

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.18: Model Smells Analysis for Eclipse Modeler.

2. Systematic BPMN Tool Assessment 20

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.19: Model Smells Analysis for Enterprise Architect.

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.20: Model Smells Analysis for Intalio.

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.21: Model Smells Analysis for Itp.

2. Systematic BPMN Tool Assessment 21

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.22: Model Smells Analysis for Jbpm6.

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.23: Model Smells Analysis for Modelio.

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.24: Model Smells Analysis for Tibco.

2. Systematic BPMN Tool Assessment 22

Well-formedness rules detec-

tion
Best practice rules detection All rules detection

Fig. 2.25: Model Smells Analysis for Yaoqiang Shi.

2.3.3 Model smells analysis per scope

The next sequence of figures from 2.26 to 2.36 represent the model smells detection for

each scope considered. The absolute values represent the total of model smells detected

or not detected. The relative values (percentages) represent the total of model smells

detected or not detected against the total of model smells evaluated in all tools for the

specific scope.

Based on figure 2.3, it is important to remind that the scope Events represents sixty

(60) and Gateway that represents twenty-two (22) of the total of model smells - one hun-

dred and twenty-two (122).

The figure 2.26 represents the model smells detection for scope Activity. Based on this

figure we can conclude that the tools with smallest number, zero (0), of detected model

smells were Aris Express, Enterprise Architect and Modelio. On the other side, the tool

with largest number of detected model smells , seven (7), was Bonita Soft.

2. Systematic BPMN Tool Assessment 23

Fig. 2.26: Number of defects not detected by Scope - Activity

The figure 2.27 represents the model smells detection for scope Artifacts. Based on

this figure we can conclude that the tools with smallest number, one (1), of detected model

smells were Jbpm6, Modelio and Yaoqiang Shi. On the other side, the tool with largest

number of detected model smells , three (3), was Itp.

2. Systematic BPMN Tool Assessment 24

Fig. 2.27: Number of defects not detected by Scope - Artifacts

The figure 2.28 represents the model smells detection for scope Collaboration. Based

on this figure we can conclude that there is several tools with smallest number, zero (0),

of detected model smells. On the other side, there is several tools with largest number,

one (1), of detected model smells.

2. Systematic BPMN Tool Assessment 25

Fig. 2.28: Number of defects not detected by Scope - Collaboration

The figure 2.29 represents the model smells detection for scope Data Flow. Based on

this figure we can conclude that there is several tools with smallest number, zero (0), of

detected model smells. On the other side, the tool with largest number of detected model

smells , three (3), was Yaoqiang Shi.

2. Systematic BPMN Tool Assessment 26

Fig. 2.29: Number of defects not detected by Scope - Data Flow

The figure 2.30 represents the model smells detection for scope Events. Based on this

figure we can conclude that the tool with smallest number, six (6), of detected model

smells was Enterprise Architect. On the other side, the tool with largest number, twenty-

seven (27), of detected model smells, was Itp.

2. Systematic BPMN Tool Assessment 27

Fig. 2.30: Number of defects not detected by Scope - Events

The figure 2.31 represents the model smells detection for scope Flow Nodes. Based

on this figure we can conclude that there is several tools with smallest number, zero (0),

of detected model smells. On the other side, there is several tools with largest number,

one (1), of detected model smells.

2. Systematic BPMN Tool Assessment 28

Fig. 2.31: Number of defects not detected by Scope - Flow Nodes

The figure 2.32 represents the model smells detection for scope Gateway. Based on

this figure we can conclude that the tools with smallest number, zero (0), of detected

model smells were Aris Express, BizAgi and Enterprise Architect. On the other side, the

tools with largest number, nine (9), of detected model smells, were Itp and Yaoqiang Shi.

2. Systematic BPMN Tool Assessment 29

Fig. 2.32: Number of defects not detected by Scope - Gateway

The figure 2.33 represents the model smells detection for scope Message Flow. Based

on this figure we can conclude that there is several tools with smallest number, zero (0),

of detected model smells. On the other side, the tool with largest number, four (4), of

detected model smells, was Bonita Soft.

2. Systematic BPMN Tool Assessment 30

Fig. 2.33: Number of defects not detected by Scope - Message Flow

The figure 2.34 represents the model smells detection for scope Process. Based on this

figure we can conclude that the tools with smallest number, zero (0), of detected model

smells were Enterprise Architect and Itp. On the other side, the tool with largest number,

two (2), of detected model smells, was Aris Express.

2. Systematic BPMN Tool Assessment 31

Fig. 2.34: Number of defects not detected by Scope - Process

The figure 2.35 represents the model smells detection for scope Sequence Flow. Based

on this figure we can conclude that the tools with smallest number, zero (0), of detected

model smells were Aris Express and jBPM6. On the other side, the tools with largest

number, three (3), of detected model smells, were Intalio Designer, Itp and Yaoqiang Shi.

2. Systematic BPMN Tool Assessment 32

Fig. 2.35: Number of defects not detected by Scope - Sequence Flow

The figure 2.36 represents the model smells detection for scope Sub-Process. Based

on this figure we can conclude that the tools with smallest number, zero (0), of detected

model smells were Intalio Designer, jBPM6 and Tibco Business Studio. On the other side,

the tools with largest number, three (3), of detected model smells, were Bizagi, Bonita

Soft and Itp.

2. Systematic BPMN Tool Assessment 33

Fig. 2.36: Number of defects not detected by Scope - Sub-Process

The figure 2.37 shows the total number of well-formedness smells that were not de-

tected for each scope of BPMN2 elements. We can see that the two scopes with most of

defects not detected are Events and Gateways.

Fig. 2.37: Number of defects not detected by Category - Well-formedness Rules

2. Systematic BPMN Tool Assessment 34

The figure 2.38 shows the total number of best practices smells that were not detected

for each scope of BPMN2 elements. We can see that the two scopes with most of defects

not detected are Events and Gateways.

Fig. 2.38: Number of defects not detected by Category - Best Practices

The figures 2.39 and 2.40 show the total of rules successfully analysed for each tool,

and the number of model smells detected and not detected. Additionally, in figure 2.39,

at right we have the percentage of success and failure for each tool. The percentages were

calculated based on the number of rules detected/not detected by the tool against the

number of rules tested in the tool.

Fig. 2.39: Model smells detection by Tool.

2. Systematic BPMN Tool Assessment 35

Fig. 2.40: Model smells detection by Tool.

2.4 Characterization of the state of art

In figure 2.37 we can conclude that inside the well-formedness rules category, the larger

number of defects not detected by the tools belong to the scope Events. The same is veri-

fied for the best practices category, as we can see in figure 2.38. On the other side, based

on figure 2.3, we can see that the scope Events contains sixty (60) rules and represents

almost half of the total of model smells considered to this analysis (122). Based on this

fact, it is easier to this scope has the largest number of defects not detected.

On the other side, for the category of well-formedness rules, and based on figure 2.37,

we conclude that the scope of Collaboration had the smallest number of defects not de-

tected, whereas this number represents zero and seventy hundredths (0.70) percent of the

total number of defects analysed in all tools. In terms of best practice rules category, based

on figure 2.38, we conclude that the scope with smallest number of defects not detected

was Message Flow, whereas it represents three and fifteen hundredths (3.15) percent of

the total number of defects analysed in all tools.

In figure 2.39 we can see that the tool with the least number of defects not detected is

Bonita Soft for both categories of defects, and consequently with the highest percentage

of success in terms of defects detection (54%). On the other hand, we have Itp tool with

2. Systematic BPMN Tool Assessment 36

the same number of defects detected (50), but since this tool had more rules analysed in

total (118) in comparision with Bonita Soft (92), consequentely Itp tool had a smaller

percentage of success in model smells detection (42%).

In terms of the tool with the least validation capabilities, based in figure 2.39, we have

the Enterprise Architect tool with the highest number of not detected defects (9). If we

take a look in detail for the two model smells categories, based in figure 2.10, we conclude

that Enterprise Architect was the tool with smallest number of defects detected for well-

formedness and best practice rules, whereas it had nine (9) and zero (0) defects detected

respectively.

In conclusion, we performed an analysis of defects for a specific set of tools. These

defects are represented in two main categories: well-formedness rules and best practices

rules. In general, the tool that had highest number of detected defects was Bonita Soft.

Then, looking to the data inside each category, for the well-formedness category we have

Enterprise Architect as the tool with the smallest number of detected defects, and Itp

Process Modeler and Bonita Soft as the tools with highest number of detected defects.

For the best practices category, we have Aris Express and Enterprise Architect as the tools

with smallest number of detected defects and Bonita Soft as the tool with the highest

number of detected defects.

2. Systematic BPMN Tool Assessment 37

[This page was intentionally left blank]

3. BPMN MODEL CHECKING TOOL PROTOTYPE

3.1 The OMG Model-Driven Engineering framework

The model-driven engineering is a methodology in software development area which fo-

cus is create and exploit domain models, which are conceptual models to all aspects

related to a specific problem. One of the MDE initiatives is model-driven architecture

(MDA) from OMG - figure 3.2.

In the figure 3.1, there is a representation of all the topics related with Model-Driven

Engineering (MDE) and even from which topics is derived the OMG’s model driven ar-

chitecture.

Fig. 3.1: Model-Based Engineering Concepts 1.

1(source: Model-Based Engineering Forum)

http://modelbasedengineering.com/

3. BPMN model checking tool prototype 39

Fig. 3.2: Model-Driven Architecture 2.

3.2 The BPMN metamodel

The BPMN standard specification [10] is an official document that specificies each BPMN’s

element and their connections and meanings. Besides, it is considered a complex tech-

nical document to business modelers. Therefore, there was the need to create a BPMN

metamodel (considered inside M2 level, according to the MDA paradigm), easier to

understand and definitions and rules informally presented in plain English. It describes

the abstract syntax of BPMN by means of meta-classes, meta-associations and cardinality

constraints.

Based on figure 3.3, we can see the Model Driven Architecture (MDA), defined by

OMG, and based on a four-layer metamodeling architecture. Each layer represents a level

of abstraction of information. The BPMN specification is considered in level M1, while

the BPMN metamodeling is considered in level M2. This means the BPMN metamodel-

ing has a different level of abstraction, not referring some secondary details, and conse-

quently being easier to understand. As mentioned in [11], there are known weaknesses in

the BPMN standard that hinders the design of process models with good quality us- ing

currently available tools, since BPMN specification is expressed in natural language,

2(source: OMG Official Website)

http://www.omg.org/mda/mda_audio/mda_rollovers/mda_left_new2.gif

3. BPMN model checking tool prototype 40

and is vulnerable to the user’s interpretation, who is reading the specification in order to

express the rules and elements defined to the modeling tool(s).

Fig. 3.3: MDA four-layer MOF-based metadata architecture 3.

3.3 Well-formedness rules and best practices

As examples of these rules, we have here two, expressed as OCL rules [11], from the set

of model-checking rules expressed in BPMN2 specification and mapped to the BPMN2

metamodel.

3.3.1 Outgoing Sequence Flow not allowed in an End Event.

The end event indicates where a process will end. In terms of sequence flows, the end

event ends the flow of the process, and thus, will not have any outgoing sequence flows.

In order to validate this rule, the metamodel has an invariant declared that validates if

the number of outgoing sequence flows is zero for all the end events contained in the

container/process.

3(source: The Tao of Modeling Spaces)

http://www.jot.fm/issues/issue_2006_11/article4/

3. BPMN model checking tool prototype 41

3.3.2 Catch Error Event must trigger an exception flow

Error intermediate events cannot be used within normal sequence flows. This catching

event should trigger an exception flow. An error is caught by an error intermediate event

attached to the sub-process border. The intermediate event should trigger an exception

flow.

3.4 BPMN models portability - The XPDL Standard

The XML Process Definition Language (XPDL) is a format specified by the Workflow

Management Coalition (WfMC) to specify business process models [21]. XPDL is repre-

sented by a XML schema that expresses the constraints applied to the content represented

in this format. XPDL 2.2 has been created to express all aspects of a BPMN diagram

ensuring the support for BPMN2. Based on authors of [21], XPDL supports every aspect

of BPMN, including graphical aspects and run time properties. So, currently any business

process modeling tool with support to XPDL can export the process definition to XPDL

files, even it can be import to another tool with XPDL support without lose properties of

the diagram, preserving the diagram as it is originally.

One of the principles of WfMC is to keep XPDL up to date with BPMN, and the lastest

version (2.2) of XPDL was specified in order to specify BPMN 2.0 business process mod-

els. Since we designed a program to read the XPDL content of the files exported from the

BPMN2 modeling tool, and identify the different BPMN elements and properties spec-

ified, we have to worry about mapping between XPDL 2.2 and BPMN 2.0. In initial

versions of XPDL, there were problems with mapping between BPMN and XPDL ele-

ments, as claimed by the authors of [22]. In the latest versions of XPDL (2.2) and BPMN

i n v end Events Have No Outgoing Sequence Flow :

s e l f . t o t a l C o n t a i n e r E n d E v e n t s ()

−> f o r A l l (number Output Sequence Flows () = 0)

i n v c a t c h E r r o r E v e n t T r i g g e r E x c e p t i o n F l o w :

s e l f . i s E r r o r E v e n t () i m p l i e s

(s e l f . ocl As Type (Boundary Event) . a t t a c h e d T o R e f

. i s D e f i n e d () and

s e l f . o u t g o i n g a . t a r g e t R e f −>n ot Empty ())

3. BPMN model checking tool prototype 42

(2.0.2) we did not find any sources claiming this mapping problem. On the other side, the

authors of XPDL (WfMC) claim that nowadays there is full mapping between XPDL and

BPMN, as we can read from the XPDL Official Website4: ”Xpdl provides a file format

that supports every aspect of the bpmn process definition notation including graphical

descriptions of the diagram, as well as executable properties used at run time”.

As we can see in table 3.1, XPDL is one of the most used format in the set of tools

considered. Secondly, XPDL is considered by WMC, as the leading process definition

language used to store and exchange process models. Therefore, XPDL was the format

used to export the models designed in the BPMN modeling tools considered. The objec-

tive of export the model is to have the content of the model available in a format that we

can import to our parser and manage this information in order to execute our validation

process. The parser will be able to read the content of the exported files, identify each one

of the BPMN elements that is contained in the model, instantiate the BPMN Metamodel

in the USE environment. Thereby, the validator controller will load the BPMN2 meta-

model using commands in USE environment, and validate the content of the model. The

validation of the model is done by OCL invariants, that are basically logical expressions

that express the rules contained in the BPMN2 specification or best practice rules formu-

lated by BPMN modeling experts in books such as [17], [16] and [15]. The complete list

of invariants defined in BPMN2 metamodel can be consulted in appendix E.

Table 3.1: BPMN modeling tools exporting formats.

Tool Name Export Formats Available

Aris Express PDF; Image files; EMF; ADF

Bizagi Process Modeler Microsoft Visio; Image files; XPDL 2.2

Bonita BPM BPM2 Archive, BOS Archive, Executable

Business Archive, Image file

Eclipse BPMN2 modeler Image file

Enterprise Architect BPMN 2.0 XML, XPDL 2.2

Intalio BPMs Image file; PDF

jBPMN BPMN 2.0 XML, JSON

Modelio UML/EMF 3.0.0, OMG 2.1.1, OMG 2.2

and OMG 2.3

Process Modeler for Microsoft Visio XPDL 2.1, BPEL, XLANG/s, BPMN 2.0

Tibco Business Studio - BPM Edition Archive File; Modelled Application

Archive; Work Data Model, XPDL 5

Yaoqiang BPMN Editor XPDL 2.1, XML, VML, SVG, JPG, PNG

and PDF format

4http://www.xpdl.org/

http://www.xpdl.org/

3. BPMN model checking tool prototype 43

3.5 BPMN Model checking process

This section is related with all the process of usage of the metamodel-based validation

facility in order to achieve the results expected.

1) Design a BPMN model in the Business Process Modelling Tool

In this step we use a BPMN Modelling Tool to design our business process model.

One restriction associated with the choice of the tool is related with the functionality

of export the model for a different format. Since we need to export the model to

XPDL 2.2, the tool has to allow the user to export the designed model to this format.

In the figure 3.4, we can see the interface of the Bizagi Tool6and a small example

of a business process model designed.

5Tibco Modeling User’s Guide - When user creates a project, TIBCO Business Studio creates a package

and each package is represented by a XPDL file with all its content.
6http://www.bizagi.com/en/component/bizagicloudaccess/?task=login&tmpl=

component&prd=mdl

https://docs.tibco.com/pub/business-studio-bpm-edition/3.6.0_september-2013/doc/pdf/TIB_bstudio-bpm_modeler_user.pdf
http://www.bizagi.com/en/component/bizagicloudaccess/?task=login&tmpl=component&prd=mdl
http://www.bizagi.com/en/component/bizagicloudaccess/?task=login&tmpl=component&prd=mdl

3. BPMN model checking tool prototype 44

Fig. 3.4: Bizagi Tool - Design of an example model

2) Export the BPMN model

In this step we export the designed model to the XPDL 2.2 format. In the figure 3.5

we can see that Bizagi tool has a top menu where there is an option Export and we

3. BPMN model checking tool prototype 45

can choose the format that we want, in this case XPDL. This option generates one

file with extension .xpdl per process. Since our example model has only one main

process, the tool will generate only one file.

Fig. 3.5: Bizagi Tool - Export model to XPDL 2.2 format

3) Run the parser program

In this step we run the parser program in order to read the content inside the XPDL

files and generate the output file with all the USE commands necessary to instantiate

the business process model created in step 1 into USE environment. The parser

program is composed by an executable jar file, a script responsible to execute the

jar file and the BPMN metamodel file, which name is BPMN2.0 OMG.use. Initially,

we have to ensure that the USE path defined in the script file is set for the root folder

of the USE environment installation in the machine where the parser program will

run, since the parser program depends of USE environment. Thereafter, we run the

script file parser.bat, so the executable jar will execute and start the execution of

the parser program.

The parser program is composed by a graphical interface, where the user can

select the working folder and initiate the validation by clicking the button Validate.

The Working folder must contain the set of XPDL files related with the BPMN

model that we want validate. In figure 3.6 we can the folder structure of parser

program and the files required in order to run it. In figure The discussed details are

shown in next figure 3.7. In figure 3.6 we have the XPDL files in same folder as the

parser, but these files can be in a different folder, and in this case it is necessary to

press button Choose working folder and select the specific folder.

3. BPMN model checking tool prototype 46

Fig. 3.6: Parser folder structure.

Fig. 3.7: Parser GUI - Choose Working folder.

4) Analyse validation results

After the parser finishes the BPMN model validation, there is information related

3. BPMN model checking tool prototype 47

with validation results that are shown to the user. This information starts with two

labels showing the total number of invariants analysed, and the total number of

invariants that failed its validation. Additionally, it is presented a table with a list

of all the invariants which failed their validation. Every invariant is composed by

its Scope and Name. The user can any time hit the button X in order to close the

application. On the other side, the user can run the validation several times, for the

same model, or even for different model, whereas the XPDL files are changed for

the ones related with the new model. The discussed details are shown in next figure

3.8. Additionally, for each of the invariants failed shown in the list, the user can

double-click on any one of the list results and see description related with the

invariant failed, in order to understand what the invariant is validating and how can

fix it. The aspect of the message is in figure 3.9.

Fig. 3.8: Parser GUI - Validation Results.

3. BPMN model checking tool prototype 48

Fig. 3.9: Parser GUI - Invariant description.

3.6 Model checking architecture

A parser is a program to receive a specific input with a defined syntax, and is able to

process it and use the content for a specific purpose. In our context, we need to construct

a parser to read XPDL 2.2 content and understand all the XPDL 2.2 elements used, all the

properties associated to each of its elements and even the relationship between different

elements. Since the parser is able to read the XPDL content, we need that the parser gen-

erates USE input commands to allow create the elements, represented in the model, and

according to the BPMN2 specification (M1). After the business process model designed

using any BPMN2 modeling tool with functionality to export the model to XPDL format,

the user need to export the model to XPDL format into one or several documents, and

thereafter provide these files to the parser and start the model checking validation.

The USE environment is a system based on the Unified Modeling Language (UML)

and the Object Constraint Language (OCL) that allows the user to specify and validate a

specific information system. This informatin system is represented by a model, and the

model is composed by classes and associations. On the other side, the user can specify

OCL expressions in order to include additional integrity constraints to the model.

3. BPMN model checking tool prototype 49

Fig. 3.10: USE approach - General view 7.

In figure 3.11 we have a components diagram explaining the context and architecture

of the solution presented in this chapter. The BPMN Modeling Tool is an independent

component that is used to produce the BPMN models and export these models to XPDL

files. The parser has the responsibility to read the XPDL files content and produce an

output file with USE commands that will instantiate, the BPMN model designed, in USE

environment. The validator controller is the component responsible for consume the J-

USE Api in order to execute USE commands to load the output and instantiate the BPMN

model and commands to execute validations to the BPMN model and return the results.

Thereafter, this component uses Swing technology in order to provide a user-friendly

interface to the user and show the relevant results from the model validation. The USE is

an independent component that receives USE commands to load the BPMN metamodel,

to instantiate the BPMN model and to execute validations on BPMN model.

7(source: USE Official Site)

http://useocl.sourceforge.net/w/index.php/Main_Page

3. BPMN model checking tool prototype 50

Fig. 3.11: BPMN Model Checkin Tool - Components Diagram.

3.7 XPDL to BPMN2 parser

Since we need to read the XPDL content exported from the BPMN models designed, we

needed to develop a parser in order to interpret this content and identify each one of the

elements included in this content.After some research, we found a library called JAXB.

Basically, we obtained the XPDL 2.2 XSD (XML Schema Definition) located in [21] -

http://www.xpdl.org/standards/xpdl-2.2/bpmnxpdl_40a.xsd, and we used the

JAXB library to read this XSD file and generate the set of Java (programming language

) classes for each one of the elements included in the XSD file. After generating the Java

program with all classes, we have to change the program in order to be able to read files

with XPDL content and instantiate the specific Java Class related with each of the

elements detected in the XPDL content. On the other side, we have to change each one of

the Java classes in order to generate the related USE command to create the BPMN2

element in the USE environment and fill its attributes and connections between other

elements.

3.8 Integration of USE - parser - GUI

To allow adding model checking features to a BPMN modeling tool, such as the ones

mentioned in the previous chapter, we have two options: (i) embedding the model check-

ing features in the BPMN tool itself or, (ii) providing a separate model checking tool.

http://www.xpdl.org/standards/xpdl-2.2/bpmnxpdl_40a.xsd

3. BPMN model checking tool prototype 51

Table 3.2 summarize the pros and cons of each option.

Table 3.2: BPMN model checking features cenarios.

 Pros Cons

(i) Embedded Model Swifter user operation BPMN tool must be open
Checking Feature while performing a model source or allow plugins

 check / extensions; Integration

 is hard because it re-

 quires knowledge on the

 BPMN tool architecture;

 Integrations effort has to

 be reported for adding the

 Model checking to another

 BPMN tool

(ii) Independent Model All BPMN tools, either Requires compatibility

Checking Tool open source or proprietary, with model interoperabil-

 supporting the same inter- ity format, model checking

 operability format, are eli- is a two step process (i.e.

 gible model checking must

 be preceded by a model

 export)

After analysis of both cenarios, we decided to use the second scenario, where we focus

on build an automated validation solution and easy to use, so the user can easily validate

the BPMN models designed. This validation solution has USE source code integrated, the

parser, the J-USE source code and required libs to use Swing technology. The USE source

code is a requirement from J-USE, so we can run the USE environment and execute

commands on it using the J-USE API.

3. BPMN model checking tool prototype 52

[This page was intentionally left blank]

4. VALIDATION

In this chapter we present an experiment executed in order to test the metamodel-based

validation facility. We used a set of thirty-nine (39) models produced in academy by stu-

dents in the context of a business process modeling subject using BPMN. We describe the

analysis performed on these models validation, to test the validation facility’s effective-

ness in model errors detection. Additionally, we validated the details in terms of elements

instantiated to USE environment for each model, to guarantee that the parser is able to

cover all BPMN constructs.

4.1 Coverage validation

Since we are using the XPDL format to export BPMN models, and use the XPDL files as

input to the validation facility, we need to analyse the coverage of the parser in terms of

mapping between the BPMN metamodel and the XPDL metamodel. This creates a

dependency between BPMN and XPDL, especially in terms of mapping support between

two metamodels (M2). In order to ensure the support and consequently guarantee that the

parser is able to cover all BPMN metamodel constructs, we created a BPMN model

sample with coverage of all the BPMN elements, so we can validate this model in the

validation facility and check if it has the same number and type of elements created in the

USE environment.

As annexes, we have the figures F.1, F.2, F.3 and F.4 that represent the model used for

coverage analysis sake, where the main goal was to include all BPMN elements without

worry on the model semantics.

In chapter F we have the number of meta-objects and metalinks that we obtained when

we instantiate the BPMN metamodel in the USE environment. In table F.1 we represent

the number of metaobjects instantiated for each of BPMN metaclass. In table F.2, we

represent the number of metaobjects instantiated for each BPMN metaassociation. As we

can see, some of the objects were not instantiated, so in table F.3 we have the list of not

instantiated metaclasses and the corresponding rationale.

The tool used for this analysis was Bizagi Modeler, since, as we saw in a previous

section, it is the most widely used tool nowadays. Apart of the limitations, we can see on

4. Validation 54

the tables results that most of the objects and associations were covered and we were able

to instantiate and validate.

To summarize, after running the validation facility for the model in context, based on

details shown, we can see the total list of different BPMN elements created, the total list

of different links created and the corresponding cardinalities. Based on these details, we

can see that the coverage test for this solution allowed us to provide some evidence that

the validity threat associated to the lack of mapping between BPMN2 and XPDL 2.2 was

mitigated.

4.2 Postmortem validation

Initially we used a set of models produced in academia from groups of students, in the

context of a subject related with software process modeling with BPMN. We collected a

set of thirty-nine (39) models, where each model was produced by a different group.

Each of these models was exported to XPDL and imported in the validation facility as

described in previous chapter 3. We then checked the well-formedness and best practice

rules, both expressed as OCL constraints, for each model and collected the information

related with the validation of each of the invariants.

In table 4.1 we can see the set of models considered in this experiment. We decided to

introduce the column Model Reference in order to have a short alias for each of the models

and thus provide an improved readability of results.

4. Validation 55

Table 4.1: Set of models used in the experiment

Model Name Model Reference

PL 1TP03 06 MDD 54430 60268 60988 M1

PLC1 01 XP 16220 30843 33395 M2

PLC1 02 XP 53864 54162 54179 M3

PLC1 03 XP 33390 37814 37827 M4

PLC1 04 XP 22127 33392 M5

PLC1 05 XP 35537 38076 38425 M6

PLC1 06 XP 54157 54172 55254 M7

PLC1 07 XP 54816 55726 54760 M8

PLC1 08 XP 26225 32110 33950 M9

PLC1 09 XP 30844 35529 M10

PLC1 10 XP 30823 35280 M11

TP02 01 XP 38438 38444 M12

TP02 02 XP 54774 54813 M13

TP02 03 XP 54181 54768 66432 M14

TP02 04 XP 28780 54761 54812 M15

TP02 06 XP 35270 54772 54779 M16

TP03 01 XP 54408 54378 M17

TP03 02 XP 37808 54407 54416 M18

TP03 03 XP 33573 38054 38057 M19

TP03 04 XP 54415 54411 M20

TP03 05 XP 38066 38077 38094 M21

TP03 06 XP 38065 38073 54403 M22

TP03 07 XP 38044 38085 M23

TP03 08 XP 23905 31722 35472 M24

TP03 09 XP 38051 28447 M25

TP04 01 XP 33572 35232 54379 M26

TP04 02 XP 38068 54419 55127 M27

TP04 03 XP 54388 54410 54429 M28

TP04 04 XP 40666 40929 M29

TP04 05 XP 38053 39903 55501 M30

TP04 06 XP 54386 54394 55653 M31

TP04 08 XP 54173 54783 55583 M32

TP05 01 XP 35278 37833 38471 M33

TP05 02 XP 35260 37822 M34

TP05 04 XP 30525 34307 54782 M35

TP05 06 XP 37997 38469 54771 M36

TP05 07 XP 25833 54777 54791 M37

TP05 09 XP 34329 38447 54778 M38

TP05 11 XP 54787 38477 M39

In table 4.2 we present the total number of invariants failed per model. The third column

is related with model size, calculated as the sum of metamodel objects and links. The

4. Validation 56

fourth column is related with defect density, where it represents the quotient between

number of invariants failed and model size. In other words, we are talking about ”defect

density”. As average of model size we have eight hundred (800) objects, and as average

number of invariants failed we have ten (10) invariants.

4. Validation 57

Table 4.2: Validation Facility Experiment - Total invariants failed per model

Model Reference Number of invariants failed Model Size Defect Density

M1 9 956 0.0094

M2 10 972 0.0102

M3 9 935 0.0096

M4 7 599 0.0117

M5 6 396 0.0152

M6 6 1121 0.0054

M7 15 970 0.0165

M8 14 861 0.0163

M9 17 831 0.0205

M10 9 708 0.0127

M11 15 967 0.0155

M12 9 774 0.0116

M13 9 1175 0.0077

M14 9 632 0.0142

M15 10 848 0.0118

M16 10 1229 0.0081

M17 21 912 0.0230

M18 7 613 0.0114

M19 13 583 0.0223

M20 9 556 0.01619

M21 7 479 0.01461

M22 14 523 0.02677

M23 11 508 0.02165

M24 1 215 0.00465

M25 11 919 0.01197

M26 7 791 0.00885

M27 8 648 0.01235

M28 12 887 0.01353

M29 12 1972 0.006085

M30 7 469 0.01493

M31 4 326 0.01227

M32 16 676 0.02367

M33 7 609 0.01149

M34 13 1342 0.00969

M35 11 1058 0.01040

M36 11 879 0.01251

M37 9 726 0.01240

M38 8 618 0.01294

M39 10 920 0.01087

In figures 4.1 and 4.2, we present the analysis results of moderating relationship be-

tween number of invariants failed and model size, and, model size and defect density,

4. Validation 58

respectively. Pearson’s Correlation was utilized to examine the correlation relationships

between these variables, and it revealed that there is statistically significant correlation be-

tween number of invariants failed and model size, since ρ = .012 < .05 (see figure 4.1),

and there is statistically significant correlation between model size and defect density,

since ρ = .019 < .05 (see figure 4.2).

Fig. 4.1: Pearson Correlation between number of invariants failed and model size.

Fig. 4.2: Pearson Correlation between model size and defect density.

In figure C.1 we have the data collected from the experiment related with the validation

of each invariant for each model used. The rows are related with the invariant id, and the

columns are related with each model used for the experiment. Each row represents the

validation result of an invariant for all the models used in the experiment.

Based on the results presented in this figure, we can conclude that the following invari-

ants are the ones with the higher number of failures for all the models validated in the

experiment.

4. Validation 59

Table 4.3: Validation Facility Experiment - Invariants with the higher number of failures

Id Scope Name Fails % failure

67 FlowNode exclusivePathsMergingIntermedia-

teByGateway

38 97%

33 DataStore connectedDataAssociation 30 77%

56 FlowElementsContainer explicitStartEvRequiresNoActiv-

OrGatWithoutInSeqFlow

28 72%

The first row represents the invariant with ID equals to sixty-seven (67). This invariant

belongs to the scope of Flow Node invariants. A Flow Node, or Flow Object, is the base

element of Event element, Activity element and Gateway element, so all these elements

inherit properties from Flow Object / Flow Node. In figure 4.3 we can see the BPMN2

elements hierarchy in order to understand the different inheritance relationships between

BPMN2 elements.

Fig. 4.3: BPMN2 Elements Hierarchy.

The invariant with ID equals to sixty-seven (67), represents a rule related with the out-

going sequence flows from a Exclusive Gateway, and it says that merging exclusive paths

(outgoing sequence flows from Exclusive Gateway) requires a Gateway as a mediator, if

another Gateway or an event follows. This rule is explained in figures C.6 and C.7.

The second invariant with ID equals to thirty-three (33) belongs to scope DataStore,

and is related with Data Associations and Data Stores elements. This rule checks that a

Data Object must have at least one connected Data Association. This rule is explained in

figures C.8 and C.9.

The third invariant with ID equals to fifty-six (56), and belongs to scope of Flow Ele-

ments Container, and is related with the usage of explicit start events and/or end events.

The rule guarantees that Start Event and End Event are optional. However, if there is at

least one explicit Start/End Event in a container (Process or SubProcess), there must not

4. Validation 60

be other flow objects such as Activity or Gateway, without incoming/outgoing sequence

flow. However there are some exceptions: Compensation Activity an Event SubProcess do

not have incoming and outgoing Sequence Flows. This rule is explained in figures C.2 and

C.3.

4.3 Field validation

In summary, this chapter presents a model checking experiment, where the model check-

ing harness was partially developed in the work of [11] and extended in this dissertation.

In terms of BPMN models validation, we conclude that this metamodel validation facility

proved to be effective in models validation, since we used a set of models developed in

Bizagi tool and no errors were found there, using Bizagi’s validation system. However,

we realised that these models contained several errors and we presented evidences of that.

Additionally, these evidences allowed us to identify the most recurrent defects.

4. Validation 61

[This page was intentionally left blank]

5. STATISTICAL ANALYSIS

This chapter aims at proposing (i) reliability estimation to allow predict model defects in

BPMN models based on model metrics, and (ii) analyse the influence of model’s com-

plexity on the model’s fiability.

The model’s complexity metrics were extracted using the MetaModel Driven Mea-

surement (M2DM) approach and in context of [11] and were additionally defined in the

BPMN2 metamodel specification. For more details related with the M2DM approach, see

[11] and [23], whereas both works used this approach.

Then, we extracted model metrics from the USE environment during the validation of

the models. These metrics represent model characteristics, e.g. number of a specific

BPMN element occurrences in the model, model length, model difficulty, model mod-

ularization. In table D.1 we have the list of metrics specified and considered. Most of

these metrics are related with number of occurrences in the model for a specific BPMN

element, and consequently some of the metrics were omitted from the list, because their

results were not relevant for the models considered, since the results were zero, or not

zero for a small number of models, e.g. metrics for total number of Complex Gateway or

Text Annotation. In the tables D.2 and D.3, we have the metrics results for each of models

produced in Academia and considered to analysis.

The reliability data used for the aformentioned purposes consists in the results of the

model checking data collection activity already described in chapter 4. We recall that

these data relates to BPMN models produced either from students or professionals. The

BPMN Model Complexity metrics were also collected alongside the reliability ones.

The results of model validation were grouped into two variables: the number of broken

well-formedness rules and the number of broken best practice rules. Additionally, we cre-

ated two more variables to store the defect density corresponding to these two variables,

as already described in chapter 4. These four (4) variables define the set of dependent

variables (DV) considered in this analysis, as described in table 5.1.

5. Statistical Analysis 63

Table 5.1: Dependent variables (DV) analysis set

ID Name Description

BWFR Broken Well-

Formedness

Rules (absolute)

Number of broken well-formedness rules in

model’s validation

BWFR DENSITY Broken Well-

Formedness

Rules (density)

Density of variable for number of broken

well-formedness rules in model’s validation

BBPR Broken Best

Practice Rules

(absolute)

Number of broken best practice rules in

model’s validation

BBPR DENSITY Broken Best

Practice Rules

(density)

Density of variable for number of broken

well-formedness rules in model’s validation

Regarding the BPMN model complexity metrics, we considered the ones described in

table 5.2:

Table 5.2: Independent variables (IV) analysis set

ID Name

CFCM RANK Model’s Control Flow Complexity - Rank

LENM RANK Model Length - Rank

VOLM RANK Model Volume - Rank

DIFFM RANK Model Difficulty - Rank

MODHKM RANK Model Modularization (Henry and Kafura Metric) - Rank

These variables are represented by absolute values, but since our analysis has the

prerequisite of use descriptive variables as independent variables, we created a new de-

scriptive variable for each of the metrics considered. Each of these descriptive variables

is composed by a set of values, where these values represent levels in the variable. These

values were defined based on percentils and measures in order to normalize the distribu-

tion of the absolute values across each of the levels. In figure 5.1 we have each of the

values considered in each of these variables. The figure shows in first column the name

of the IV, and the set of levels considered, the second column shows the label for each of

the levels, and the third column shows the number of sample data included in each level.

5. Statistical Analysis 64

Fig. 5.1: Independent Variables Set Descriptives.

The tool used to these analysis was IBM SPSS Statistics version 23.

5.1 Model defects and Model metrics dependencies

In order to develop this analysis, we used the ANOVA statistical method. The ANOVA

analysis is composed by main effects and interaction effects. A main effect represents the

effect that the independent variable, also known as factor, has on the dependent vari- able,

or outcome. The interaction represents the composed effect due to two or more

independent variables in the dependent variable.

The set of independent variables are fixed effect factors, since the data has been gath-

ered from all the levels of the factor that are of interest.

This analysis will have a X * Y between subjects design, whereas X equals the number

of levels of the first independent variable and Y equals the number of levels of the sec-

ond independent variable. The analysis is executed for each of the dependent variables,

considering pairs of two independent variables for all the four independent variables con-

sidered.

In order to analyse in detail the effect of a IV on a DV at variable level’s detail, we

used the Compare Main Effects option for this analysis.

Additionally, we used Least Significant Difference for pairwise comparisons because

all the factors have less than four levels.

5. Statistical Analysis 65

In terms of plots, we used the factor with less number of levels as the separate lines

value, and the factor with most number of levels as the horizontal axis value. In the plot,

the Interaction is testing the hypothesis that the magnitude of the difference between levels

of separate lines factor is equal across the levels of the horizontal axis factor.

Since we have unequal sample sizes for each level of the IVs (figure 5.1),we have to

choose which is the most appropriate Model Type used in the ANOVA analysis. Based

on [24] and [25], we have chosen the model type III and sums of square. This ANOVA

model type III is an unweighted mean approach, so it is not going to take into account the

fact that some groups have much larger sample sizes and weight those accordingly.

Instead, it is going to consider that the sample sizes are equal and use a harmonic mean.

In terms of output results, we have the following outputs:

Tests of Between-Subjects Effects

This is the most important part of the output, since it tells us whether any of the in-

dependent variables was an effect on the dependent variable. The important data to

look at in the table are the significance values of each of the independent variables.

Pairwise Comparisons

This output is used to determine which group differences are statistically significant

for a specific factor.

Multiple Comparisons

This output is used to determine which group differences are statistically significant

for a specific factor.

The difference between Pairwise and Multiple Comparisons is based on means used.

The Pairwise Comparisons is based on estimated marginal means, while the Multiple

Comparisons is based on observed means.

For each dependent variable, we have the following sets of factors:

• CFCM Rank * DIFFM Rank

• CFCM Rank * LENM Rank

• CFCM Rank * MODHKM Rank

• CFCM Rank * VOLM Rank

• DIFFM RANK * MODHKM Rank

• LENM Rank * DIFFM Rank

5. Statistical Analysis 66

• LENM Rank * MODHKM Rank

• LENM Rank * VOLM RANK

• VOLM Rank * DIFFM Rank

• VOLM Rank * MODHKM Rank

Each set is composed by two independent variables, and represents an ANOVA anal-

ysis for the specific dependent variable.

For each ANOVA analysis, we collected and present here only significant results. If

there is no results showed, means there was no significant results found, or those variables

showed to have low explanatory power to the dependent variable.

The confidence interval considered for analysis is ninety-five (95%), and consequently

σ equals five hundredths (σ = 0.05).

5.1.1 Broken Best Practice Rules - Absolute Value

There was no significant results found, or considerable explanatory power for all the fac-

tors considered to analysis and for the dependent variable in context.

5.1.2 Broken Best Practice Rules - Density

There was no significant results found, or considerable explanatory power for all the fac-

tors considered to analysis and for the dependent variable in context.

5.1.3 Broken Well-Formedness Rules - Absolute Value

5.1.3.1 CFCM Rank * DIFFM Rank

In next figure 5.2, there was a significant main effect of the Model Difficulty - Rank, on

the total number of broken well-formedness rules - absolute value, with F(2,52) = 11.285,

ρ = 0.000 < 0.05. And, there was a significant interaction of Model’s Control Flow

Complexity - Rank and Model Difficulty - Rank, with F(2,52) = 4.057, ρ = 0.023 < 0.05.

5. Statistical Analysis 67

Fig. 5.2: Tests of Between-Subjects Effects.

In next figure 5.3, we can see that there was a significant difference in Model Difficulty

- Rank between Easy and Medium levels (ρ = 0.003), between Easy and Hard (ρ = 0.000)

and between Medium and Hard levels (ρ = 0.018).

Fig. 5.3: Pairwise Comparisons of Model Modularization (Henry and Kafura Metric) - Rank.

In next figure 5.4, we had better ρ for all Model Difficulty - Rank levels, and there

was a significant difference between Easy and Medium levels (ρ = 0.000), between Easy

and Hard (ρ = 0.000) and between Medium and Hard levels (ρ = 0.020).

5. Statistical Analysis 68

Fig. 5.4: Multiple Comparisons of Model Difficulty - Rank.

In next figure 5.5, we can see that there was a significant difference between Model

Difficulty - Rank and Model’s Control Flow Complexity - Rank. For medium level of

Model Difficulty, and between Simple and Complex levels of Model’s Control Flow Com-

plexity - Rank we have a significance of ρ = 0.047 < 0.05.

Fig. 5.5: Subjects Pairwise Comparisons.

In next figure 5.6, we can see there is statistically significant interaction for Model

Difficulty - Rank equals Medium value, and in Model’s Control Flow Complexity - Rank

between levels Simple and Complex. As we can see, before the interaction Simple level

of Model’s Control Flow Complexity - Rank has less influence in Estimated Marginal

Means than Complex level of Model’s Control Flow Complexity - Rank, with the variance

of Model Difficulty - Rank between Easy and Medium levels. After the interaction, the

Simple level of Model’s Control Flow Complexity - Rank has more influence on estimated

marginal means than the Complex level.

5. Statistical Analysis 69

Fig. 5.6: Subjects Pairwise Comparisons.

5.1.3.2 DIFFM RANK * MODHKM Rank

In next figure 5.7, there was a significant main effect of Model Difficulty - Rank, with

F(2,49) = 11.873, ρ = 0.000 < 0.05. Additionally, there was another significant main

effect of Model Modularization (Henry and Kafura Metric) - Rank, with F(2,49) = 4.013,

ρ = 0.024 < 0.05.

5. Statistical Analysis 70

Fig. 5.7: Tests of Between-Subjects Effects.

In next figure 5.8, we can see that there was a significant difference in Model Modu-

larization (Henry and Kafura Metric) - Rank between Medium and High levels (ρ=0.007).

Fig. 5.8: Pairwise Comparisons of Model Modularization (Henry and Kafura Metric) - Rank.

In next figure 5.9, we can see that there was a significant difference in Model Diffi-

culty - Rank between Easy and Medium levels (ρ=0.003), between Easy and Hard levels

(ρ=0.000), and between Medium and Hard levels (ρ=0.024).

5. Statistical Analysis 71

Fig. 5.9: Pairwise Comparisons of Model Difficulty - Rank.

In next figure 5.10, we can see that there was a significant difference in Model Mod-

ularization (Henry and Kafura Metric) - Rank between Small and High levels (ρ=0.001),

and Medium and High levels (ρ=0.013).

Fig. 5.10: Multiple Comparisons of Model Modularization (Henry and Kafura Metric) - Rank.

In next figure 5.11, we can see that there was a significant difference in Model Diffi-

culty - Rank between Easy and Medium levels (ρ=0.000), between Easy and Hard levels

(ρ=0.000), and between Medium and Hard levels (ρ=0.018).

5. Statistical Analysis 72

Fig. 5.11: Multiple Comparisons of Model Difficulty - Rank.

5.1.3.3 VOLM Rank * DIFFM Rank

In next figure 5.12, there was a significant main effect of Model Difficulty - Rank, with

F(2,51) = 8.523, ρ = 0.001 < 0.05. Additionally, we can see that there was a significant

interaction between Model Volume - Rank and Model Difficulty - Rank, with F(2,51) =

5.021 and ρ = 0.010 < 0.05.

Fig. 5.12: Tests of Between-Subjects Effects.

In next figure 5.13, we can see that there was a significant difference in Model Dif-

ficulty - Rank between Easy and Medium levels (ρ=0.000), and between Easy and Hard

levels (ρ=0.000).

5. Statistical Analysis 73

Fig. 5.13: Pairwise Comparisons of Model Difficulty - Rank.

In next figure 5.14, we can see that there was a significant difference between Model

Length - Rank and Model Volume - Rank, for Small level of Model Difficulty - Rank, and

between Small and Medium levels of Model Volume - Rank, with ρ = 0.005.

Fig. 5.14: Pairwise Comparisons of Model Volume - Rank and Model Difficulty - Rank.

In next figure 5.15, we can see that there was a significant difference in Model Diffi-

culty - Rank between Easy and Medium levels (ρ=0.000), between Easy and Hard levels

(ρ=0.000), and between Medium and Hard levels with ρ = 0.019.

5. Statistical Analysis 74

Fig. 5.15: Multiple Comparisons of Model Difficulty - Rank.

In next figure 5.16, we can see there is no statistically significant interaction between

Model Difficulty - Rank and Model Volume - Rank, when Model Difficulty is equal Hard

level, since there is no significant difference of estimated marginal means across Medium

and Big levels of Model Volume - Rank. On the other side, for Small level of Model

Volume - Rank, we can see there is significant difference of estimated marginal means

between Easy and Medium levels of Model Difficulty - Rank.

5. Statistical Analysis 75

Fig. 5.16: Broken Well-formedness Rules - Absolute Value - Model Volume - Rank and Model

Difficulty - Rank Plot.

5.1.3.4 Conclusions

Based on previous results shown, we can conclude that the Model Difficulty - Rank influ-

ences in the number of model defects in category Well-formedness rules in all its levels.

On the other side, for the models with Small level of Model Modularization (Henry and

Kafura Metric) - Rank, the metric Model’s Control Flow Complexity - Rank showed to

has high influence in value of estimated marginal means. In terms of Model Volume -

Rank, we saw that there was significant difference on estimated marginal means when

comparing models with Small level and models with Medium or Big level.

5.1.4 Broken Well-Formedness Rules - Density

There was no significant results found, or considerable explanatory power for all the fac-

tors considered to analysis and for the dependent variable in context.

5. Statistical Analysis 76

5.1.5 Human factor

Based on previous results presented, we can conclude that the set of model metrics con-

sidered are not statistical significant to estimate the model smells considered as dependent

variables. And, apart from the fact that some interactions between these metrics showed

to be statistical significant, they showed to have low explanatory power to explain the

dependent variables, where the best explanatory power reached was near R squared ≈

0.5 (50%). Based on these facts, we decided to introduce the human factor, and analyse

the effect of these metrics considering the human factor that indicates if the models were

produced by students or by professionals.

In figure 5.17, we can see the descriptive statistics for the factors Origin - Rank and

Model Complexity - Rank.

Fig. 5.17: Broken Well-formedness Rules - Absolute Value - Origin - Rank and Model Complexity

- Rank - Descriptive Statistics.

In next figure 5.18, there was a significant main effect of Origin - Rank, with F(1,54)

= 39.885, ρ = 0.000 < 0.05.

5. Statistical Analysis 77

Fig. 5.18: Broken Well-formedness Rules - Absolute Value - Origin - Rank and Model Complexity

- Rank - Tests of Between-Subjects Effects.

In next figure 5.19, we can see that there is a statistically significant interaction be-

tween Origin - Rank and Model Complexity - Rank, when the Origin - Rank is equal to

”2 - Students”. Additionally, we can see in the figure that there is influence from the factor

Origin - Rank in the dependent variable Broken Well-Formedness Rules (absolute),

whereas there is a significant increase in the estimated marginal means of the dependent

variable, comparing the origin Professionals models with the origin of Students models.

5. Statistical Analysis 78

Fig. 5.19: Broken Well-formedness Rules - Absolute Value - Origin - Rank and Model Complexity

- Rank - Interactions Plot.

5. Statistical Analysis 79

[This page was intentionally left blank]

6. RELATED WORK

6.1 Introduction

In this section we describe the related work, classified according to a proposed taxonomy.

The selected set of papers describing the related work were chosen based on a continu-

ous search process, where the queries were adjusted based on previous results obtained.

Initially, we searched for related work using the following string: “Validation Business

Process Model” + “BPMN”. From that research, only a few results were found, since

there is no much relevant work done based on validating BPMN models. As so, we made

an adjustment in our search query, omitting the reference to BPMN. Therefore, obtain-

ing more results. With these new findings, we constructed a list of works related with the

subject and relevant to our research. Hereafter, we defined the taxonomy to classify the

strengths and weaknesses of each work in order to help us to compare the different

proposals. This taxonomy is composed by a set of criteria that represents aspects that all

the related work has in common. For each criterion an ordinal scale was defined to allow

classify each work.

6.2 Taxonomy

•VALIDATION

This criterion intends to evaluate if the proposed approach in the related work is ap-

plied in practice based on a illustrative example or an empirical study. This criterion

is fundamental to understand if the proposed approach can be applied in practice or

not. This criterion is classified based on the following categories:

• D – Non validation done: There was no validation done in practice.

• C – Just illustrative example: There was done only an illustrative example in

practice.

6. Related Work 81

• B – Sample without statistical results presented: There was a statistical vali-

dation with a considerable sample, but the statistical results are not presented

in the published work.

• A – Sample with statistical results presented: There was a statistical valida-

tion with a considerable sample and the statistical results are presented in the

published work.

•REPLICABILITY

This criterion refers to the ability of an entire experiment or study to be replicable,

or by someone else working independently. It is one of the main principles of the

scientific method. The result values are said to be commensurate if they are ob-

tained (in distinct experimental trials) according to the same replicable experimen-

tal description and procedure. This criterion is classified based on the following

categories:

• D – Not replicable: The experiment or study developed in related work can not

be replicable since there is not enough information to reproduce the procedure

did before.

• C – Partially replicable: The experiment or study developed in related work

can be partially replicable since there is partially information to replicate what

the procedure did before, and the results obtained were not presented.

• B – Largely replicable: The experiment or study developed in related work can

be largely replicable since there is all information to replicate the procedure

did before, but the results obtained were not presented.

• A – Fully replicable: The experiment or study developed in related work is

fully replicable since there is all information to replicate the procedure did

before, and the results obtained previously.

•AUTOMATIZATION

This criterion characterizes the ability to apply the proposed model validation tech-

nique without human intervention. This criterion is classified based on the follow-

ing categories:

• C - Not automated: The proposed model validation technique can be applied

only with human intervention.

6. Related Work 82

• B - Partially automated: The proposed model validation technique can be ap-

plied with some automated steps and some steps with human intervention.

• A - Automated: The proposed model validation technique can be applied with-

out human intervention.

•EXTENSIBILITY

This criterion classifies the ability to extend the solution in adding an additional

model smell to the set of detected ones and the level of effort required to implement

the extension.

• C – Unknown: It is not known or mentioned by the author if it is possible to

extend the proposed solution.

• B – Hard to extend: It is possible to extend the proposed solution, but it re-

quires a lot of effort.

• A – Easy to extend: It is possible to extend the proposed solution and it re-

quires little effort.

•APPLICABILITY

This criterion classifies if the proposed approach is a valid solution to solve the

problem in its current state of the art. This criterion is classified based on the fol-

lowing categories:

• C – Not applicable: The proposed solution is not applicable in the current state

of art since the problem does not exist anymore, or was solved by another better

solution.

• B – Partially applicable: The solution proposed in related work only solves a

part of the related problem.

• A – Applicable: The solution proposed in related work can solve the related

problem that still exists in the current state of the art.

6.3 Revision of related work

6.3.1M. Chinosi, “Representing Business Processes: Conceptual Model and Design

Methodology” - [1]

Objective: Implement a metamodel based facility to overcome the weak points of BPMN

1.1 specifications.

6. Related Work 83

Abstract: In this article, a new conceptual model for BPMN was developed from

scratch, with a clear metamodel and its related XML-based serialization which might

provide a self validating mechanism for checking BP syntax and semantics. To complete

it, was defined a set of syntax and semantic rules to improve validation system of BPMs

and overcome the weak points of BPMN 1.1 specification.

Critique: Most of the weak points of BPMN 1.1 specification were overcome with

the official BPMN 2.0 specification published. On the another hand, the solution was de-

veloped from scratch. Since their intention was to improve a validation system of BPMs

based on BPMN, from which they could use the existing work done already by OMG on

BPMN 1.1 specification and develop the validator with the considered rules indepen- dent

of BPMN metamodel. On the positive side, the solution presented allows to make a real-

time validation of a model (while the designer is constructing it) and the validation may

be totally automatized. Finally, an illustrative example with the proposed solution is

presented but a statistical validation, using a considerable sample, was not performed.

6.3.2 J. Mendling, G. Neumann, and W. Aalst, ”Understanding the Occurrence of Errors

in Process Models Based on Metrics” – [2]

Objective: Discuss the theoretical connection between errors and metrics, and provide a

comprehensive validation based on an extensive sample of EPC process models from

practice.

Abstract: In this article, it was analyzed the relation between formal errors and a set

of metrics that capture various structural and behavioral aspects of a process model for

predicting the former. A comprehensive validation, based on an extensive sample of EPC

process models from practice, was provided.

Critique: The authors claim that existing proposals for predicting errors in process

Validation

Replicability

Extensibility

Applicability

C

C

6. Related Work 84

models lack empirical validation. Their validation experiment is a good step towards mit-

igating that problem. On the other hand, since collecting new metrics require statistical

adjustment, the solution proposed becomes hard to maintain and extend.

6.3.3 A. Ahmed, D. Gero, and W. Mathias, ”Efficient Compliance Checking Using BPMN-

Q and Temporal Logic” – [3]

Objective: This paper presents an approach for compliance checking for BPMN process

models using BPMN-Q queries.

Abstract: Compliance rules describe regulations, policies and quality constraints

business processes must adhere to. Given the large number of rules and their frequency

of change, manual compliance checking can become a time-consuming task. Because of

that, there was the need to develop an automated solution for compliance checking in

BPMN process models. In this paper, this approach was developed using BPMN-Q as a

query language, since it helps identify the set of process models that are subject to com-

pliance checking.

Critique: One of the negative points of the proposed solution is the fact that the de-

scribed version does not provide detailed information in case of non-compliance process

models. One positive point is the capacity of this approach to be applied to any process

modeling language, besides the BPMN modeling language used in this experiment.

Validation

Replicability

Extensibility

Applicability

B

B

Validation

Replicability

Extensibility

Applicability

B

6. Related Work 85

6.3.4 Kluza, K., Nalepa, G. J., Szpyrka, M., & Ligeza, A. (2011). “Proposal of a Hier-

archical Approach to Formal Verification of BPMN Models Using Alvis and XTT2

Methods” – [4]

Objective: Proposes a new approach to formal verification of BPMN models using the

Alvis modeling language and the XTT2 knowledge representation.

Abstract: The paper presents preliminary results of the research concerning verifica-

tion of BPMN models. An approach is proposed using the Alvis modeling language [26]

for the global verification of the model structure and the XTT2 knowledge representation

[27] for the local verification i.e. verification of single BPMN elements in the model. The

structure of the BPMN model can be analyzed using a translation to an Alvis model. These

models can be verified with dedicated tools, and their properties can be linked to the

properties of the original BPMN model. On the other hand, selected BPMN elements can

be verified using the XTT2 decision tables. Several BPMN elements can be translated to

XTT2 and checked using the HeaRT rule engine [28] with the HalVA [29] verification and

analysis tool.

Critique: As negative point, the evaluation process is performed upon an illustrative

example with a simple model. Because of that, it is not so easy to the author to get conclu-

sions of solution’s validation, and consequently the quality of those is poor. On the other

side, this approach, does not support OR-join gateways, and has limitations with lack of

support of the multiple merge and split elements.

6.4 Results and Conclusions

To summarize, we realized that there is much more relevant work done related with valida-

tion of BPMs based on other modeling languages (EPCs, Petri Nets, rather than BPMN).

Usually, on their work it is mentioned the technique addressed to implement the solution

with the aim of improving the validation system of BPM modeling tools. We realized that

Validation

Replicability

Extensibility

Applicability

C

B

B

6. Related Work 86

in related work that we found, the most common technique is based on metrics that seem

to be related with the probability that a specific error occurs during the modeling phase.

In other words, we found more work on defect prediction than on defect detection.

Secondly, based on related work, we may conclude that each of the approaches re-

viewed for BPM validation, independently of the modeling language, can be classified in

one of the following categories:

• Implementation of a complete conceptual model and respective metamodel from

the scratch.

• Solutions based on conversion of BPMN models to another type of modeling lan-

guages and then the usage of validation tools already developed.

• Solutions based on metrics, where the latter are used to predict errors introduced by

designers during the modeling phase.

In table 6.1 we have the list of related work considered into analysis. In table 6.2, we

have the final related work evaluation based on the criterion specified previously. Addi-

tionally, it was included the evaluation of the validation facility (P5) presented in context

of this work and [11], in order to provide a comparison between all the proposals consid-

ered in this chapter.

Table 6.1: Related Work List

Paper Id Paper Name

P1 Chinosi2009

P2 Mendling, et al., COOPIS, 2007

P3 Awad, et al., 2008

P4 Kluza, et al., 2011

Table 6.2: Related Work Criterion Evaluation

Paper Id Validation Replicability Automatization Extensibility Applicability

P1 C C A A C

P2 A A B B A

P3 C A A B A

P4 C C B B A

P5 A A A A A

Besides of the type of approach followed, there might be some common limitations

in a few solutions. A part of them might not have a real-time validation system, and

6. Related Work 87

usually the validation is made with a human interaction way from the designer, which

might explain the reason why the validation system is independent of the modeling tool

and why there might be no integration between them. For the solutions based on metrics,

the matter may need a considerable effort, necessary to extend the solution, in particular,

to add new rules for validation system. This effort, for every metric, is based on creating

a sample with models examples, some with errors introduced and some without, in a way

to extract metrics from this sample and use them on creation of a new estimation model.

Also, other intermediate tasks may be done in order to get valid measures for metrics.

Finally, based on classifications obtained from criteria, we might notice that a large

amount of works studied in context of state-of-art may not have a consistent validation of

results, probably because the source could be too theoretic or it was made as a sample

illustrative example. In the case of reusability, almost all (except [1]) works studied were

classified as ‘fully reusable’, which could mean that there could be evidence and infor-

mation of all processes executed in context of the research, and consequently it might be

reusable in future works. Relatively to replicability, only [2] may present an ample data

necessary to replicate all the study done and reproduce results in way to confirm veracity

of results presented in work. In the case of a usual automation, the solutions might be full

or partially automated. In the case of extensibility, almost all solutions (except [1]) tend

to be difficult to extend and a set of steps would be needed to implement the extension.

In case of applicability, almost all solutions (except [1]) may be applicable to the current

state-of-art.

6. Related Work 88

[This page was intentionally left blank]

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Summarizing, this MSc dissertation represents a continuation of a PhD research work

produced at the QUASAR research group [11] and took as input two of its deliverables:

(i)A catalogue of BPMN2 model smells [12]

(ii)A specification of the BPMN2 Metamodel, based on OMG specification [10], ex-

pressed as a UML class diagram, enriched with OCL constraints representing Well-

formedness and best practice rules (in modeling business process models).

Based on the aforemementioned technical report we carried out a tool survey in order to

characterize in detail the current state of practice regarding the detection of design errors

in BPMN2 modeling tools. With this survey we concluded that there are serious flows in

the implementation of validation systems of each of the modeling tools considered. Then,

we developed a validation facility that is able to read a BPMN model expressed in XPDL

content, interpret all the content and identify BPMN objects (elements and associations)

included in the model. Thereafter, it generates USE commands in order to instantiate each

of these objects to USE environment. Additionally, in this facility we used the J- USE api

in order to have integration with USE environment, so we could instantiate the provided

BPMN model and execute the set of invariants defined in the BPMN metamodel

deliverable. Finally, this tool is able to identify modeling errors and show the relevant

information to the user. Thereafter, we developed an experiment using the validation

facility that allowed us to validate a set of BPMN2 models developed in academy by

groups of students in the context of a Business Process Modelling subject. We concluded

in this experiment that the validation facility is able to find errors that the modeling tool

used to design initially these models was not. On the other hand, we could analyse the

data collected and see what were the most recurrent failed rules and the less recurrent

failed rules in these models validation.

Based on these results, we concluded that this validation facility is an added value since

it allows preventing the modeler from producing flawed models, while it provides a self-

7. Conclusions and Future Work 90

learning experience, since the rationale for each detected model smell is provided. In the

medium to long term, we expect modelers to produce less and less BPMN model smells,

due to the induced learning effect.

7.2 Future Work

Apart from the fact of the solution presented and used in the experiments in this dis-

sertation, there is several steps that could be considered in order to improve the quality of

the solution, and consequently to improve the results for the users that will use this so-

lution. To start, the BPMN metamodel specification is not finished in terms of invariants

specification, since there is some invariants nowadays that are not being used in the meta-

model. Additionally, the error description messages showed in validation process are not

specified for all the invariants evaluated, so there is the need to change the BPMN meta-

model to provide simple and clear messages for each of the invariants evaluated, in order

to allow the user to understand what is the existing error and how can fix it. Relatively to

the parser functionality, as mentioned before, some of the elements were not possible to

test its coverage, since we had some tool’s limitations. One possible solution would be to

consider using other tools, one or more, that would allow to reproduce models with the

specific elements to test the coverage. Finally, the validation facility could be extended

in order to register the historic of modeling errors introduced by the user, and provide the

functionality to the user generate reports with this information and understand in which

BPMN scopes he introduces more errors and in which type of BPMN elements, so the

user could improve his knowledge in this areas and improve his BPMN modeling skills

and potentially avoid introduce these errors in future.

7. Conclusions and Future Work 91

[This page was intentionally left blank]

7. Conclusions and Future Work 92

