
 
 
 

Departamento de Ciências e Tecnologias de Informação 
 
 

Mesh Networks for Handheld Mobile Devices 
 
 
 

Carlos José Pereira da Silva Meralto 
 
 
 
 
 

Dissertação submetida como requisito parcial para obtenção do grau de 
 

Mestre em Engenharia de Telecomunicações e Informática 
 
 
 
 
 
 
 

Orientador(a): 
Prof. Rui Neto Marinheiro, Professor Auxiliar, 

ISCTE-Instituto Universitário de Lisboa 
 

Coorientador(a): 
Prof. José Moura, Professor Auxiliar, 

ISCTE-Instituto Universitário de Lisboa 
 
 
 
 
 
 

Outubro, 2015 



	   	   	   i	  

  



	   	   	   ii	  

Abstract 
Mesh communications emerge today as a very popular networking solution. Mesh 

networks have a decentralized and multihop design. These characteristics arouse 

interest in research for relevant novel features, such as cooperation among nodes, 

distribution of tasks, scalability, communication with limited infrastructure support, 

and the support of mobile devices as mesh nodes. 

In addition to the inexistence of a solution that implements mesh networks with 

mobile devices at the data link layer (Layer 2), there is also a need to reconsider 

existing metrics with new information to tackle the intrinsic characteristics of mobile 

devices, e.g., the limited energy resources of their battery. 

To tackle this problem, this thesis presents a detailed study about projects, routing 

protocols and metrics developed in the area of mesh networks. In addition, two data 

link layer solutions, Open802.11s and  B.A.T.M.A.N-advanced, have been adapted 

and deployed in a real mesh network testbed with off the shelf routers devices 

installed with a customized operating system. From this testbed, Open802.11s has 

proved to offer better performance than B.A.T.M.A.N-advanced. Following this, a 

breakthrough in this work has been the integration of the 802.11s on an Android 

mobile device and its subsequent incorporation in the mesh network. This allowed 

the study of eventual limitations imposed by the mobile device on the operation of the 

mesh network, namely performance and energy scarcity. With this, another major 

novelty has followed, by designing, implementing and evaluating several energy 

related metrics regarding the battery status of mobile devices. This has enabled the 

participation of mobile devices in mesh routing paths in an efficient way. 

Our main objective was to implement a mesh network with mobile devices. This has 

been achieved and validated through the evaluation of diverse testing scenarios 

performed in a real mesh testbed. The obtained results also show that the operation 

of a mesh with mobile devices can be enhanced, including the lifetime of mobile 

devices, when an energy-aware metric is used. 

 

Keywords: Mesh Networks; Mesh networks with mobile devices; Routing protocols for 
mesh networks; Metrics for mesh networks; Energy-aware routing metrics 

  



	   	   	   iii	  

 



	   	   	   iv	  

 Resumo 
As redes mesh surgem hoje em dia como uma solução de rede em crescimento e 

expansão. Neste tipo de redes o comportamento entre os nós é descentralizado e 

numa topologia de multihop.  Estas características despertam interesse na pesquisa 

e desenvolvimento de novas funcionalidades tais como: cooperação entre nós, 

distribuição de tarefas, escalabilidade da rede e comunicações mesmo em casos de 

uma infraestrutura limitada e o suporte de dispositivos móveis como nós de uma 

rede mesh. 

Associado à inexistência de um projecto que implemente redes mesh em 

dispositivos móveis na camada de ligação de dados (Layer 2), surge a necessidade 

de repensar as métricas já existentes com novas informações que façam face às 

novas características dos dispositivos móveis, neste caso, os recursos limitados de 

bateria.  

Por forma a resolver este problema, este trabalho apresenta um estudo detalhado 

sobre os projetos, protocolos de routing e métricas desenvolvidas na área das redes 

mesh. Além disso, duas soluções que utilizam a camada de ligação de dados, 

Open802.11s e BATMAN-advanced, estes foram adaptadao e implementados num 

testbed real utilizando routers com um sistema operacional costumizado instalado. 

Deste testbed, concluiu-se que o Open802.11s obtem um melhor desempenho que 

o BATMAN-advanced. Assim, um dos avanços deste trabalho foi a integração do 

Open802.11s num dispositivo móvel Android e sua posterior incorporação na rede 

mesh. Isto permitiu o estudo de eventuais limitações impostas pelo dispositivo móvel 

ao funcionar numa rede mesh, ou seja, desempenho e a escassez de energia. Com 

isso, foi concebida outra novidade, através da concepção, avaliação e 

implementação de várias métricas relacionadas com a energia e que têm por base o 

estado da bateria do dispositivo. Isto permitiu que os dispositivos móveis participem 

na rede mesh e a sua gestão de bateria seja feita de forma eficiente. 

O principal objectivo era a implementação de uma rede mesh com dispositivos 

móveis. Este foi alcançado e validado através de diversos cenários de teste reais. 

Os resultados obtidos demonstram também que o funcionamento de uma rede mesh 

com dispositivos móveis pode ser melhorada, incluindo o tempo de vida dos 

dispositivos móveis, quando uma métrica que considera a energia é utilizada. 

Palavras chave: Redes Mesh; Redes mesh com dispositivos móveis; Protocolos de 
Rotuting em redes mesh; Métricas para redes mesh; Métricas de energia 



	   	   	   v	  

  



	   	   	   vi	  

Agradecimentos  
A conclusão desta tese só foi possível com a ajuda de um grupo de pessoas que 

conseguiram cada uma à sua maneira e com o seu ponto de vista motivar-me em 

cada um dos 365 dias decorridos desde o início deste projecto. Nesse sentido, estas 

palavras são o reconhecimento para todos aqueles que contribuíram para a 

conclusão do meu mestrado.  

Em primeiro lugar quero agradecer aos meus professores orientadores, Professor 

José Moura e Professor Rui Neto Marinheiro, pela constante orientação, 

disponibilidade, sugestões, criticas e motivação para atingir todos objectivos 

propostos no inicio. 

À minha mãe que para além de me proporcionar a possibilidade de realizar os meus 

estudos superiores, me acompanhou ao longo destes cinco anos incutindo-me 

sempre um espírito de responsabilidade e motivando-me dia a após dia para que a 

conclusão desta tese fosse possível. 

À minha irmã, ao João Coelho e à Suzanne Tavares pela motivação, 

aconselhamentos e  revisão na escrita deste documento em inglês. 

À minha namorada Filipa Vitorino, que ao longo do último ano acompanhou esta 

fase da minha vida com uma enorme paciência, ajudando-me em tudo aquilo que 

estava ao seu alcance.   

A todos os meus colegas de curso, em especial ao Pedro Almeida e à Sara Santos, 

por todo o acompanhamento durante o percurso académico, tendo sido uma ajuda 

essencial ao longo dos últimos cinco anos. Por fim, aos meus amigos mais próximos 

(David Santos, João Melo, Mário Carvalho, Marino Soares e Rui Gonçalves), que 

souberam sempre ouvir as minhas preocupações e acima de tudo com a boa 

disposição que lhes reconheço estar presentes em todos os momentos da 

realização desta tese. 

 

  



	   	   	   vii	  

  



	   	   	  viii	  

Table of Contents	  
1.	   Introduction	  ................................................................................................................	  1	  

2.	   Literature	  review	  .......................................................................................................	  6	  

2.1.	   Mesh	  networks	  implemented	  with	  mobile	  devices	  ............................................	  6	  
2.2.	   Path	  selection	  and	  routing	  protocols	  .......................................................................	  9	  
2.3.	   Metrics	  for	  mesh	  networks	  ........................................................................................	  15	  
2.4.	   Energy-‐aware	  routing	  metrics	  .................................................................................	  24	  
2.5.	   Testbeds	  ...........................................................................................................................	  30	  

3.	   Solution	  and	  implementation	  .............................................................................	  32	  

3.1.	   Mesh	  network	  protocol	  selection	  ............................................................................	  33	  
3.2.	   Mesh	  networks	  in	  mobile	  device	  .............................................................................	  34	  
3.3.	   New	  energy-‐aware	  routing	  metric	  for	  IEEE802.11s	  .........................................	  38	  
3.4.	   New	  energy-‐aware	  routing	  metric	  implementation	  on	  mobile	  device	  ......	  43	  

4.	   Tests	  and	  Results	  ....................................................................................................	  45	  

4.1.	   Open802.11s	  testbed	  ...................................................................................................	  46	  
4.2.	   Real	  testbed	  with	  Open802.11s	  and	  B.A.T.M.A.N-‐advanced	  ..........................	  50	  
4.3.	   Real	  testbed	  with	  mobile	  device	  and	  routers	  .....................................................	  55	  
4.4.	   Real	  testbed	  with	  new	  energy-‐aware	  routing	  metric	  .......................................	  59	  

5.	   Conclusions	  ...............................................................................................................	  66	  

6.	   References	  .................................................................................................................	  67	  

7.	   Appendix	  A	  –	  Open802.11s	  configuration	  on	  OpenWRT	  ..........................	  70	  

8.	   Appendix	  B	  –	  B.A.T.M.A.N-‐adv	  configuration	  on	  OpenWRT	  .....................	  71	  

9.	   Appendix	  C	  –	  Open802.11s	  configuration	  on	  Android	  ...............................	  73	  

10.	   Appendix	  D	  –	  New	  Artime	  Link	  Metric	  with	  energy	  consideration	  .......	  80	  

  



	   	   	   ix	  

List of Figures 
Figure 1.1 - Mesh network architecture	  ................................................................................................	  2	  

Figure 1.2 – Design science research methodology process model	  .....................................	  3	  

Figure 2.1 - HWMP on-demand route discovery	  ...........................................................................	  11	  

Figure 2.2 – HWMP proactive mode route discover	  ....................................................................	  11	  

Figure 2.3 – PREP and PREQ exchanged messages to calculate de Airtime Link 

metric cost.	  ...............................................................................................................................................	  17	  

Figure 3.1 – Mesh network topology with mobile devices and energy-aware metric.	  32	  

Figure 3.2 – Android OS architecture. 	  ................................................................................................	  35	  

Figure 3.3 -  Low level Android architecture	  .....................................................................................	  36	  

Figure	  4.1	  -‐	  Line Topology with five routers.	  .....................................................................................	  46	  

Figure 4.2 – Discovery time and throughput vs. number of hops.	  ........................................	  47	  

Figure	  4.3	  –	  Multi-Path Topology with four routers.	  .......................................................................	  48	  

Figure 4.4 – Message diagram for detailing recovery time after a node failure.	  ...........	  48	  

Figure 4.5 – Line topology real testbed setup.	  ................................................................................	  50	  

Figure 4.6 – Throughput for Open802.11s and B.A.T.M.A.N-advanced	  ...........................	  51	  

Figure 4.7 – Open802.11s discovery time vs. number of hops.	  ............................................	  52	  

Figure 4.8 – B.A.T.M.A.N-advanced bootstrap time vs. number of hops.	  ........................	  52	  

Figure 4.9 – Multi-path topology real testbed setup.	  ....................................................................	  53	  

Figure 4.10 – Recovery time in case of node failure for B.A.T.M.A.N. and 

Open802.11s.	  .........................................................................................................................................	  54	  

Figure 4.11 - Line topology with five routers	  ....................................................................................	  55	  

Figure 4.12 – Line Topology with four routers and one nexus 4.	  ..........................................	  55	  

Figure 4.13 – Discovery time for TP-Links and mobile device	  ...............................................	  56	  



	   	   	   x	  

Figure 4.14 - Throughput for Open802.11s and B.A.T.M.A.N-advanced	  .........................	  57	  

Figure 4.15 - Multi-path topology with three routers and one nexus 4	  ...............................	  57	  

Figure 4.16 - Multi-path topology with four routers	  .......................................................................	  57	  

Figure 4.17 - Recovery time in case of node failure for routers and mobile phone.	  ...	  58	  

Figure 4.18 - Multi-path topology with three routers and one nexus 4.	  ..............................	  59	  

Figure 4.19 – New energy-aware metric path selection and metric values	  .....................	  60	  

Figure 4.20 – Metric value vs. remain energy	  .................................................................................	  61	  

Figure 4.21 – Temperature vs. remain energy	  ................................................................................	  62	  

Figure 4.22 – Voltage vs. remain energy	  ...........................................................................................	  62	  

Figure 4.23 – Energy and voltage metric vs. time	  .........................................................................	  63	  

Figure 4.24 – Voltage metric Value vs. remain energy	  ..............................................................	  64	  

	  

	   	  



	   	   	   xi	  

List of Tables 
Table 2.1 - Comparison between mesh network projects with mobile devices	  ...............	  9	  

Table 2.2 - Comparison between mesh routing protocols	  ........................................................	  15	  

Table 2.3 - Comparison between mesh metrics	  .............................................................................	  23	  

Table 2.4 - Comparison between energy-aware metrics	  ...........................................................	  30	  

Table 3.1 – Comparison between possible devices  to implement a mesh network.	  .	  37	  

Table 6 -  Values and definitions of each parameter from battery information API.	  ....	  43	  

Table 7 - TP-Link TL-WDR4300 specifications	  ..............................................................................	  45	  

Table 8 - TP-Link TL-WR841N specifications	  .................................................................................	  45	  

Table 9 – Nexus 4 specifications	  ...........................................................................................................	  45	  

	  

	   	  



	   	   	   xii	  

List of Acronyms 
AODV 

ARP 

B.A.T.M.A.N 

CMMBCR 

DSR 

DSVD 

EARM 

ECC 

ENT 

ETE 

ETT 

ETX 

HWMP 

iAWARE 

IEEE 

MAC 

MANET 

MCS 

MBCR 

mETX 

MMBCR 

MPR 

MREP 

MTPR 

OLSR 

OLSRd 

OMG 

OS 

OSI 

SINR 

SNR 

SPAN 

SQ 

TC 

Ad hoc On-Demand Distance Vector 

Address Resolution Protocol 

Better Approach To Mobile Ad-hoc Networks 

Conditional max-min battery capacity routing 

Dynamic Source Routing 

Destination Sequenced Distance Vector 

Energy aware routing metric for IEE802.11s 

Elliptic Curve Cryptography 

Effective number of transmission 

Expected Transmission Energy route metric 

Expected transmission time 

Expected transmission count 

Hybrid Wireless Mesh Protocol 

Interference Aware Routing Metric 

Institution of Electrical Engineers 

Medium Access Control 

Mobile ad hoc networks 

Modulation and Coding Scheme 

Minimum Battery Cost Routing 

Modified expected transmission count 

Min-Max Battery Cost Routing 

Multi Point Relay 

Maximal residual energy path routing 

Minimum Total Power Routing 

Optimized Link State Routing Protocol  

Optimized Link State Routing Protocol daemon 

Originator Message 

Operative System 

Open Systems Interconnection 

Signal to Interference and Noise Ratio 

Signal to Noise Ratio 

Smart Phone Ad-Hoc Networks 

Sequence Number 

Transmission Control 



	   	   	   xiii	  

TTL 

VPN 

WCETT 

WMN 

 

 

Time To Live 

Virtual Private Network 

Weighted cumulative ETT 

Wireless Mesh Network 

 

 

 

 

 

 

 

 

  
  
  
  
  
  
  
  
  

 
	  

	  

	  

	  

	  

	  

	  

	  

	  

	   	  

	  

	  

	  



	   	   	   1	  

1. Introduction 

Mesh networks is today a technology with a very strong expansion. From everywhere 

arise useful usage scenarios for these type of networks such as riots, disasters and 

emergencies. In these scenarios, the lack of direct connectivity among mobile nodes 

and the network infrastructure occurs very often. In addition, the fact that, as far as 

we know, there is not an explicit standard for mesh networks incorporating handheld 

mobile devices that takes into account their specific limitations. This urges for novel 

research that studies the deployment of mobile devices in mesh networks. 

It can be predictable that in such scenarios the existence of a technology that allows 

sending a text message or making a voice call through a mobile device becomes 

very useful and translates into a direct gain for the users. 

In short, the main motivation behind this study is to improve some relevant network 

characteristics such as reliability, coverage, interoperability, performance and 

capacity of mobile mesh networks without penalizing the battery autonomy of 

terminals. The final goal is to deploy a real mesh network that enables the mobile 

devices to communicate with each other without the support of any infrastructure. 

Wireless mesh networks (WMN) have emerged to address some limitations of 

traditional wireless networks. WMNs often consist of mesh clients and mesh routers. 

Normally, the mesh routers are static and power-enabled. The mesh routers also 

form a wireless backbone for the WMNs because these routers are directly 

connected directly to the wired network. Mesh clients are mobile and try to access 

the network directly via mesh routers or forming a multi-hop mesh topology with other 

mesh nodes. Therefore, based on these characteristics, the implementation of such 

networks satisfies the requirements of mobile devices. [1] 



	   	   	   2	  

	  
Figure 1.1 - Mesh network architecture 

	  

The research of mesh networks on mobile devices is a relatively new area and brings 

questions such as: the analysis of the best routing algorithms, routing metrics,  

optimizations in terms of battery autonomy, delay and the implementation of new 

functionalities not covered by the standard [2] . 

The current contribution explores the concept of using mobile phones, which run the 

Android operating system, to create a mesh network. This type of implementation 

has different difficulties for implementing a traditional mesh network. Therefore, there 

are issues such as battery consumption, hardware limitations and the need to have 

root access to the mobile device. 

Our work was initially based on a detailed study about the state of the art on mesh 

networks, more specifically in the topics of path selection and routing metrics. 

Throughout this research, it was possible to identify previous projects concerning 

mesh networks and mobile devices, as well as perceiving that any of these projects 

deployed mesh networks at Layer 2. This particular architectural aspect is very 

appealing because it ensures lower reaction delays to network failures than other 

upper layers implementations. We have also studied  relevant routing protocols and 

mesh networks metrics. In this way, we have identified an open research issue. In 

fact, there was no available contribution in the literature, as far as we know, which 

used energy-aware metrics to control both the path selection and routing protocol 

within a mesh network formed by mobile devices. 



	   	   	   3	  

The outcome of current work aims to answer some still open research questions in 

the area of mesh networks with mobile devices, such as: 

• Are the routing protocols and metrics defined in the current available 

standards suitable for the real implementation of a mesh network with mobile 

devices, or other proposals are necessary? 

• Is it possible to implement a reliable and full-operational mesh network with 

mobile devices without compromising the delay and battery autonomy? 

Some recent proposed solutions enable the interconnection of devices in a mesh 

network configuration at Layer 2. These proposals explore new interconnection 

opportunities on mobile devices that were not possible until now, and launch new 

research challenges to be successfully addressed. Therefore, the main objective of 

the current work is the implementation of a mesh network using handheld mobile 

devices. Related to this main goal there are two other objectives, as follows: 

• Optimize the battery power management of mobile devices within a mesh. 

• Limiting the delay in the mesh configuration, diminishing the setup and the 

recovery time after a node failure. 

The current dissertation used the research method designated by the Design 

Science Research Methodology. This research method was fundamental to structure 

and plan all the necessary work to develop and evaluate a mesh network with mobile 

devices. 

Figure 1.2 visualizes the methodology process we have used during the current 

work. 

 

Figure 1.2 – Design science research methodology process model 



	   	   	   4	  

Based on the methodology shown in Figure 1.2 it is possible to detail further the main 

tasks that within each phase of that methodology we have performed, such as 

following described: 

• Problem Identification: it is performed a problem analysis regarding to mesh 

networks implementations on mobile devices. That analysis was based on 

existing solutions and the problems that that cannot be solved. 

• Define Objectives for a solution: this stage defined the work requirements, it 

also defined the evaluation criteria, which is based on a test scenario to 

evaluate the performance and viability of the mesh network. 

• Design and Development: the process of design and development is to 

implement a mesh network with mobile devices. On each iteration will be 

evaluated the feasibility of the implemented features. As the implementation 

is based on the existing standard, it is necessary to make an incremental 

implementation of various specifications.  

• Demonstration: the demonstration phase is based on functional and non- 

functional tests on the mesh network. On this phase, results will be generated  

using essentially a testbed. 

• Evaluation: the mesh network proposal is subjected to the analysis and 

evaluation, based on the results collected on the demonstration phase. On 

this phase is verified if existing problems with the development should be 

corrected in the next iteration of development process. 

• Communication: finally, the communication concerns in the writing of the 

dissertation and its final presentation and discussion. In additional, several 

scientific papers should disseminate the diverse results obtained from this 

work. 

The major contributions of the current work, in the area of mesh networks, focus on 

enhancing the delay and the battery autonomy of mobile terminals without 

compromising the global mesh performance. In this context, we intend to study and 

compare the different solutions, including the standard one, for implementing a real 

mesh network on mobile devices. Additionally, we aim to study a new energy metric 

as an important criterion to discover the more convenient paths across the mesh 

infrastructure.   



	   	   	   5	  

This current work has contributed to the research in the area of mesh networks with 

two publications: “Mesh Networks for Handheld Mobile devices”, a paper accepted 

and presented during the Conftele conference [3]; and a pending submited chapter 

[4]  “Wireless Mesh Sensor Networks with mobile devices: a comprehensive review” 

for the Handbook of Research on Advanced Wireless Sensor Network Applications, 

Protocols, and Architectures. 

The current document has the following structure:  

§ Chapter 2 presents a review of the state of the art. It is divided in 5 sections. 

The first section is about projects that use mesh networks with mobile 

devices. Next, we discuss various solutions for protocol routing and path 

selection in mesh networks to understand if these solutions are compatible 

with the operation of mobile devices. The third section studies routing metrics 

for wireless mesh networks. Given the fact that a mobile device has to take 

into account the energy consumption, the next section introduces energy-

aware routing metrics and the viability to work on mesh networks. The last 

topic discusses some relevant results obtained from two testbeds. 

§ In Chapter 3 is described the solution and implementation for implementing a 

mesh network with mobile devices. It is also shown the necessary steps to 

reach the final formula for the two proposed metrics. This chapter is divided 

into 4 sections: mesh network protocol selection, mesh networks in mobile 

devices, new energy-aware metric for IEEE802.11s and integration of new 

metrics in mobile device. 

§ Chapter 4 presents four testbeds scenarios. The first test was made with 

Open802.11s to verify if the network topologies and test 

procedures/configurations were appropriated. In a second test, two protocols 

were compared (Open802.11s and B.A.T.M.A.N-advanced) to decide which 

one is the more suitable for a WMN with mobile devices. Afterwards, it was 

build another test to verify if there is any kind of limitation of the mobile device 

when operating in a mesh network. Finally, the last real test was performed to 

study the new energy-aware metrics.  

§ Chapter 5 concludes the current contribution and points outs some relevant 

future work in the related area of the current work. 

  



	   	   	   6	  

2. Literature review 
Mesh Networks have recently become an area of great interest in the field of 

research and have contributed to major advances in the area of wireless networks. 

This chapter analysis existing projects that use mesh networks with mobile devices in 

order to understand which of the layers of the OSI model are the more appropriate 

for implementing this type of network (Section 2.1). 

In addition, existing routing protocols for mesh networks were analyzed to identify 

which ones can be more suitable to be deployed in mesh networks with mobile 

devices (Section 2.2). At a later stage, several metrics for mesh networks were 

analyzed to understand their characteristics and if they can be used to control how 

the routing paths are selected within the mesh infrastructure (Section 2.3). Because 

of the previous study, we have concluded that there are no metrics considering the 

battery status and, regarding that, it urges intensifying the research in the area of 

energy-aware routing metrics to increase the battery autonomy of mobile devices 

without penalizing too much the mesh performance (Section 2.4). Finally, a survey of 

the existing testbeds with mesh networks was made (Section 2.5). 

2.1. Mesh networks implemented with 
mobile devices 

Mesh Networks on mobile devices have been the focus of various research projects 

and feature a wide variety of proposals and solutions for each specific case study. It 

is then necessary to analyze and compare current relevant solutions, finding out the 

most interesting features to be implemented, especially in mesh scenarios with 

handheld mobile devices. 

The implementation of a mesh network in mobile devices can be done at different 

layers of the OSI model. The standard mesh solution [2] is implemented at Layer 2 

(data link layer). There are also implementations at Layer 2.5 (with additional 

software between Layers 2 and 3), Layer 3 (Network) and Layer 7 (Application). 

 

 



	   	   	   7	  

a. Open Garden 

The Open Garden [5] is an existing implementation of mesh networks and mainly 

focuses on establishing a connection among devices in situations where there is no 

coverage or network capacity. It allows routing and multihop discovery so that users 

can share their own Wifi/3G/4G connection, which operates as a model of "crowd-

source bandwidth". This solution uses the application layer to implement the mesh 

network. 

The main advantage of Open Garden is to offer a mesh network without requiring a 

root access on the mobile device. This project generated the FireChat application [6] 

which has often been referred to in the media [7] due to its extensive use in recent 

protests. 

However, Open Garden contains bugs in relation to VPN operation in the Android 

operating system [8] [9] [10] and has crashed on versions higher than 4.4. 

b. Serval Project 

The Serval Project [11] is a mobile ad-hoc network that allows mobile phones to 

communicate when cellular coverage fails and is designed to operate in diverse 

scenarios such as rural, remote and disaster. The main objective is to achieve a 

basic communication service to everyone, with a special focus in rural areas. This 

project uses both the network and application layers to implement a mesh solution. 

The Serval Project provides end-to-end privacy communication on voice calls and 

text messages using strong 256-bit Elliptic Curve Cryptography (ECC). This is one of 

the main advantages of the project, as it is a highly valued feature in communication 

systems. The ECC mechanism provides authentication and digital signature, data 

encryption and decryption, and identity management for the mesh network. 

The roadmap of the project demonstrates that this is one of the most solid mesh 

networks for mobile devices. The team also developed specific hardware that can 

communicate with devices [12], achieving a broader coverage for the network. 

c. SPAN Framework 

The Smart Phone Ad-Hoc Networks (SPAN) [13] is an open source implementation 

of a generalized Mobile Ad-Hoc Network (MANET) framework. The main objective of 

the project is to provide a framework that is able to support any routing protocol that 



	   	   	   8	  

works on a mesh network. This framework is injected into the existing Android 

network stack between OSI layers 2 and 3.  

The SPAN project began as an internal investigation based on Wireless Tether for 

Root User, further developed by the MITRE Corporation and made available as 

open-source code on a GPLv3 license in December, 2011. SPAN is also based on 

the Serval project, with the main difference being the ability to use an arbitrary 

routing protocol.  This is the opposite of what occurs in the Serval Project, which only 

uses the Better Approach To Mobile Ad-hoc Networks (B.A.T.M.A.N) routing 

protocol. 

The possibility of multihop (shared with other projects) allows telephones with cellular 

access to perform a gateway role in the mesh network, providing Internet access to 

other devices. The most notable advantages offered by SPAN are the transparent 

functioning of the superior layers in relation to the network layer and the option to 

choose an arbitrary routing algorithm. 

d. Commotion 

Commotion [14] is an open-source project that uses wireless devices to create mesh 

networks. The project was developed by the Open Technology Institute in 2011 and 

launched in March 2013. 

The main objective of Commotion is to provide an easy way to implement a mesh 

network for a wide audience through a specific software package. Commotion 

implements the mesh network at Layer 3. 

The project is based on various open-source projects. Some of these projects are the 

Optimized Link State Routing Protocol daemon  (OLSRd), which is used as the 

routing protocol for mesh network, OpenWRT, which is the operating system 

installed on routers and the Serval Project [11] that allows the use of security 

mechanisms for communication. 

The project's main focus is to create a mesh network based on access points that 

can be extended to Android mobile devices. However, the main disadvantage is that 

it relies on a “Commotion infrastructure” for the terminals to communicate between 

each other. 

 

 



	   	   	   9	  

e. Summary 

Table 2.1 - Comparison between mesh network projects with mobile devices 

presents the more important characteristics that allow us to compare the mesh 

network projects with mobile devices discussed previously.  

Table 2.1 - Comparison between mesh network projects with mobile devices 

 Implementation 
Layer Multihop Standardize

d 
Routing 
Protocol 

Open Garden Application (7) Yes No Proprietar
y 

Serval Project Network and 
Application (3,7) Yes No BATMAN 

SPAN Layer 2.5 Yes Yes Adaptable 

Commotion Network (3) Yes No OLSRd 

	  

The currently study concludes that there is no project that uses Layer 2 to implement 

the mesh network. So, none of the projects mentioned above follows the 

recommendations and specifications of IEEE 802.11s [1]. A very important reason for 

choosing Layer 2 to implement the mesh network on mobile devices is to have more 

information available from the physical and MAC layers, which can be used by the 

routing algorithm. Additionally, operating at Layer 2 has strong benefits, by reducing 

the time delay to react to unexpected problems and to converge to a new operational 

configuration, as compared with implementations at higher layers. 

In terms of routing protocols, each project chooses a different protocol. Nevertheless, 

the SPAN allows the usage of more than one routing protocol without any significant 

changes in the network configuration 

2.2. Path selection and routing protocols  
The routing protocols for mesh networks can be classified into three main categories: 

reactive (on-demand), proactive and hybrid. For the on-demand routing protocols, 

the path between a sender node and a receiver node is created only after the former 

transmitted a packet to the latter node. Conversely, in proactive protocols, each node 

maintains path information to all other nodes on its routing table before any 

transmission. Finally, the hybrid solution can support both categories described 

above. In the following text, is discussed several routing protocols for WMNs. 



	   	   	   10	  

a. AODV 

Ad-hoc On-Demand Distance Vector (AODV) [15] is a reactive-routing protocol for 

WMN. As its name indicates the algorithm is based on a distance vector protocol. 

The path discovery is done by sending a message route request (RREQ) to the 

neighbors with the destination address and the sequence number. The use of a 

destination sequence number is a mechanism to avoid loops, similar to other 

algorithms based on distance vector. The nodes that receive the message increment 

the sequence number and update their routing table. 

When the destination node receives the request message, it responds with a route 

reply (RREP) message back to the requesting node. When an intermediate node 

does not know the route that intermediate node sends a route error (RERR) 

message to the source node and the path discovery process is repeated.  

b. HWMP 

The Hybrid Wireless Mesh Protocol (HWMP) is defined in IEEE 802.11s [2] as the 

default routing protocol at the MAC layer. The HWMP protocol is based on Ad-hoc 

On Demand Distance Vector (AODV) and can be categorized as a hybrid solution 

because it supports the following modes: reactive (on-demand mode) and proactive. 

On-Demand Mode 

In On-Demand mode, a Path Request (PREQ) message is broadcasted by a Mesh 

STA (source) with information about the MAC address of destination Mesh STA. All 

PREQ messages contain a unique sequence number that is used to know the 

freshness of the PREQ on receiver. When an intermediate Mesh STA receives a 

PREQ, it creates or updates the path to the source only if the sequence number is 

higher than the previous know one or it has the same value but with a better metric. If 

the intermediary Mesh STA does not have the path to the destination, then the 

received PREQ message is forwarded to the next node until the destination Mesh 

STA is reached. When this destination node receives the PREQ, it sends a unicast 

Path Reply (PREP) message to the source Mesh STA. 



	   	   	   11	  

 

Figure 2.1 - HWMP on-demand route discovery 

Proactive Mode 

In the proactive mode, one of the nodes is selected as the root node. This node 

periodically sends PREQ messages. These PREQ messages are sent in broadcast 

to the neighbors. Each node after receiving a PREQ message sends a PREP back to 

the root. Alternatively, any node can send to the root a Route Announcement 

(RANN) message that enables the former node to build on-demand a path to the root 

node. Thus, the root gets a routing table fulfilled with all the possible paths traversing 

the mesh, forming a tree-based network topology. 

 

Figure 2.2 – HWMP proactive mode route discover 



	   	   	   12	  

c. B.A.T.M.A.N 

The B.A.T.M.A.N. [16] is a proactive routing protocol for WMN. The operating 

principle is to spread the knowledge about the best destination paths among all 

nodes. Each node receives and maintains only the information about the next hop 

towards remainder destination. Another important feature is the flooding mechanism 

based on events that prevents the occurrence of contradictory messages about the 

network topology (usually the reason for the existence of loops) and limits the 

number of messages in the network. 

Each node n broadcasts an originator message (OMG) to inform the neighboring 

nodes of its existence. OMG messages are small packets that contain information 

about the original address, the address of the node that transmits the packet, Time to 

Live (TTL) and sequence number (SQ). Neighbors resend the message to its 

neighbors to inform the existence of the node n. Each node can make a re-broadcast 

of an OMG only once, and only if it is received by the node that is currently the best 

next hop to the creator of the OMG. 

Currently the algorithm exists in two different versions: Batmand (Batman daemon) 

and Batman-advanced (Barman-adv). The difference between the two versions is 

how they are implemented, although the main operation is the same. The Batmand is 

implemented at layer 3 of the OSI model while Batman-adv works at layer 2. 

The main differences are related to the implementation in distinct layers. The 

Batman-adv only needs MAC addresses to work while Batmand requires IP 

addresses. Batman-adv emulates an Ethernet bridge, causing all nodes appear to be 

connected by a direct link; so the above layer protocols are unaware of the multihop 

network topology. 

d. DSDV 

Destination Sequenced Distance Vector (DSDV) [17] is a proactive routing protocol 

for WMN based on Bellman-Ford algorithm.  

In this protocol all the nodes keep in their routing table the next hop record and the 

number of hops required to reach the possible destinations from this node, where 

each entry is associated with a sequence number. 

The updates are transmitted periodically or immediately when significant topology 

changes are detected. The update can be done in two ways: in “full dump” the node 



	   	   	   13	  

transmits the complete routing table or “incremental update”, where the node sends 

only the new entries.  

When a node receives an update message (full dump or incremental) it compares 

the information to that saved in the routing table and considers the entry with the 

most recent sequence number as the next to be used in the current routing decision. 

If the sequence number is equal then it considered the entry with the best routing 

metric. 

Due to its architecture and operation, DSDV is suitable for networks with few 

devices, as they require regular incremental updates to their routing tables. This 

feature cause certain limitations related to battery consumption, which is a major 

drawback in networks with limited resources in terms of energy. 

e. OLSR 

The Optimized Link Sate Routing (OLSR) [18] is a proactive routing protocol for 

WMN based on classic link state routing.  

The basic operation of OLSR is the same as the classic link-state routing, although 

with some additional features. One of the differences from the classic version is the 

use of MultiPoint Relays (MPR) to forward the packets through the network. This 

feature reduces the number of transmissions required to create the network topology 

and the number of control messages to keep the network operating in a correct state. 

This protocol has two types of control messages: neighborhood and topology 

messages, called respectively Hello messages and Topology Control (TC) 

messages. The Hello message has the function of neighbor discovery and TC 

messages are used for topology dissemination. 

The OLSR protocol is especially useful for large and dense networks because the 

MRP’s technique works well in these scenarios. 

f. BABEL 

BABEL [19] is another proactive routing protocol for mesh networks that follows the 

distance-vector routing principles. It is based on DSDV [17] and the main difference 

to the classical distance-vector protocols is that is loop-free. This problem is avoided 

by using feasibility conditions and sequence numbers. 



	   	   	   14	  

For selecting the more suitable route the BABEL protocol uses historical information 

about link quality to prevent a node changing several times the routes to the 

destinations, limiting the network instability. 

In order to discover paths, each node periodically sends hello messages to its 

neighbors with a sequence number. Furthermore, "I heard you" messages (IHU) are 

also sent as replies to neighbors that previously sent hello messages. So based on 

these two messages is calculated the cost of each link connection. 

The BABEL protocol has limitations for stable and large networks because their 

operation is based on constant updates of routing tables, which causes a high 

amount of traffic. This operation may cause a huge energy consumption for devices 

and for this reason this protocol is not adequate for networks with mobile devices. 

g. DSR 

Dynamic Source Routing (DSR) [20] is a reactive protocol conceptualized for mesh 

multi-hop wireless and uses IP source routing.  The main characteristic of DSR is 

that each node stores the complete path to destination instead of the next hop (unlike 

AODV). 

As such, all the DSR messages contain the list of all necessary nodes to reach the 

destination. This protocol allows the network to be self-organized and self-configured 

without an infrastructure. 

h. Summary 

Table 2.2 summarize the main characteristics of the discussed mesh routing 

protocols.  

 

 

 

 

 

 



	   	   	   15	  

Table 2.2 - Comparison between mesh routing protocols 

 Type Routing 
Metric 

Energy 
Efficient Mobility Load 

Balancing Reliability 

HWMP Hybrid Airtime No Yes No Yes 

BATMAN Proactive Transmission 
Quality (TQ) No Yes Yes Yes 

AODV Reactive 
Hop, ETX, 

ETT or 
iAWARE 

No Yes No Yes 

OLSR Proactive Hop, ETX or 
ETT No Yes No Yes 

DSDV Proactive Hop No Yes No Yes 

BABEL Proactive Hop, ETX No Yes No Yes 

DSR Reactive Hop No Yes Yes Yes 

 

Regarding the protocol types, the HWMP is the only that can operate in either 

proactive or reactive mode. The B.A.T.M.A.N, OLSR, DSDV and BABEL are 

proactive routing protocols. The reactive algorithms are AODV and DSR.   

All analyzed protocols implement mobility and reliability features. The load balancing 

feature is only supported by DSR and B.A.T.M.A.N. 

It can be seen that none of the analyzed protocols consider the energy consumption. 

This is one of the main critical issues and concerns in in networks with limited 

resources in terms of energy and routing protocols for mesh should be aware of it. 

We will discuss this novel aspect in section 2.4. 

2.3. Metrics for mesh networks 
The study of routing protocols has been a very active area of research in mesh 

networks. In this sphere, the type of metric used is important in controlling the 

network operation. The routing metrics have diverse goals such as to optimize 

performance, maximize battery lifetime, increase throughput and minimize latency. 

 

 



	   	   	   16	  

a. Hop Count 

In Ad hoc networks, the hop count routing metric is very common due to its very 

simple implementation. 

The hop count is the simplest metric routing because it is evaluated as the number of 

necessary hops to reach the destination. For this reason, the hop count is by default 

used by many major routing protocols such as AODV, DSR, DSDV and OLSR. 

The main advantages of this metric are not only its deployment simplicity but also its 

stability, especially for networks with mobility, where it reduces the number of 

changes applied to the network when compared with other metrics. 

On the other hand, the fact that all links are managed in the same way is a 

disadvantage, as parameters such as link capacity, diversity mechanisms, link load 

and interference are not taken into account, which may result in path choices being 

made with high delays and low throughput. Consequently, the use of hop count may 

result in degraded network performance. 

 

b. Airtime Metric 

The airtime [21] is the default routing metric for mesh networks specified in the IEEE 

802.11s standard [2]. Airtime analyzes information related to the utilization of the 

channel during a transmission, for example, overhead, transmission time and frame 

error rate. It represents the amount of channel resource consumed by transmitting a 

frame over a particular link. 

The Airtime metric is given by following expression: 

𝐶! = 𝑂!" + 𝑂! +
𝐵!
𝑟 𝑥  

1
1− 𝑒!"

 ( 1 ) 

where Oca , Op and Bt are constants that representing, respectively, channel access 

overhead, protocol overhead and the number of bits in the test frame. The term r is 

the data rate in Mbps and ept  is the frame error rate. The way of measuring ept is not 

specified in 802.11s [2].  

 Figure 2.3 illustrates the two-way Airtime calculation process . 



	   	   	   17	  

 

Figure 2.3 – PREP and PREQ exchanged messages to calculate de Airtime Link metric cost [22]. 

In the first step node s broadcasts a PREQ message, next a and b re-broadcasts the 

PREQ with the metric value updated towards s. The next phase (response), t sends 

a PREP in response to PREQs. Finally, a or/and b updating the metric and forward 

the PREP towards t. 

The airtime does not define any load balancing mechanism that can lead to network 

paths through congested links. Ignorance of the existence of intra-flow interference 

can also have a negative impact on the network performance. For these reasons, 

analyzing the trend of airtime metric, one can not predict the current state and quality 

of a network link. [23] 

c. Transmission Quality (TQ) 

The TQ [24] is the routing metric used by B.A.T.M.A.N. and represents the quality of 

the path for a specific originated message. TQ as the name suggests, represents 

only the capability of sending data and not receiving. The local transmission quality 

value can not be directly calculated, because the source node does not have 

sufficient information. For this reason Receive Quality (RQ) and Echo Quality (EQ) 

need to be calculated. 

The local Transmission Quality is given by in (2). 

𝑇𝑄 =   
𝐸𝑄
𝑅𝑄 ( 2 ) 

The RQ value is calculated as the fraction of the received OGMs from a node and 

the number of expected ones. The EQ value is computed as the fraction of locally 

generated OGMs and the number of times that it receives the rebroadcasted OGM 

back from a neighbor. 



	   	   	   18	  

The Path TQ represents the total transmission quality for an entire path. When a 

node generates a OGM, the TQ value is set to 255 and after is broadcasted. The 

value is updated by neighbors with the local TQ value and rebroadcasted, until reach 

the destination node. Therefore, the total TQ is expressed in expression (3). 

𝑃𝑎𝑡ℎ𝑇𝑄 =   𝑃𝑎𝑡ℎ𝑇𝑄  ×  𝐿𝑜𝑐𝑎𝑙𝑇𝑄 ( 3 ) 

To assure that only the best bidirectional links are chosen, the TQ metric assigns a 

penalty to links that communicates in one direction but not via the other. Therefore if 

the RQ value is poor the path TQ will be affected significantly. Thus, its expression is 

given in (4). 

𝑃𝑎𝑡ℎ𝑇𝑄 =   𝑃𝑎𝑡ℎ𝑇𝑄  ×  (1− 1− 𝑅𝑄 !) ( 4 ) 

Another penalty is relative to the number of hops. This penalty is assigned in relation 

to a fixed value (TQ_HOP_PENALTY) every time that a OGM is rebroadcasted. The 

Hop penalty is applied according to equation (5). 

𝑃𝑎𝑡ℎ𝑇𝑄 =   𝑃𝑎𝑡ℎ𝑇𝑄  ×    (1− 𝑇𝑄_𝐻𝑂𝑃_𝑃𝐸𝑁𝐴𝐿𝑇𝑌) ( 5 ) 

These penalties are very important to save bandwidth, reduce delay and avoid the 

reduction of throughput caused by self-inference.  

 

d. Expected Transmission Count (ETX) 

The ETX [25], as its name indicates, is defined by the number of transmissions 

required to transmit a packet successfully through a wireless link. The total number 

of the transmissions associated to a network path is the sum of transmission through 

all the individual links of that path. 

To calculate the metric ETX associated to an individual link, each node periodically 

sends a fixed number of N probe frames in broadcast over a fixed time period T. 

Upon receiving the messages, the nodes calculate the forward delivery ratio dfwd 

(probability that the packet was successfully received at the source node) by the 

expression (6). 



	   	   	   19	  

𝑑!"# =   
𝑅!
𝑁  ( 6 ) 

Where Rf  is the number of received frames from the previous sent N frames in the 

forward direction. When the nodes receive a probe frame, they count the probe 

frames received via piggyback in message dfwd  in order to compute the reverse 

delivery ration drvs (probability that acknowledgment of the packet was successfully 

received at the source node).The ETX metric can be evaluated as shown in (7) 

𝐸𝑇𝑋 =   
1

𝑑!"#  ×  𝑑!"#
 ( 7 ) 

The main advantages of ETX are following explained. It considers packet loss ratios 

in its computation. It is an isotonic function that guarantees an efficient computation 

of paths with a low computing cost. It ensures a loop-free final result. However, the 

ETX does not consider interference or the characteristic that links may have different 

transmission rates. The ETX is not suitable for networks with high mobility because it 

takes some time to compute the necessary values (dfwd and drvs). 

 

e. Modified Expected Transmission Count (mETX) and Effective 
Number of Transmission (ENT) 

In order to overcome some disadvantages of ETX, mETX and ENT have been both 

developed with certain changes on the link variance of the transmission to make the 

ETX more robust and to consider the routing quality. [26] 

Modified ETX is evaluated in (8). 

𝑚𝐸𝑇𝑋 = 𝑒𝑥𝑝 𝜇 +
1
2𝜎

!  ( 8 ) 

Where 𝜇 represents mean packet loss ratio and 𝜎! is the variance of packet loss 

ratio. The main difference between mETX and ETX is that mETX considers probe 

losses. Based on the corrupted bit position in the probe message, the mETX metric 

computes bit error probability. 

ENT is expressed as indicated in (9). 



	   	   	   20	  

𝐸𝑁𝑇 = 𝑒𝑥𝑝 𝜇 +
1
2 𝛿𝜎

!  ( 9 ) 

  Where 𝛿 is the strictness of the loss rate requirement. ENT is very similar to mETX, 

with the difference of the parameter 𝛿, that allows an additional degree of freedom. 

Both, mETX and ENT are ETX improvements, although they still fail to address intra-

flow (nodes on the same path or flow on the same channel competing between each 

other for channel bandwidth) and inter-flow (caused by other flows that are operating 

on the same channel) interference problems in network. 

f. Expected Transmission Time (ETT) 

The ETT [27] is an improvement over the ETX routing metric described above. In 

order to overcome the main disadvantage of this metric a parameter was added that 

considers the link transmission rates. 

Thus, ETT can be expressed as show in (10). 

𝐸𝑇𝑇 =   𝐸𝑇𝑋  ×   
𝑠
𝑏!

 ( 10 ) 

Where s is the packet size and bt is the transmission rate of each individual link. 

Therefore, with these additional parameters is possible to take into account the 

average time of a link transfer regardless of whether or not the transmission is 

successful. 

However, the ETT still has the disadvantage of not fully analyzing the intra-flow and 

inter-flow interference in the network. This drawback makes it possible for this routing 

metric to choose a route that uses only one channel instead of other alternative 

routes with higher channel diversity. 

g. Weighted Cumulative ETT (WCETT) 

The WCETT [27] is an improvement over the ETT, also considering intra-flow 

interference. 

WCETT is expressed as illustrated in (11). 



	   	   	   21	  

𝑊𝐶𝐸𝑇𝑇 =    1− 𝛽   ×    𝐸𝑇𝑇!

!

!!!

+ 𝛽  × max
!  !!!!

𝑋! ( 11 ) 

Where n represents the total number of nodes, k specifies the total number of 

different channels used in path, 𝛽 is a tunable parameter with values between 0 and 

1, Xj is the sum of transmission times required for all hops on channel j  and is 

defined as shown in (12). 

𝑋! =      𝐸𝑇𝑇!
!  !"#"  !!!""#$$  !

        1 ≤ 𝑗 ≤ 𝑘 ( 12 ) 

From (11), the first parameter is the sum of each ETT link and favors the shorter and 

high quality paths. The second parameter is the sum of ETT for all links of a 

particular channel, choosing that which has a higher value. The result is, therefore, a 

higher value for paths with a large number of links operating on the same channel, 

which hence favors channels with high diversity and low intra-flow interference. 

However, there are still several problems with this metric. In fact, the WCETT metric 

only considers the number of links that operate on the same channel and its ETTs, 

but it does not take into account the location of these links. WCETT is not isotonic 

(not ensure that the order of the weights of two paths are preserved if they are 

appended or prefixed by a common third path), what makes it difficult to use in 

efficient algorithms to find minimal weight paths, such as Bellman-Ford or Dijkstra’s 

algorithm. 

h. Interference Aware Routing Metric (iAWARE) 

The iAWARE [28] appears as the first routing metric that takes into account intra-flow 

and inter-flow interference. The iAWARE uses ETT and values of Signal to Noise 

Ratio (SNR) and Signal to Interference and Noise Ratio (SINR) in order to obtain 

information about interference with its neighbors. 

The iAWARE metric is expressed by the equation shown in (13). 

𝑖𝐴𝑊𝐴𝑅𝐸 =    1− 𝛼   ×    𝑖𝐴𝑊𝐴𝑅𝐸!

!

!!!

+ 𝛼  × max
!  !!!!

𝑋! ( 13 ) 



	   	   	   22	  

where Xj is the inter-flow interference in the network, k is the total number of 

channels, n is the total number of links, 𝛼  represents the trade-off parameter 

between intra-flow and inter-flow interferences in path. 

The term iAWAREi is detailed in (14). 

𝑖𝐴𝑊𝐴𝑅𝐸! =   
𝐸𝑇𝑇!
𝐼𝑅!

 ( 14 ) 

where IRi is the interference ratio of the link I and is given by the equation shown in 

(15). 

𝐼𝑅! =   
𝑆𝐼𝑁𝑅!
𝑆𝑁𝑅!

 ( 15 ) 

The term and Xj is expressed in (16).  

𝑋! =      𝐸𝑇𝑇!
!  !"#"  !!!""#$$  !

        1 ≤ 𝑗 ≤ 𝑘 ( 16 ) 

The iAWARE metric is not isotonic and cannot be used in a link state routing 

protocol. The interference is only calculated on the receiver side and this parameter 

is ignored on the sender side. This routing metric also captures the effects of 

variation in link loss-ratio as well as the differences in transmission rate. 

The iAWARE uses the value of the ETT and IR to evaluate the metric. If the IR value 

is higher than the value of ETT, the term iAWAREi will have a lower value and 

consequently the metric will choose a path with a lower ETT but higher interference. 

So, the main disadvantage is that it gives a greater weight to the ETT compared to 

the interference link. 

 

 

 

 

 



	   	   	   23	  

i. Summary 

Table 2.3 - Comparison between mesh metrics 

 Quality-
aware 

Loss 
ratio 

Data 
rate 

Packet 
size 

Intra-
flow  

Inter-
flow  Isotonic OSI 

Layer 

Hop 
count No No No No No No Yes Network, 

Link 

Airtime Yes Yes No Yes No Yes Yes Link 

ETX Yes No No No No No Yes Network 

mETX Yes No Yes Yes No No Yes Network 

ENT Yes No Yes Yes No No Yes Network, 
Link 

ETT Yes Yes Yes Yes No No Yes Network 

WCETT Yes Yes Yes Yes Yes No No Network 

iAWARE Yes Yes Yes Yes Yes Yes No Link 
 

The metric types listed in Table 2.3 can be divided into two categories: Topology 

Based and Active Probing Based. In Topology Based category is inserted the Hop 

Count metric that is based exclusively on the network topology to make decisions. All 

the others are Active Probing Based and perform active measurements and use 

probe packets to estimate the metric values.  

The main objective of the metrics in Table 3 are to minimize the delay and to 

maximize the probability of data delivery. The only metric that allows the detection of 

intra-flow and inter-flow interference is iAWARE, however this metric not have an 

isotonic behavior.  

After analyzng the existing metrics TQ (B.A.T.M.A.N.) and Airtime (standard 

IEEE802.11s), it turns out  that none of the used metrics take into account the power 

consumption, making it a major drawback to use in sensor networks. In the next 

section is presented proposals for metrics that already take into account the energy 

consumption, but so far have not been sufficiently studied in mesh networks with 

mobile devices. 



	   	   	   24	  

2.4. Energy-aware routing metrics 
Energy consumption can be an important constraint in a network with mobile devices 

and therefore it is crucial that the routing protocol should use a metric that has this 

aspect into account. Energy-aware routing metrics can be managed at a single layer 

or using a cross-layered design. In that sense the parameters used in the metric can 

be obtained from some layers such as: Physical Layer (transmission power control), 

Data Link Layer (MAC protocol operation) and Network Layer (routing algorithm).  

The main objectives of such metrics are: minimization of overall energy consumption 

to maximize the time until a node turn off due to lack of battery. 

a. Minimum Total Power Routing (MTPR) 

The MTPR [29] was one of the first proposed metrics that consider the power 

consumption. The main objective of this metric is selecting the path with the 

minimum total transmission power. Therefore the metric calculates the total energy 

consumed over the route and makes a decision based on that value. 

If we assume a route 𝑟! = 𝑛!, 𝑛!,… , 𝑛! where 𝑛! is the source node and 𝑛! is the 

destination node, the MTPR metric is expressed by the following equation: 

𝑃(𝑟!) = 𝑇
!!!

!!!

𝑛! ,𝑛!!!  ( 17 ) 

𝑇 𝑛! , 𝑛!  represents the energy consumed for a transmission over the hop 𝑛! , 𝑛! . 

A disadvantage of this metric is that it does not take into account the battery of the 

nodes. It is expected that nodes that need to forward a lot of traffic have a shorter 

battery lifetime and do not contribute to a reliable network operation. 

b. Minimum Battery Cost Routing (MBCR) 

In order to account the battery capacity for all nodes over the network, MBCR [30] is 

based in the sum of the remaining battery capacity for the all intermediate nodes. 

Assuming that all nodes have the same battery capacity in full mode, the battery cost 

function for node 𝑛! is given by the equation shown in (18).  



	   	   	   25	  

𝑓!(𝐸!) =
1
𝐸!

 ( 18 ) 

where Ei is the residual battery capacity. 

The total battery cost Rj among the complete path p, with D nodes is expressed by 

the equation (19). 

𝑅! = 𝑓!(𝐸!)
!!∈!

 ( 19 ) 

Finally, to discover the route that minimizes the total cost among the nodes, we 

select a route p’ with the minimum battery cost, as shown in (20). 

𝑝′ = 𝑚𝑖𝑛 𝑅!   |  𝑗   ∈ 𝑃  ( 20 ) 

Where P is the full set of possible paths. 

If all nodes have the same battery cost then MBCR selects the sorter hop path. The 

main disadvantage of this metric is the fact that uses only the total path value of 

battery cost. In cases when the route selected have a large discrepancy between 

nodes, for example nodes with full-charged battery and others with a low level of 

battery energy,  this can be a strong drawback because some nodes may be turned 

off. 

In [31] the authors propose an improvement to MBCR, resulting in a battery capacity 

defined as a cost function considering the number of hops. This change is expressed 

in equation (18). 

𝑅! =
1
𝐻 𝑓!(𝐸!)

!!∈!

 ( 21 ) 

Where H is the number of hops for the path. 

This main aim of this solution is reduce the total transmission power consumption 

and balance the energy consumption among all nodes. Although, it does not yet 

consider  the individual cost of nodes. 

 



	   	   	   26	  

c. Min-Max Battery Cost Routing (MMBCR) 

MMCBR [30] is an improvement to the original MCBR to manage the nodes more 

fairly. MMCBR avoid nodes with very low remaining battery and ones with large 

battery capacity are favored to be elected to establish routes. 

The objective of this metric is for each route, select the battery cost with the 

maximum value among all nodes. Hereupon we can change the Equation (18) to 

consider that as shown in (22). 

𝑅! = 𝑚𝑎𝑥!∈!𝑓!(𝐸!) ( 22 ) 

Then, the route is selected accordingly to (23). 

𝑝′ = 𝑚𝑖𝑛 𝑅!   |  𝑗   ∈ 𝑃  ( 23 ) 

With MMCBR there is no guarantee of minimum total transmission power in all 

cases. This creates a tradeoff between the priority to an individual node and the 

overall system energy optimization. 

d. Conditional Max-Min Battery Capacity Routing (CMMBCR) 

CMMBCR [32] is a combination of two previously described protocols into on a single 

hybrid metric, MTPR and MMBCR. In the above metrics was considered a cost 

function but in this metric is used the battery capacity. A threshold parameter γ is 

used to define the minimum remaining percentage of battery capacity for each node 

that ranges between 0 and 100. 

For each node j CMMBCR finds the minimum capacity R! for all nodes in the route. 

Finally, the R! and γ value is compared. If R!   ≥   γ then MTPR is applied, else  the 

route is selected using MMBCR.  

With this hybrid metric the objectives of maximize the lifetime of each node and use 

the battery fairly are both contemplated.  

e. Maximal Residual Energy Path Routing (MREP) 

MREP [33] is a metric proposed by Chang and Tassiulas based on the remaining 

battery capacity and the necessary transmission energy. The cost of a node is 

inversely proportional to the remaining battery capacity. The main objective of this 



	   	   	   27	  

metric is to balance the energy consumption in all paths, through the choice of the 

path with maximum residual energy. 

Considering E! the residual energy at node j and e!,! the energy cost to send a packet 

from node i to node j, the authors proposed two metrics. 

The reciprocal of the residual energy d!,! for a node is expressed by equation (24). 

d!,! =
1

E! − e!,!
 ( 24 ) 

MREP using the lexicographical ordering, and compare two paths by the examination 

of the highest cost node on each path. The path with highest cost node has the 

lowest cost in lexicographical ordering.. 

Other proposals for a simpler implementation were presented by Jae-Hwan Chang 

and Tassiulas. The first modification stores and uses the largest element of the path 

for comparison and is given by (25). 

D!
(!!!) = min min max d!,!,D!

(!) ,D!
(!)  ( 25 ) 

where D!
(!) is the distance of the path from node i to the destination at step n. Other 

solution uses the Bellman-Ford equation as shown in (26). 

D!
(!!!) = min min d!,! +   D!

(!) ,D!
(!)  ( 26 ) 

The fourth proposal is based on the number of packets that can be delivered with the 

remaining energy of the nodes. This can be expressed as shown in (27). 

d!,! =
e!,!
E!

 ( 27 ) 

In [34] another expression to calculate the metric is presented as it is visualized in 

(28). 

d!,! =
e!,!
!!E!

!!

R!
!!  ( 28 ) 



	   	   	   28	  

where R! is the residual energy at node i and x!, x! and x!represent weighting non-

negative values . 

A disadvantage of this metric is the difficulty of determine the remaing energy on 

each node. This metric aims to maintain the fairness of the entire network and 

always trying to use the paths where there is a maximum value of residual energy, 

however does not take into account the power consumption. 

f. Expected Transmission Energy Route Metric (ETE) 

ETE [35] is a metric for WMSNs with the aim of improving the Airtime Link metric to 

take into account the energy consumption. This metric tries to ensure that all nodes 

have an identical energy consumption and simultaneously keeping the average 

power consumption at low values. To make this possible ETE introduce a threshold 

mechanism. When the energy of a node is below the threshold, this one does not join 

the metric calculation and does not forward packets.   

The ETE metric is expressed by the equation (29). 

𝑐′! = 𝑂!" + 𝑂! +
𝐵!
𝑟 +

𝐸!"!#
100𝐸!

!!

!!!

1
1− 𝑒!"

+

𝐸!"
𝐸!"!#

!!
!!!

𝑛!
 ( 29 ) 

where E! is the remaining energy of node i after the transmission, E!" is the energy 

consumption of node i and n! is the number of nodes along the selected path. O!", 

O!,  B!, r and e!" are constants defined for Airtime Link Metric and described above. 

The tests carried out by simulation show that the ETE has better performance in 

prolonging the lifetime of the network and maximize the throughput when compared 

with Hop Count and Airtime Metric. 

g. Energy Aware Routing Metric for IEE802.11s (EARM) 

In order to address the lack of metrics for standard 802.11s mesh networks, has 

been proposed a new metric to replace the Airtime Link [36].  

This proposal takes into account the residual energy of a node by calculating the 

total energy consumed by a node based on its state. The metric defines five states, 

IDLE: the node is idle; CCA_BUSY: at this stage the node is busy; TX: the node is 

transmitting packets; RX: the node is receiving packets and SWITCHING: the node is 

switching from a channel to another one. 



	   	   	   29	  

The residual energy R n!  for each node n! is given by (30). 

𝑅 𝑛! = 𝐸!"##$%& 𝑛! −   𝐸!"# 𝑛!  ( 30 ) 

where E!"##$%& n!  is the current energy of the node n! and E!"# n!  is the energy 

consumed by node n!. To determine the consumed energy is used the equation (31). 

𝐸!"# 𝑛! = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑛!   ×  𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑛!   ×  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ( 31 ) 

where Current n!  is the current in Ampere and depends on the current state of the 

node (IDLE, CCA_BUSY, TX, TX and SWITCHING), the Voltage n!  is the electrical 

potential in Volts and the Duration is the time interval since the last energy update in 

seconds. 

For each node n!  is calculated an energy cost C n!  expressed by the equation 

shown in (32). 

𝐶 𝑛! =
𝐸!"!# 𝑛!   
𝑅 𝑛!

 ( 32 ) 

So, the total cost for a specific route p from source node n! to destination node n!, is 

evaluated in (33). 

𝐸! = 𝐶 𝑛!
!!  ∈  !,  !!!  !!    

 ( 33 ) 

Then, the selected route l satisfies the condition shown in (34): 

𝐸! = 𝑚𝑖𝑛 𝐸! ∶ 𝑝   ∈ 𝑉  ( 34 ) 

where V is the set of all possible routes. 

The authors tested the metric by simulation and compared their behavior with the 

Airtime Link metric at the level of the throughput and battery lifetime. The proposed 

metric showed up better results for the battery lifetime, however it was slower to 

react to network changes. 

 

 

 

 



	   	   	   30	  

h. Summary 

Table 2.4 summarize the main characteristics of the discussed energy-aware routing 
metrics.  

Table 2.4 - Comparison between energy-aware metrics 

 Path 
Battery 

Node 
Battery 

Energy 
Transmission 

802.11s Metric 
Characteristics 

MTPR No No Yes No 

MBCR Yes No No No 

MMBCR Yes Yes No No 

CMMBCR Yes Yes Yes No 

MREP Yes Yes Yes No 

ETE Yes Yes No Yes 

EARM802.11s Yes Yes No Yes 

As discussed above it has been found that there are some metrics (see Table 4) that 

take into account the energy consumption, but there are some limitations still present 

and in the specific case of mesh networks there are only two proposals which have 

only been tested by simulation.  

As described in each of the energy-aware metrics discussed above there is always a 

tradeoff to manage. This tradeoff is between the energy consumption and 

delay/throughput. 

An important factor when choosing a particular metric it is the compatibility with the 

routing protocol. The  information needed to calculate the metric value depends on 

the knowledge that the protocol has about the network. The topology, dimension and 

specific characteristics of the network must always be considered in the routing 

metric choice. 

2.5. Testbeds 
There have been developed several testbeds with analysis and comparisons in mesh 

networks. In many of these tests is analyzed and compared the performance of 

different routing protocols. 



	   	   	   31	  

On [37] is made an experimental evaluation of two protocol routing solutions: HWMP 

and B.A.T.M.A.N. In both cases, the mesh network has not been implemented with 

mobile devices. The tests performed examine three characteristics of the nodes: path 

and throughput stability and recovery after a node failure. The authors chose these 

three aspects because they are quite critical in real scenarios. 

The results and conclusions show that the level of stability on path and throughput is 

better in BATMAN. However, in case of node failure, the HWMP recovers faster than 

BATAMN. The authors do not define any winner because both protocols have 

advantages and disadvantages. 

In [38] an experimental analysis is performed between the following routing 

protocols: HWMP, B.A.T.M.A.N and OLSR, using a real world testbed. The paper 

presents some disadvantages in HWMP comparatively to OLSR and B.A.T.M.A.N. 

The tests performed show that the maximum throughput of HWMP is significantly 

less than OLSR and B.A.T.M.A.N. The results also demonstrate that B.A.T.M.A.N 

had the highest value of throughput. The average round trip delay is shorter in 

HWMP due the need of discover a new route when a packet is lost. The authors 

conclude that the routing protocol defined in 802.11s standard [2] need to be refined. 

The testbeds performed so far demonstrate that the routing protocols were not 

analyzed in mesh networks with mobile devices. The analysis of mesh networks 

performance in mobile environments requires special characteristics which are not 

taken into account in these tests, such as: mobility effects, battery life management, 

low debt and hardware limitations.  



	   	   	   32	  

3. Solution and implementation 
This chapter specifies the solution proposed within the current research work. Then, 

it also explains how this solution has evolved towards its final implementation into a 

real testbed for a mesh network with mobile devices. In the beginning of each 

section, a high-level description of a specific subject is always presented and, finally, 

at the final part of that section, all the necessary steps to deploy that functionality are 

finally discussed. 

The solution proposed in the current work is based on the design and integration of a 

solution that incorporates mobile devices within a mesh networking infrastructure. 

Besides that, a new metric was also developed and implemented considering as a 

novelty some battery information (remaining energy, energy threshold, temperature, 

status and voltage) before any decision about packet forwarding through the mesh 

topology. 

The proposed solution was developed under these four following steps: 

i) Mesh network protocol selection (Section 3.1) 

ii) Mesh networks in mobile devices (Section 3.2) 

iii) New energy-aware routing metric for IEEE802.11s (Section 3.3) 

iv) Integration of a new metrics in mobile device (Section 3.4) 

The Figure 3.1 shows a typical mesh network formed by mobile devices and routers. 

 

Figure 3.1 – Mesh network topology with mobile devices and energy-aware metric. 



	   	   	   33	  

 

To save the battery energy in a fair way among all the mobile devices we advocate 

the usage of an energy-aware metric for the routing path decision. This metric could 

be particularly useful if it enables the exchange of any message between the two 

routers of Figure 3.1 through always the intermediate mobile device with the highest 

battery level. In this way, our main aim is to enhance the network lifetime. 

The first step in the development of our solution was the choice of the OSI layer to 

deploy the solution, which is described in the following section. 

3.1. Mesh network protocol selection 
First reason for choosing protocols to be tested was based on the OSI model layer 

where the protocol would work. Therefore, on a first stage, a comparative survey of 

the existing protocols and their respective functioning layers was made (Section 2.2). 

The study was carried out and it was possible to conclude that the most adequate 

projects were Open802.11s and B.A.T.M.A.N-advanced.   

Some reasons for choosing Open802.11s and B.A.T.M.A.N-advanced were: each of 

these routing protocols is implemented at Layer 2, and it is possible to implement it at 

the Linux kernel. In this way there is more information, available from the physical 

and MAC layers, which can be used by the routing algorithm. This allows more 

flexibility to extend the routing protocol and the metric to be used. Additionally, 

operating at Layer 2 has strong benefits, by reducing the time delay to react to 

unexpected problems and to take routing decisions, as compared with 

implementations at higher layers. 

In order to determine which is the most suitable routing protocol and metrics for the 

implementation of a mesh network with mobile devices, we have studied two mesh 

projects: Open802.11s and B.A.T.M.A.N-advanced, described below. 

The Open802.11s [39] [40] project is an open-source implementation of the ratified 

IEEE 802.11s wireless mesh standard. Its main objective is implementing 802.11s to 

run on any Linux device. The Open802.11s has been part of the Linux kernel since 

version 2.6.26. The 802.11s, proposes the Hybrid Wireless Mesh Protocol (HWMP) 

[41] as the default mandatory routing protocol, and Airtime Link Metric as the default 

cost metric to select the most convenient path among several nodes. 



	   	   	   34	  

Open802.11s is a stable solution and implements the mesh routing protocol at Layer 

2. It also enables greater flexibility to extend the routing algorithm and associated 

metrics, in order to improve the performance for mobile devices. 

The B.A.T.M.A.N-advanced [16] has been designed by Freifunk, a wireless 

community based in Germany. The goal of this project is to replace OLSR with 

B.A.T.M.A.N. The protocol operating principle is to spread the knowledge about the 

best destination paths among all nodes. 

B.A.T.M.A.N-advanced can be implemented on OpenWRT with the installation of a 

new kernel package. This project, proposes a proprietary routing algorithm 

(B.A.T.M.A.N) and routing cost metric (TQ - Transmission Quality). B.A.T.M.A.N-

advanced also implements the mesh routing protocol at Layer 2. 

In order to verify which of the two projects is the most suitable for integration into 

mobile nodes of a mesh, we have carried out a set of tests over a real testbed. That 

testbed was implemented with different topologies and some relevant results are 

presented and discussed for path discovery time, bootstrap time, throughput and 

recovery time after a node failure on 4.2. From the obtained results we can conclude 

that Open802.11s shows a better performance than B.A.T.M.A.N-advanced. 

3.2. Mesh networks in mobile device 
Following the choice of the mesh network protocol, the integration with the mobile 

device was made. As the initial step, after identifying the hardware requirements, we 

have made a comprehensive survey among the available mobile devices to compare 

their requirements. From this comparison, it was then selected the mobile device to 

be used in our research. We have also identified the main changes required for the 

integration of the mesh network protocol in that mobile device. These changes were 

the following ones: 

i) Configure and build a new Android Kernel 

ii) Configure and build wcn36xx driver 

iii) Root the device 

iv) Load the new Kernel and driver files into device 

v) Configure device and create/join mesh network. 

 



	   	   	   35	  

In Figure 3.2 the Android OS architecture is described, including all its four main 

layers, as follows: applications, application framework, libraries, and kernel. 

 

Figure 3.2 – Android OS architecture. [42] 

As the above figure also shows, each layer of the Android architecture is composed 

by several modules. In particular, the Linux Kernel is the layer where the entire 

system is based because it is the bottom layer of this architecture.  

In this case, this layer was the one that was repackaged and, after that, replaced. 

The main goal of this rebuilding and replacement is to allow Linux Kernel layer to be 

more flexible to manipulations. We have changed the WIFI Driver module to deploy 

new mesh parameters. 

 

 



	   	   	   36	  

To modify the WIFI driver (see Figure 3.2), the manufacturer must provide the code 

to compile and so be able to build a new version of it with some different 

functionality. In this case, the WIFI driver selected was the wcn36xx (Figure 3.3), 

because it fulfills the above requirement.  

Figure 3.3 helps to understand where in the Android architecture we can locate the 

WIFI driver wcn36xx is (i.e. Kernel layer) and its dependencies with other sub-

modules. 

 

Figure 3.3 -  Low level Android architecture 

From Figure 3.3, it is possible to find again a strong dependency between the bottom 

WIFI Driver (i.e. hardware/firmware layer) and the upper Kernel layer. It is possible to 

see that, making use of this kind of driver, there is a limitation concerning the 

hardware level, which implies that the physical interface device must have a chipset 

supporting this driver type of the Kernel layer (i.e. wcn36xx). 

It is also possible to identify the modules to be replaced in the mobile device. The 

modules wcn36xx, mac80211 and cfg80211 were replaced with new corresponding 

versions produced after a new build.  



	   	   	   37	  

Based on this limitation, we have made a study among several mobile devices to 

identify the ones that have a chipset compatible with the driver wcn36xx. Table 3.1 

shows the results of this study 

Table 3.1 – Comparison between possible devices  to implement a mesh network. 

 Nexus 4 Nexus 7 
(2013) 

Samsung 
Galaxy 
tab 3  

Samsung 
Galaxy Tab 
4 

Sony Xperia 
Z 

Chipset 
Qualcomm 
APQ8064 
Snapdragon 

Qualcomm 
Snapdragon 
S4Pro 

Marvell 
PXA986 

Marvell 
PXA1088 

Qualcomm 
APQ8064 
Snapdragon  

CPU 
Quad-core 
1.5 GHz 
Krait 

Quad-core 
1.5 GHz Krait 

Dual-core 
1.2 GHz  

Quad-core 
1.2 GHz 

Quad-core 
1.5 GHz Krait 

RAM 2 GB 2 GB 1 GB 1.5 GB 2 GB  

Memory 8/16 GB 16 GB 8/16 GB 8/16 GB 16 GB 

Driver 
Available 

Yes 
(wcn36xx) 

Yes 
(wcn36xx) 

Yes 
(mvl8787) No Yes 

(wcn36xx) 

 

This study was necessary because the mesh network is implemented at Layer 2 of 

the OSI model and this implies to change the device kernel properties, as we 

explained above. Thus, the study carried out shows that not all the devices allow the 

implementation of the mesh network at Layer 2. Among the devices that allowed a 

mesh implementation at Layer 2, as one can see in Table 3.1, the devices Nexus 4, 

Nexus 7, Samsung Galaxy tab 3 and Sony Xperia Z have a chipset driver  that can 

be recompiled.  

The device chosen for the test scenarios was the Nexus 4 due to its availability. For 

this device the wcn36xx is the mac80211 driver. This driver supports wcn3660 and 

wcn3680 chips found on Qualcomm SoC. The driver wcn36xx supports some 

features like the following ones: 

• HW rate control 
• AP mode support 
• Ad-Hoc 
• 80211s mesh 

Once selected the device, the necessary steps to integrate the protocol configuration 

were made. The configuration of this device was defined, and a new Android Kernel 

has been built. This final step consists in the replacement of the default manufacturer 



	   	   	   38	  

kernel by a new one that enables the configuration of a mesh network. The Kernel 

version used was the Android Mako 3.4 KitKat. When building a new image, the 

“load module support” was activated, to allow the driver wcn36xx to be loaded 

posteriorly. 

The next step was the configuration and build of the Wifi Driver (wcn36xx). During 

this particular procedure, it was necessary to make a portability of the Linux version 

used on driver. Linux Kernel backports were required for that. It should be noted that 

Linux Kernel backports provide drivers released on newer kernels backported for 

usage on older kernels. In the driver build configuration was necessary to enable the 

option “Enable mac80211 mesh networking (pre-802.11s) support”. 

The new build of wcn36xx also implies the build of other two modules already 

identified in Figure 3.3, inside the Kernel Space, i.e. : mac80211 and cfg80211. This 

new configuration makes it possible to create a mesh network with mobile devices. 

This configuration is further detailed in the Appendix C. 

The third step was to root the mobile device. There are several ways to root the 

mobile device. In our case, a specific software for Nexus devices (Nexus Root Tool 

Kit) was used. With this software, it is possible to root the device and load the new 

generated kernel image. Finally, with all the necessary files generated and loaded 

into the mobile phone we can then configure the device to join or create a new mesh 

network.  

With the implementation of a mesh network with mobile devices, the battery limitation 

is a hot topic and the energy management becomes crucial to enhance the battery 

lifetime of mobile nodes and hopefully the lifetime of the entire mesh. Thereby, a new 

metric proposal was studied for IEEE 802.11s networking environments. 

3.3. New energy-aware routing metric for 
IEEE802.11s 

 

After concluding that the existence of a metric type taking into consideration battery 

information it is a fundamental demand, two proposals were, following that sense, 

designed for IEEE 802.11s networking environments. One of the proposals is based 

on the device’s battery remaining energy. The other uses the battery voltage to 

calculate the metric value. Besides remaining energy and voltage, other metrics were 



	   	   	   39	  

also studied, such as current, temperature and battery status. The main aim behind 

all these metrics is the minimization of the overall energy consumption during the 

normal operation of the mesh network. This also means we aim to maximize the time 

until a mobile node turn off due to  its battery turns completely drained out.  

In order to create an energy-aware routing metrics there are several approaches and 

possible strategies. Possible approaches are: 

§ Residual Values: It consists in the use of the remaining battery or the actual 
voltage of each node as the main metrics for the routes selection process. 

§ Energy Drain Rate: This approach, as the name suggests, is based on the 
energy drain rate of the device, which represents how fast energy is being 
consumed. 

§ Expected Energy Consumption: It consists of predicting the energy 

consumption generated with transmission. 

In this case, both following proposals follows the first approach. Namely, it is based 

on energy remain and voltage values to calculate the metric. 

a) Energy level approach  

First approach is based on the remaining energy of the device. Therefore, the 

designed formula to represent energy penalty is inversely proportional to the energy 

level of the device. 

The energy penalty,  𝐸! is expressed as indicated in (35).  

𝐸! =
1
𝐸!

 ( 35 ) 

With the goal of assuring that devices do not reach a low battery level, a threshold 

level was added to the previous formula. 

𝐸! =
1

𝐸! − 𝑇!  
 ( 36 ) 

Parameter 𝑇! brings about that the expression will tend to infinite as the 𝐸! value 

comes closer to threshold value. In order for the expression not to produce an infinite 

value and a subsequently negative one, a mechanism has to be placed assuring that 

formula calculation of (36) will only be evaluated for a value of 𝐸! > 𝑇!, resulting in 

the expression indicated on (37). 



	   	   	   40	  

(𝐸! > 𝑇!   → 𝐸! =
1

𝐸! − 𝑇!  
) ( 37 ) 

With the aim of standardize the final formula and lead the value to have a higher 

significance level, maximum battery level value was added. So, the energy penalty 

final formula is is available in (38).  

(𝐸! > 𝑇!   → 𝐸! =
𝐸!"#
𝐸! − 𝑇!  

) ( 38 ) 

where 𝐸!"# is the maximum battery level in percentage (from 0 to 100), 𝐸! is the 

remaining energy in decimal values (from 0 to 1), and 𝑇! is the threshold value (from 

0 to 1). 

Energy penalty final formula obtained was subsequently added into the Airtime Link 

equation (1), because it is the used metric on Open80211s and has already been 

implemented on the mobile device. Finally the new metric 𝐶′!  is expressed as 

illustrated in (39). 

𝐶′! = 𝑂!" + 𝑂! +
𝐵!
𝑟 +

𝐸!"#
𝐸! − 𝑇!

𝑥  
1

1− 𝑒!"
 ( 39 ) 

With this addition, the Airtime Link metric also considers the battery energy level and 

the routing protocol can make decisions with this new information. The energy 

penalty parameter (38) is added using the same magnitude to the already existing 

components (channel access overhead - 𝑂!", protocol overhead - 𝑂!, number of bits 

in test frame - 𝐵!and current bit rate - 𝑟). 

During our energy-aware metric tests, other metrics were also studied, like the 

battery voltage of the mobile device. This decision was made because in spite of the 

voltage behavior of the battery mobile device is strongly correlated with its remaining 

energy, the voltage trend is different from the one shown by the battery remaining 

energy. 

b) Voltage level approach  

We have also decided to study the voltage level approach to our energy-aware 

metric. Therefore, previous formula (38) was adapted for the main component to 



	   	   	   41	  

incorporate the battery voltage value. According to this, the voltage penalty is 

described in (40). 

Therefore, previous formula (38) was adapted for the main component to become 

device voltage value. According to this, voltage penalty is described on (40). 

(𝑉 > 𝑇!   → 𝑉! =
1000
𝑉 − 𝑇!  

) ( 40 ) 

where 𝑉 is the voltage in volts and 𝑇! is the threshold value (from 0 to 5). Similarly to 

the case of remaining energy, the decreasing voltage value leads to a metric penalty, 

which makes the equation inversely proportional to 𝑉. The value of 1000 on the 

upper part of the equation plays the role of standardizing the value to the same order 

of magnitude used in the metric dependent on the battery energy. 

In order to make a correct fit between the voltage value and the remaining energy, a 

mathematical analysis has been performed to enable a fair comparison between both 

metrics.  In this sense, the formula in (40) was changed to the one shown in (41). 

(𝑉 > 𝑇!   → 𝑉! =
1000

(𝐴 + 𝐵×𝑉) − 𝑇!  
) ( 41 ) 

In (41) it is possible to observe two fitness parameters  A and B, with respectively the 

values of  -3.6458 and 1.09698. 

After obtaining the final expression for the voltage, it was then added that expression 

to the final metric formula, resulting in the equation described in (42). 

𝐶′! = 𝑂!" + 𝑂! +
𝐵!
𝑟 +

1000
(𝐴 + 𝐵×𝑉) − 𝑇!

𝑥  
1

1− 𝑒!"
 ( 42 ) 

With this addition, the Airtime Link metric considers the voltage instead of the 

remaining energy. The tests and comparison between these two metrics is available 

in section 4.4. 

 

 

 



	   	   	   42	  

c) Other metric parameters 

 In addition to the value of energy level, other battery parameters were also added. 

The final metric combined diverse information such as the battery operation, status, 

and temperature. Figure 3.4 shows the pseudo code with all the values being used to 

evaluate the energy-aware metric. 

 The pseudo code of Figure 3.4 shows the metric implementation with all the 

parameters we have previously referred. The first step in this algorithm is to verify if 

the mobile device is not charging and if this statement is false (device is charging) 

the metric return the default Airtime Link metric. Otherwise, the code verifies if the 

remain energy value is equal or less than the threshold value and if its true returns 

the maximum metric value (99999). Another verification is made in order to verify if 

the device is overheat, overvoltage, unspecific failure or the temperature is greater 

than a given value. If any of these abnormal situations occurs then the algorithm 

calculates the new metric value with a penalty. Otherwise, the algorithm returns the 

value calculated by the new metric value without any penalization. 

If(not charging) then 

 If(Er<=Th) 

  Return MAX_METRIC 

 If(overheat or overvoltage or unspecific failure) or (temperature > X)  then 

  Return 𝐶′! + Penalty 

 Else  

  Return 𝐶′! 

Else 

 Return 𝐶! 

	   Figure 3.4 – New energy-aware metric pseudo code 



	   	   	   43	  

3.4. New energy-aware routing metric 
implementation on mobile device 

After metrics design and respective formulas creation, implementation of those 

formulas was set on the mobile device with the aim of making functional tests, 

comparing both metrics and identifying possible improvements. 

First step for implementing the new metrics was analyzing the available metrics for 

mobile devices. The dumpsys, by way of example, is an android tool that runs on the 

device and dumps relevant information about the status of system services. With this 

tool is possible to dump information about the CPU, RAM, Battery, WIFI, Memory. 

For this case the used command was the “dumpsys battery”, which provides the 

following information. 

Table 2 -  Values and definitions of each parameter from battery information API. 

Parameter Value Definition 

AC powered True | False Power source 

USB powered True | False Power source 

Status 1-Unknown | 2-Charging | 3-
Discharging | 4-Not charging | 5-Full 

Status battery 
information 

Health 
1-Unknown | 2-Good | 3-Overheat | 
4-Dead | 5-Over Voltage | 6-
Unspecified Failure | 7-Cold 

Health battery 
information 

Present True | False 
Indicating whether a 
battery is present 

Level [0,100] 
Battery level as a 
percentage 

Scale [0,100] Maximum battery level 

Voltage [0,4195] (mV) Battery voltage level 

Current [-1000000,1000000] (uA) Battery current level 

Temperature [0,380] (ºC x 10) Battery temperature level 

Technology Li-ion 
Technology of the 
current battery 

	  



	   	   	   44	  

Regarding Table 2, data parameters used on metric building were: 

§ Status: It allows us to identity if the mobile device is charging or not and, if 
not, news metrics is calculated. 

§ Health: It allows us to check battery status, knowing if it has any kind of 
malfunction or it is in critical status. 

§ Level: This parameter is used on energy metrics calculation and defines 
remaining energy. 

§ Scale: Battery maximum capacity is one of the other parameters used on 
energy approach. 

§ Voltage: Voltage value is used for metrics calculation based on device 
voltage. 

§ Temperature: It allows us to perceive battery temperature and, via this data, 
to create an extra penalty in case of temperature exceed a limit value. 

Next step was metrics implementation on device as well as changing module 

mac80211 (as shown in Figure 3.3). This module contains all functions used for 

AirTime Link metrics calculation. Then, variable related to the new metrics was 

added to AirTime Link formula. Due to restrictions concerning decimal calculations at 

a Kernel Space level, it was necessary to make use of the penalty calculation on 

User Space and, then, make use of results on Kernel Space. The described tests in 

secton 4.4 shows that both metrics have been successfully implemented. 

 



	   	   	   45	  

4. Tests and Results 
This chapter presents and discusses the evaluation reults of our mesh proposal. The 

tests have been executed sequentially using a real mesh testbed. The relevant 

information extracted from a specific test was used to proceed with the next one. 

For the realization of these tests were used 4 routers TP-LINK WDR4300, 1 router 

TP-LINK WR841N and 1 mobile device Nexus 4. Their characteristics are described 

below. 

Table 3 - TP-Link TL-WDR4300 specifications 

System-On-Chip AR9344 (MIPS) 

CPU/Speed 560 MHz 

Wireless No1 SoC-integrated: Atheros AR9340 2x2 MIMO for 2.4GHz 
802.11b/g/n 

Wireless No2 separate Chip: Atheros AR9580 3x3 MIMO for 5GHz 
802.11a/n 

	  

Table 4 - TP-Link TL-WR841N specifications 

System-On-Chip AR9341 

CPU/Speed 535 MHz 

Wireless Atheros AR9341 

	  

Both devices (TL-WDR4300 e TL-WR841N) come with a proprietary firmware 

installed by default. The OpenWRT distribution used in both TP-LINKs is the Barrier 

Breaker 14.07. This version was released in 2014 and is based on the version of 

Linux Kernel 3.10 that already includes Open802.11s. 

Table 5 – Nexus 4 specifications 

Chipset Qualcomm APQ8064 Snapdragon 

CPU/Speed Quad-core 1.5 GHz Krait 

RAM 2 GB 

Battery Non-removable Li-Po 2100 mAh battery 



	   	   	   46	  

4.1. Open802.11s testbed 
The scenario of our first test was made throughout implementation of Open802.11s. 

The initial goal of this test was to understand how mesh networks work in a real 

scenario. Another goal is to verify if scenarios and their corresponding topologies are 

appropriate, allowing us – or not - to conclude about network performance. Finally, 

other objective was to confirm if implementation was made correctly. 

These tests were executed with four TP-LINK TL-WDR4300 and one TP-LINK TL-

WR841N. Each device was installed with the firmware OpenWRT, version Attitude 

Adjustment 9.12. This kernel (version 3.3) supports by default 802.11s. The mesh 

network operated in Channel 1 (2.412 GHz) with 27dBm transmission power. The 

modulation was 802.11g/n, High Throughput mode, 20MHz. The arrangement of the 

devices was random and in the same room. To perform tests, two topologies have 

been used, Line and Multi-Path, as following described. 

Line Topology 

The Line topology, shown in Figure 4.1, allows performing tests that take into 

account the number of hops and its impact in the time to discover a path between 

nodes as well as the maximum achievable throughput. 

During these tests all nodes have been in line of sight. For the definition of this 

topology, and due to the fact that HWMP is a Layer 2 protocol, it was then necessary 

to use the iw command to define the necessary topology, blocking the 

communication between some peers: 

# iw dev <mesh_interface> station set <destination_mac> plink_action block 

To measure the discovery of a node, a ping was issued between two nodes (A and 

E) and the HWMP messages have been analysed with a sniffer (Wireshark). The 

time for path discovery was the elapsed time since node A sent an ARP request 

message until node A updated the ARP table and sent the ICMP ping request to 

node E. 

 

Figure	  4.1	  -‐	  Line Topology with five routers.	  



	   	   	   47	  

The throughput tests have also been carried out with the Line topology. To generate 

traffic IPerf [43] was used, which allows TCP and UDP measurements of bandwidth 

between two nodes. For the following test scenarios was only generated TCP traffic 

Results, with the line topology, for path discovery time and throughput in relation to 

the number of hops of each path are presented in Figure 4.2. 

	  

Figure 4.2 – Discovery time and throughput vs. number of hops. 

These results were obtained from five runs of the above described tests. On one 

hand, the discovery time shows a linear-increasing trend as expected. It increases on 

average 4.2ms for each additional hop. On the other hand, the throughput shows a 

non-linear decreasing trend, starting from an initial maximum value of 6.1Mb/s (1 

hop). Results in Figure 4.2 are similar to the ones of a previous work [40] but in 

relation to the throughput, we have obtained slightly better results.  

Multi-Path Topology 

The scenario in Figure 4.3 illustrates the case when multiple paths exist between two 

nodes, e.g. A and C, with no direct communication between them. 



	   	   	   48	  

 

Figure	  4.3	  –	  Multi-Path Topology with four routers.	  

This scenario was used to measure the recovery time after a node failure. When this 

test was initiated there was a continuous ping from node A to C. During the test, the 

intermediate router, which was been used to establish the communication path, was 

disconnected. The time for the routing protocol to discover an alternative path was 

then measured, since ping fails after the router was disconnected, and it stayed  

failed until the mesh found an alternative path,  recovering in this way the ping. 

Figure 4.4 shows the messages exchanged between 4 nodes to establish an 

alternative path, when using a Multi-Path topology. Initially, when analysing the PING 

Request and PING Reply messages between the node A and C, it was verified that 

the connection was made through node D. After the node D was switched off, it was 

no longer possible to perform the PING Request. 

 

Figure 4.4 – Message diagram for detailing recovery time after a node failure. 



	   	   	   49	  

After node D failure, the nodes exchanged a set of messages to find an alternate 

path between nodes A and C. For this, a PATH Request message from node A was 

sent in Broadcast; the Node B has sent a PATH Request Message in Broadcast as 

well. The node C responded to node B with a PATH Reply. Then, node B responded 

to node A with a PATH Reply, re-establishing the connection between nodes A and 

C. Since the breaking of node D until the new path was selected, the elapsed time 

was 2.8027s. After the new path was established between nodes A and C (via node 

B), it was then possible to exchange again PING Request and Reply messages. The 

total time between the node failure and the first subsequent successful PING 

Request was 3.7997s. Results with this topology have been obtained after eight 

runs. 

On the basis of these obtainedresults , we can conclude that those are quite similar 

to the ones achieved on a previously study [40]. This shows that the implementation 

of a mesh network was successfully made. According the chosen topologies and the 

analyzed test scenarios, we can see that both could lead us to 

a conclusive analysis of the network performance. Nevertheless, the throughput 

results were not completely reliable because it was affected by the interference 

among routers. This occurred  because each router was within the range of others.  



	   	   	   50	  

4.2. Real testbed with Open802.11s and 
B.A.T.M.A.N-advanced 

After the initial verification test where we have checked that our testbed was 

operating in a correct way, we have performed a second test to compare 

Open802.11s and B.A.T.M.A.N-advanced as well as to perceive which one of these 

methods could lead to a better performance according to several aspects such as the 

time to discover a node, throughput and time to recover from a node failure.   

The hardware and software used was the same as the previous testbed. The version 

of B.A.T.M.A.N-adv was 2012.3.0 and it was obtained from OpenWRT packages 

(kmod-batman-adv). The mesh network operated in Channel 1 (2.412 GHz). The 

modulation was 802.11g/n, High Throughput mode, 20MHz. The MCS rate was fixed 

at 3 and 0with the command “iw <interface> set bitrates mcs-2.4 4“. The devices 

were placed at strategic points inside a house and the power transmission reduced 

to 0 dBm to reduce their coverage range. To compare both mesh implementations, 

two topologies have been used, Line and Multi-Path, as following explained. 

Line Topology 

 

 

Figure 4.5 – Line topology real testbed setup. 

 



	   	   	   51	  

The strategy we have used to measure the discovery time of Open802.11s was the 

same of the one explained in section 4.1.  

In the case of B.A.T.M.A.N, due the fact that it is a proactive protocol does not make 

sense measuring the time discovery of a node, but the network bootstrap time. To 

measure this time, one router was added to the existing network and calculated the 

time to discover all the remaining nodes. The throughput tests have also been 

carried out with the Line topology. To generate TCP traffic IPerf was used again. 

Throughput 

Results, with the line topology, for throughput with Open802.11s and B.A.T.M.A.N-

advanced in relation to the number of hops of each path are presented in Figure 4.6. 

 

Figure 4.6 – Throughput for Open802.11s and B.A.T.M.A.N-advanced 

These results in Figure 4.6, were obtained from five runs of the above described 

throughput test for both projects. For both projects the transmission rate for the first 

two hops was fixed at 28.9Mbs/s with MCS 3. For the last two hops (three and four) 

the MCS was reduced to 0, which corresponds to a transmission rate of 6.5Mb/s. 

The throughput test for both projects shows a non-linear decreasing trend, starting 

from an initial maximum value of 15.5Mb/s for Open802.11s and 12.2Mb/s for 

B.A.T.M.A.N. With the increasing number of nodes the results of both proposals tend 

to converge  and the minimum throughput for both projects was  745Kb/s related with 

four hops. Figure 4.6 shows slight better results for Open802.11s than B.A.T.M.A.N., 

but this advantage is only visible for a small number of hops (i.e. for one and two). 



	   	   	   52	  

HWMP Discovery Time and B.A.T.M.A.N-advanced Bootstrap Time  

Figure 4.7 shows the Open802.11s discovery time in function of the number of hops. 

 
Figure 4.7 – Open802.11s discovery time vs. number of hops. 

The discovery time for Open802.11s shows a linear-increasing trend as expected. It 

increases approximately on average 6ms for each additional hop. These results 

show that the time to find a particular node in a mesh network with Open802.11s is 

very appealing, achieving for example to discover an entire network with 5 routers in 

approximately 27ms. 

Figure 4.8 shows the B.A.T.M.A.N. bootstrap time in function of number of hops. 

 
Figure 4.8 – B.A.T.M.A.N-advanced bootstrap time vs. number of hops. 



	   	   	   53	  

B.A.T.M.A.N. is a proactive routing protocol, and for that reason the nodes discover 

the network topology by its own initiative. Figure 4.8 shows a similar trend to what 

happens with the Open802.11s node discover. It shows a linear-increasing behavior. 

The bootstrap time increases on average 3s for each additional hop. 

Analyzing the above two graphs (Figure 4.7 and Figure 4.8), it is observed that the 

bootstrap time for B.A.T.M.A.N. is superior to the discovery time for Open802.11s, 

the former in the order of seconds and the latter in order of milliseconds. However 

the bootstrap time is measured when the node turns on in the network while the 

discovery time is only calculated when the first PING request is sent to a specific 

node. 

A proactive routing protocol such as B.A.T.M.A.N. it is expected to show up a 

considerable initial bootstrap time for the entire network creation. Nevertheless, a 

value around 10 seconds for discovery a network with 5 nodes is a factor to be 

considered for networks that require low response times. 

With the knowledge of the entire network guaranteed by B.A.T.M.A.N. would be 

predictable that the PING was sent faster than in the case of Open802.11s; however 

this did not occur in our evaluation. In fact, the B.A.T.M.A.N. showed a lot of 

instability and high delay times for PING between nodes. These problems could be 

associated to the version of B.A.T.M.A.N. being tested. 

Multi-Path Topology 

 

Figure 4.9 – Multi-path topology real testbed setup. 



	   	   	   54	  

The scenario in Figure 4.9 illustrates the case when multiple paths exist between two 

nodes, e.g. A and C, with no direct communication between them. This scenario was 

used to measure the recovery time. When this test was initiated there was a 

continuous PING from node A to C. During the test, the intermediate router, which 

has been used to establish the communication path, was disconnected. The time for 

the routing protocol to discover an alternative path was then measured. This 

measurement was the time elapsed between ping failure event and it subsequent 

recover. 

Recovery Time 

Figure 4.10 shows the time to recovery in case of node failure for B.A.T.M.A.N. (red 

line) and Open802.11s (blue line). The node failure event can occur in several 

circumstances, for example: battery exhaustion, poor link quality, interferences or 

obstacles/obstructions. 

	  

Figure 4.10 – Recovery time in case of node failure for B.A.T.M.A.N. and Open802.11s. 

For this scenario both projects had the default settings. In the case of B.A.T.M.A.N-

advanced, the OGM interval (a single message that each node periodically 

generates and send in broadcast on all hard interfaces) it is one second. The 

average results for this test have been obtained after ten runs. 

As shown in Figure 4.10 the recovery time is much faster in Open802.11s, losing 

communication during only 4.31 seconds. In the case of B.A.T.M.A.N. this time is 

much higher, running out of communication for about 16.18 seconds on average. In a 

global analysis of the evaluation results, these suggest that the Open802.11s had 

advantage in all the performed tests.   



	   	   	   55	  

4.3. Real testbed with mobile device and 
routers 

After analyzing previous results (i.e. section 4.3), one can conclude  that 

Open80211s showed better results that B.A.T.M.A.N-advanced. Consequently, we 

have selected Open80211s to be implemented in the mobile device, as shown in 

chapter 3.2. The main goal of this test is to verify if there is any kind of limitation of 

the mobile device when operating on a mesh network. Another goal is to confirm if 

the implementation of the mesh network was made correctly on the mobile device. 

The hardware and software of the routers that we have used in the current scenario 

was the same as the previous testbeds. The version of Open802.11s installed on 

mobile device was the same as the one in the router. The mesh network operated in 

Channel 1 (2.412 GHz). The modulation was 802.11n, due to the limitation of WIFI 

device board (only supports 802.11n). It was also used High Throughput mode, 

20MHz. The devices were placed at strategic points inside a house and the power 

transmission reduced to 0 dBm (routers and mobile device) to reduce their coverage 

range. To compare both devices, two topologies have been used, Line and Multi-

Path. 

Line Topology 

In order to compare the performance of mobile devices and TP-Links in a Line 

Topology mesh configuration, we have performed tests for time discover and the 

maximum achievable throughput. To perform those tests, we have considered two 

scenarios, as demonstrated in Figure 4.11 and Figure 4.12. 

 

Figure 4.11 - Line topology with five routers 

 

Figure 4.12 – Line Topology with four routers and one nexus 4. 



	   	   	   56	  

Discovery Time 

Figure 4.13 shows the TP-Links and mobile device discovery time in function of 

number of hops. 

 

Figure 4.13 – Discovery time for TP-Links and mobile device 

The discovery time for both cases shows a linear-increasing trend. In Figure 4.13 it is 

clear that the behavior of both is very similar. For both devices, the line increases 

approximately on average 5.8ms for each additional hop. Both, TP-Link and mobile 

device, achieving the entire network in approximately 23ms. Therefore, based on 

Figure 4.13 we can conclude that the results are similar in spite of using the mobile 

device. 

Throughput 

The throughput tests have also been carried out with the Line topology. To generate 

TCP traffic, IPerf was used and the source node was the mobile phone.  

Figure 4.14 shows the throughput in function of number of hops for TP-Links and 

mobile device. 



	   	   	   57	  

 

Figure 4.14 - Throughput for Open802.11s and B.A.T.M.A.N-advanced	  

Figure 4.14 shows the throughput test for both tests with different devices (TP-LINKs 

and mobile device). Both results shows a non-linear decreasing trend, starting from 

an initial maximum value of 12.9Mb/s. The minimum values for throughput converge 

to the value of  950Kb/s related with four hops. Figure 4.14 shows that there is no 

limitation in terms of throughput imposed by the usage of a mobile device. 

Multi-Path Topology 

Figure 4.16 and Figure 4.15 shows the two topologies used to measure the time to 

recover only with routers vs. when using a mobile device. 

          

	   	  
Figure 4.15 - Multi-Path Topology 
with four routers and one nexus 4.	  

Figure 4.16 – Multi-path topology 
with three routers and one nexus 4. 

	  



	   	   	   58	  

 In Error! Reference source not found. the mobile phone is placed in one of the 

ends of the mesh topology because it is intended that. It makes the handover 

decision in case of node failure. 

Figure 4.17 shows the recovery time after a node failure for TP-Links and mobile 

device. 

 

Figure 4.17 - Recovery time in case of node failure for routers and mobile phone. 

Figure 4.17 shows the time to recovery in case of node failure for the topology with 4 

routers (red line) and the topology with 3 routers and the decision of handover on 

mobile device (blue line). The figure above illustrate the recovery time after a node 

failure during a communication. For this scenario both devices had the default 

settings and the results for this test have been obtained after ten runs. 

As shown in Figure 4.17 the recovery time is very similar in both tests, with an 

average of 4 seconds. In the case of mobile device the time without communication 

was 4.01 seconds, for routers the time for recover was 4.3 seconds. The 0.3 seconds 

in this case can be negligible due the scale of these values.  

After analyzing the obtained results for discovery time, throughput and time 

to recover in case of node failure items it is possible to come to the conclusion that 

the mobile device has no limitations according to all studied parameters. These 

results also show that the implementation of the mesh network on a mobile device 

has been correctly done. 

  



	   	   	   59	  

4.4. Real testbed with new energy-aware 
routing metric 

We have proceed with a new set of tests to study the behavior of some battery 

information values.  These tests also makes it possible to understand the expected 

advantages over the mesh operation for using new energy-aware metrics instead of 

the original Airtime Link metric, as discussed in section 3.3. In addition,  these tests 

give us the opportunity to make functional tests of the implemented new metrics.  

The routers hardware and software used was the same as the previous testbeds. 

The version of Open802.11s installed on mobile device was is the same of the 

router. The mesh network operated in Channel 1 (2.412 GHz). The modulation was 

802.11n. It was also used High Throughput mode, 20MHz. The devices were placed 

at strategic points inside a house and the power transmission reduced to 0dBm 

(routers and mobile device) to reduce their coverage range. In order to ensure that in 

the ideal case (without error rate) Airtime Link value is equal on both devices, 

transmission rate was set to 1 Mb/s. Fast Discharge application was used in tests, 

allowing several tasks to be executed and enabling discharge to be made constantly 

and as faster as possible. 

In this specific case, only the multi-path pathology (Figure 4.18) was used, as it 

allowed a decision-making process between two different nodes, allowing us as well 

to understand how the metrics  could affect the decision about the more convenient 

path through the mesh . 

 

Figure 4.18 - Multi-path topology with three routers and one nexus 4. 

 



	   	   	   60	  

Metrics implementation was only applied on mobile device B and, on router D (Figure 

4.18). A value of 70% of the remaining energy was also set for this test.  

In a first test, energy metrics were used to calculate the final metrics. In a second 

stage, battery voltage value was used to verify if there are advantages in using the 

voltage as a metric. 

a) Energy level approach  

Metric Value vs. Time 

 

Figure 4.19 – New energy-aware metric path selection and metric values 

In Figure 4.19 it is possible to note values obtained considering, over time, metrics 

for the mobile device and for the two routers. It is possible to identify, too, router D 

(dotted line) presenting a constant metric value, 16636, corresponding to 70% of the 

remaining battery. Metrics value for chosen path until 1.5 minutes is 16386, 

corresponding to Airtime Link value without considering energy and with a 

transmission rate set to 1 Mb/s. At minute 1.5, the mobile device ceases to charge 

and passes to a discharge battery mode. At this moment, can be verified a significant 

increase of metrics, related with energy decreasing. Over time, it is possible to 

observe that metrics value rises up, as might be expected. It is still possible to 

observe that metrics values measured on router appear with a slight delay 

concerning device measurements. This happens because router does not recalculate 

metrics value of path at the same time metrics value is obtained from device. The 

Handover occurs at 49 minutes, time value which corresponds to the moment when 



	   	   	   61	  

the mobile device battery decreases from 70% to 69%. Therefore, the mobile device 

keeps a remaining energy value lower than the one of the router. Until the end of the 

test period, metrics value for the path remains constant, as might be expected.  

New energy-aware metric vs. Energy 

 

Figure 4.20 – Metric value vs. remain energy 

Figure 4.20 shows collected data on the mobile device for the new energy-aware 

metric as a result of the remaining energy. Knowing that Airtime Link value for a 

transmission rate set to 1 Mb/s is 8913 it can be seen that, for a 99% battery value, 

new metrics gets a value of 8337, resulting in a loss of 144 according to final result. 

This value, as might be expected and as well as described in (39), is inversely 

proportional to the value of the remaining battery, increasing with the loss of energy 

percentage. It can also be noted in the previous figure that metrics values describe 

an exponentially growing range. Until approximately 55% of battery charge, curve 

growth is practically constant, increasing about 45 in metric value for each 10%. 

Metrics value tends to infinity reaching the imposed threshold value, assuring by this 

way that devices near this value are heavily penalized. Reaching threshold value (in 

this case, defined as 30%), metrics is defined as a constant value of 99999. 

 

Temperature vs. Energy 

Data was also collected from temperature values during the test. Those values are 

presented in Figure 4.21. 



	   	   	   62	  

 

Figure 4.21 – Temperature vs. remain energy  

Figure 4.21 allows us to understand temperature behavior as a result of the device 

remaining battery level. It is observable that, in the beginning of the test, temperature 

was set on 33º. This value sharply increases when the used application to discharge 

battery is opened, registering the value of 35º. Temperature values gradually rises 

until adjusting itself on 44º. Based on figure, it can be concluded that temperature 

metrics is related with device use but does not allow us to distinguish the remaining 

battery level or the battery drain rate. In addition to the temperature, they were also 

collected voltage values over the test scenario. 

Voltage vs. Energy 

 

Figure 4.22 – Voltage vs. remain energy 



	   	   	   63	  

Figure 4.22 corresponds to voltage values according to remaining energy evolution. 

Considering the above chart, we can see that there is a direct connection between 

measured voltage on device and remaining energy. As remaining energy decreases, 

Voltage values also decrease on a straight-line basis. One of the issues concerning 

usage of remaining energy is granularity, because collected data do not present 

decimal format digits. Throughout this research, it can therefore be concluded that 

voltage metrics could be replaced by remaining energy and, by that, metrics will 

obtain more granularity on produced results. Nevertheless, it is possible, too, given 

the above chart, to observe that voltage values variance has to be considered 

because there are relevant variances on collected data. 

Throughout previous charts consideration, it can be seen that metrics implementation 

was successful and the handover to the router was made at the right moment. It was 

seen, too, that temperature values could serve as a complement to the final formula 

metrics, assuring that a device delivering a high temperature suffers a penalization. 

b) Voltage level approach  

After observing metrics results considering remaining energy, it was possible to note 

that there was a straight relation with that data and the voltage. In that sense, a study 

about voltage usage instead of a remaining energy approach is relevant. The main 

aim of this test was to verify if voltage usage brings advantages due to the fact of 

making use of a granularity higher than remaining energy.  

Voltage and Energy metric vs. time 

 

Figure 4.23 – Energy and voltage metric vs. time 



	   	   	   64	  

In Figure 4.23, it is possible to observe both metrics behavior (Voltage and Energy) 

during the time of the test. In this Figure, it can be seen that, in the beginning of the 

test, voltage metrics shows a sharp behavior. This period corresponds to when the 

mobile device stopped charging and turned to a discharging status. Both curves 

behavior shows an increase. Besides that, voltage metrics exponential increase is 

clearer. 

An interesting particularity to observe through Figure 4.23 is the fact that results 

obtained for energy are “stairs shaped”, while, according to voltage, this behavior is 

not verifiable. This could be explained by the fact that the granularity of voltage 

values are much higher than those of energy. It is still observable that voltage values 

present a much higher variance than those of energy. 

New energy-aware metric vs. voltage 

 

Figure 4.24 – Voltage metric Value vs. remain energy 

Figure 4.24 shows collected data on the mobile device for the new energy-aware 

metric as a result of the voltage values. It is noted by the above figure that similar to 

what happened to the remaining energy, the metric values are inversely proportional 

to the voltage value, as described in (42). 

It can also be noted in the previous figure that metrics values describe an 

exponentially growing range. The curve behavior is very similar to that obtained in 

the energy metric, practically continuous until 3.80v. It can be seen that the voltage 

values from 3.70V have wide variations, resulting in oscillations in final metric value. 



	   	   	   65	  

Metrics value tends to infinity reaching the imposed threshold value, assuring by this 

way that devices near this value are penalized. Reaching threshold value (in this 

case, defined as 30%, corresponding to 3.597V), metrics is defined as a constant 

value of 99999. 

After analyzing both metrics (voltage and energy) during time, it can be concluded 

that the main advantage of using voltage metrics is related with a higher data 

granularity. However, an obvious disadvantage of using voltage metrics is a 

significant variance of values. In order to overcome this disadvantage it can be 

applied a smoothing iterative function to decrease the variation range, e.g. 

exponential smoothing.  

  



	   	   	   66	  

5. Conclusions 
The current work discusses important solutions and enhancements for path selection 

and routing metrics in mesh networks with mobile devices [4]. We have initially 

discussed some relevant mesh networks projects for mobile devices. Nevertheless, 

none of these implements the mesh solution at Layer 2. Then, we have analyzed 

relevant proposals related with the path selection and routing protocols for mesh 

networks. We have concluded that the analyzed protocols do not consider energy 

consumption as a relevant metric for routing. The energy management is one of the 

main critical aspects in the design and operation of mesh networks with mobile 

devices, namely to increase the network lifetime. In this way, we have decided to 

reconsider the metrics used in this type of protocols and finding solutions that take 

into account the battery energy of each mobile device. Consequently, we had two 

important objectives to achieve with our research work based on energy-aware 

metrics: mobile node battery optimization, and limiting the path recovery delay. 

A real testbed scenario with two different projects (B.A.T.M.A.N.-advanced and 

Open802.11s) was made in order to discuss the results for path discovery time, 

bootstrap time, throughput and recovery time after a node failure. In a global analysis 

of our evaluation results, these suggest that the Open802.11s had advantage in all 

the performed tests (delay and throughput) and was the chosen protocol for 

progressing with other research work.  

The main objective of our work was the implementation of a mesh network using 

handheld mobile devices and it was successfully achieved, including the mobile node 

battery optimization and the handover controlled by an energy-aware metric. Based 

on tests in the mesh network deployed with mobile devices we can conclude that the 

mobile device has no limitations according to all the studied parameters. 

In addition, as a novelty, we have successfully deployed and evaluated two energy-

aware metrics solutions in a real mesh testbed.   

For future work, we suggest a simulation work that will allow the study of the impact 

on the mesh performance of combining a set of metrics available in each mobile 

terminal to control the path selection and routing. With this type of tests, it is possible 

to evolve the metrics suggested in our work. The set of metrics in each mobile device 

can be, as an example, the following ones: current, temperature or the expected 

energy consumed.   



	   	   	   67	  

6. References 
[1] S. M. Faccin, C. Wijting, J. Kneckt, and A. Damle, “Mesh WLAN networks: 

Concept and system design,” IEEE Wirel. Commun., vol. 13, pp. 10–17, 2006. 

[2] “802.11s - IEEE Standard for Information Technology.” 2011. 

[3] R. N. M. Carlos Meralto, José Moura, “Mesh Networks for Handheld Mobile 
Devices,” in Conftele, 2015. 

[4] R. N. M. Carlos Meralto, José Moura, “Wireless Mesh Sensor Networks with 
Mobile Devices: A Comprehensive Review,” in Research on Advanced 
Wireless Sensor Network Applications, Protocols, and Architectures, IGI 
Global, 2015. 

[5] “Open Garden,” 2014. [Online]. Available: http://opengarden.com/. [Accessed: 
10-Dec-2014]. 

[6] “FireChat,” 2015. [Online]. Available: https://opengarden.com/firechat. 
[Accessed: 10-Dec-2004]. 

[7] “FireChat in Hong Kong: How an app tapped its way into the protests,” 2014. 
[Online]. Available: http://edition.cnn.com/2014/10/16/tech/mobile/tomorrow-
transformed-firechat/. [Accessed: 10-Dec-2014]. 

[8] “VPN issues on KitKat (version 4.4),” 2013. [Online]. Available: 
https://code.google.com/p/android/issues/detail?id=62714. [Accessed: 10-
Dec-2014]. 

[9] “VPNService can only provide connectivity for routes that are reachable 
without VPN,” 2013. [Online]. Available: 
https://code.google.com/p/android/issues/detail?id=62588. [Accessed: 10-
Dec-2014]. 

[10] “Android 4.4: TCP advertises incorrect MSS over VPN (using VpnService),” 
2013. [Online]. Available: 
https://code.google.com/p/android/issues/detail?id=61948. [Accessed: 10-
Dec-2014]. 

[11] “Serval Project,” 2013. [Online]. Available: http://www.servalproject.org/. 
[Accessed: 10-Dec-2014]. 

[12] “Serval Mesh Extender,” 2014. [Online]. Available: 
http://developer.servalproject.org/dokuwiki/doku.php?id=content:meshextende
r:main_page. [Accessed: 10-Dec-2014]. 

[13] “The SPAN Project,” 2014. [Online]. Available: 
https://github.com/ProjectSPAN. [Accessed: 10-Dec-2014]. 

[14] “Commotion,” 2013. [Online]. Available: https://commotionwireless.net/. 
[Accessed: 10-Dec-2014]. 

[15] C. Perkins, “[RFC 3561] Ad hoc On-Demand Distance Vector (AODV) 
Routing.” 2003. 



	   	   	   68	  

[16] “Open Mesh,” 2006. [Online]. Available: http://www.open-
mesh.org/projects/batman-adv/wiki/Doc-overview. [Accessed: 10-Dec-2014]. 

[17] C. E. Perkins and P. Bhagwat, “Highly dynamic Destination-Sequenced 
Distance-Vector routing (DSDV) for mobile computers,” ACM SIGCOMM 
Computer Communication Review, vol. 24. pp. 234–244, 1994. 

[18] P. J. T. Clausen, “[RFC 3626] Optimized Link State Routing Protocol (OLSR).” 
2003. 

[19] J. Chroboczek, “[RFC 6126] The Babel Routing Protocol,” 2011. 

[20] D. Johnson, “[RFC 4728] The Dynamic Source Routing Protocol (DSR).” 2007. 

[21] M. S. Islam, M. M. Alam, M. A. Hamid, C. S. Hong, and S. Lee, “EFT: A high 
throughput routing metric for IEEE 802.11s wireless mesh networks,” Ann. des 
Telecommun. Telecommun., vol. 65, pp. 247–262, 2010. 

[22] S. G. and L. T. Rosario G. Garroppo, “A joint experimental and simulation 
study of the IEEE 802.11s HWMP protocol and airtime link metric,” Int. J. 
Commun. Syst., 2012. 

[23] M. A. Bin Ngadi, S. Ali, A. H. Abdullah, and R. H. Khokhar, “A taxonomy of 
cross layer routing metrics for wireless mesh networks,” EURASIP Journal on 
Wireless Communications and Networking, vol. 2012. p. 177, 2012. 

[24] Linus Lüssing, “Transmission Quality,” 2011. [Online]. Available: 
http://www.open-mesh.org/projects/batman-adv/wiki/OGM. [Accessed: 20-Jul-
2015]. 

[25] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput 
path metric for multi-hop wireless routing,” in Wireless Networks, 2005, vol. 11, 
pp. 419–434. 

[26] C. E. Koksal and H. Balakrishnan, “Quality-aware routing metrics for time-
varying wireless mesh networks,” IEEE J. Sel. Areas Commun., vol. 24, pp. 
1984–1994, 2006. 

[27] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop wireless 
mesh networks,” in Proceedings of the 10th annual international conference 
on Mobile computing and networking - MobiCom ’04, 2004, pp. 114–128. 

[28] A. Subramanian, M. Buddhikot, and O. Miller, “Interference aware routing in 
multi-radio wireless mesh networks,” in 2006 2nd IEEE Workshop on Wireless 
Mesh Networks, 2006, pp. 55–63. 

[29] K. Scott and N. Bambos, “Routing and channel assignment for low power 
transmission in PCS,” Proc. ICUPC - 5th Int. Conf. Univers. Pers. Commun., 
vol. 2, 1996. 

[30] S. Singh, M. Woo, and C. S. Raghavendra, “Power-Aware Routing in Mobile 
Ad Hoc Networks,” in MOBICOM ’98, 1998, pp. 181–190. 

[31] A. S. Arezoomand and M. Pourmina, “Prolonging network operation lifetime 
with new maximum battery capacity routing in wireless mesh network,” in 2010 



	   	   	   69	  

The 2nd International Conference on Computer and Automation Engineering, 
ICCAE 2010, 2010, vol. 4, pp. 319–323. 

[32] C. K. Toh, “Maximum battery life routing to support ubiquitous mobile 
computing in wireless ad hoc networks,” IEEE Commun. Mag., vol. 39, no. 6, 
pp. 138–147, 2001. 

[33] Jae-Hwan Chang and L. Tassiulas, “Maximum lifetime routing in wireless 
sensor networks,” Networking, IEEE/ACM Trans., vol. 12, no. 4, pp. 609–619, 
2004. 

[34] J.-H. Chang and L. Tassiulas, “Energy Conserving Routing in Wireless Ad-hoc 
Networks,” in Proceedings IEEE INFOCOM 2000, The Conference on 
Computer Communications, Nineteenth Annual Joint Conference of the IEEE 
Computer and Communications Societies, Reaching the Promised Land of 
Communications, 2000, vol. 1, pp. 22–31. 

[35] Y. Jin, H. Miao, Q. Ge, and C. Zhou, “Expected transmission energy route 
metric for wireless mesh senor networks,” Int. J. Digit. Multimed. Broadcast., 
vol. 2011, 2011. 

[36] M. Zogkou, A. Sgora, and D. D. Vergados, “Energy Aware Routing in IEEE 
802 . 11s Wireless Mesh Networks,” Int. Conf. Wirel. Inf. Networks Syst., pp. 
215–220, 2013. 

[37] R. G. Garroppo, S. Giordano, and L. Tavanti, “Experimental evaluation of two 
open source solutions for wireless mesh routing at layer two,” in ISWPC 2010 
- IEEE 5th International Symposium on Wireless Pervasive Computing 2010, 
2010, pp. 232–237. 

[38] J. C. P. Wang, B. Hagelstein, and M. Abolhasan, “Experimental evaluation of 
IEEE 802.11s path selection protocols in a mesh testbed,” in 4th International 
Conference on Signal Processing and Communication Systems, 
ICSPCS’2010 - Proceedings, 2010. 

[39] “Open 802.11s.” [Online]. Available: http://open80211s.org/open80211s/. 
[Accessed: 05-Nov-2014]. 

[40] G. R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann, and 
B. Walke, “IEEE 802.11s: The WLAN Mesh Standard,” IEEE Wirel. Commun., 
vol. 17, pp. 104–111, 2010. 

[41] K. Yang, J. Ma, and Z. Miao, “Hybrid Routing Protocol for Wireless Mesh 
Network,” 2009 Int. Conf. Comput. Intell. Secur., pp. 547–551, 2009. 

[42] Http://www.eazytutz.com/android/android-architecture/, “Android OS 
Architecture,” 2015. [Online]. Available: 
http://www.eazytutz.com/android/android-architecture/. [Accessed: 10-Jun-
2015]. 

[43] “Iperf.” [Online]. Available: https://iperf.fr/. [Accessed: 10-Mar-2015].  

	  

	  



	   	   	   70	  

7. Appendix A – Open802.11s 
configuration on OpenWRT 

 

The settings used for open802.11s was the default. In this case a new interface was 

created (mesh0) wtih type “mp” (mesh point) and mesh id equal to "cmmesh". All the 

access points use the channel 1 to communicate (2.412 MHz). 

The file “/etc/rc.local” (runs at the boot time) was changed and added the following 

commands: 

iw dev wlan0 interface add mesh0 type mp mesh_id cmmesh 

iw dev mesh0 set channel 1 HT20 

ifconfig wlan0 down 

ifconfig mesh0 up 

ifconfig mesh0 192.168.10.2 

 

 

 

  



	   	   	   71	  

8. Appendix B – B.A.T.M.A.N-adv 
configuration on OpenWRT 

 

1. Install Batman Advanced module 

 $ opkg update 

            $ opkg install kmod-batman-adv 

 

2. Create a new interface “mesh” with the protocol “batadv” 

 $ vi /etc/config/network 

 config interface 'mesh' 

          option ifname 'adhoc0' 

          option mtu '1528' 

          option proto 'batadv' 

          option mesh 'bat0' 

 

3. Change settings of wireless card  

 $ vi /etc/config/wireless  

 config wifi-device  radio0 

          option type     mac80211 

          option channel  1 

          option macaddr  64:66:b3:16:48:27 

          option hwmode   11ng 

          option htmode   HT20 

          list ht_capab   LDPC 

          list ht_capab   SHORT-GI-20 

          list ht_capab   SHORT-GI-40 

          list ht_capab   TX-STBC 

          list ht_capab   RX-STBC1 

          list ht_capab   DSSS_CCK-40 

                 option disabled 0 

 config wifi-iface mesh 

          option device   radio0 

          option ifname   adhoc0 

          option network  mesh 

          option mode     adhoc 



	   	   	   72	  

          option ssid     batman-mesh 

          option encryption none 

          option bssid 02:CA:FE:CA:CA:40 

 

4. Edit Batman-adv configuration file 

 $ vi /etc/config/batman-adv 

 config mesh 'bat0' 

          option interfaces 'adhoc0' 

          option 'aggregated_ogms' 

          option 'ap_isolation' 

          option 'bonding' 

          option 'fragmentation' 

          option 'gw_bandwidth' 

          option 'gw_mode' 

          option 'gw_sel_class' 

          option 'log_level' 

          option 'orig_interval' 

          option 'vis_mode' 

          option 'bridge_loop_avoidance' 

 

5. Add the interface than the batman-adv should use to build the mesh network 

 $ batctl if add adhoc0 

 

6. Configure IP and NetMask for batman-adv interface 

 $ uci set network.bat0=interface 

 $ uci set network.bat0.ifname=bat0 

 $ uci set network.bat0.proto=static 

 $ uci set network.bat0.mtu=1500 

 $ uci set network.bat0.ipaddr=192.168.11.3 

 $ uci set network.bat0.netmask=255.255.255.0 

 $ uci set batman-adv.bat0.interfaces="adhoc0" 

 $ uci commit 

 $ reboot & exit 

  



	   	   	   73	  

9. Appendix C – Open802.11s 
configuration on Android 

	  

1. Install latest updates and reboot the system 

$ sudo apt-get update 

$ sudo apt-get dist-upgrade 

$ sudo reboot 

2. Download and install the Java 6 JDK 

$ cd ~/Downloads 

$ sudo chmod +x jdk-6u33-linux-x64.bin 

$ ./jdk-6u33-linux-x64.bin 

$ sudo mv jdk1.6.0_33 /usr/lib/jvm/jdk1.6.0_33 

$ sudo update-alternatives --install /usr/bin/javac javac 
/usr/lib/jvm/jdk1.6.0_33/bin/javac 1 

$ sudo update-alternatives --install /usr/bin/java java /usr/lib/jvm/jdk1.6.0_33/bin/java 
1 

$ sudo update-alternatives --install /usr/bin/javaws javaws 
/usr/lib/jvm/jdk1.6.0_33/bin/javaws 1 

$ sudo update-alternatives --install /usr/bin/jar jar /usr/lib/jvm/jdk1.6.0_33/bin/jar 1 

$ sudo update-alternatives --install /usr/bin/javadoc javadoc 
/usr/lib/jvm/jdk1.6.0_33/bin/javadoc 1 

$ sudo update-alternatives --config javac 

$ sudo update-alternatives --config java 

$ sudo update-alternatives --config javaws 

$ sudo update-alternatives --config jar 

$ sudo update-alternatives --config javadoc 

$ java –version 

3. Install all required packages to play with Android. 

$ sudo apt-get install git-core gnupg flex bison gperf build-essential zip curl zlib1g-

dev libc6-dev lib32ncurses5-dev ia32-libs x11proto-core-dev libx11-dev 

lib32readline5-dev lib32z-dev libgl1-mesa-dev g++-multilib mingw32 tofrodos python-

markdown libxml2-utils xsltproc 

 



	   	   	   74	  

4. Download the Kernel 

Link: https://android.googlesource.com/kernel/msm/+/android-msm-mako-3.4-kitkat-
mr0 

$ mkdir ~/android 

$ cd ~/android 

$ mkdir kernel 

$ cd ~/Downloads 

$ cp msm-android-msm-mako-3.4-<VERSION> ~/android/kernel 

$ cd ~/android/kernel 

$ tar -zxvf msm-android-msm-mako-3.4-<VERSION> 

5. Download Android arm-eabi tool chain 

$ cd ~/android 

$ mkdir tools 

$ cd tools 

$ git clone https://android.googlesource.com/platform/prebuilts/gcc/linux-
x86/arm/arm-eabi-4.6 

 

$ sudo gedit ~/.profile 

Add: export PATH=:~/android/tools/arm-eabi-4.6/bin:$PATH 

$ source ~/.profile 

$ echo $PATH 

 

$ export ARCH=arm 

$ export CROSS_COMPILE=arm-eabi- 

6. Build the Kernel 

$ cd ~/android/kernel 

$ make mako_defconfig  

$ make menuconfig  

 

In confguration menu follow this steps: 

i. Enable option “Enable loadable module support” (using space key) 

ii. Open “Enable loadable module support” menu using <Select> 

iii. Enable option “Module unloading” 

iv. Back to main menu 

v. Open “Networking support” menu 



	   	   	   75	  

vi. Open sub menu “Wireless” 

vii. Disable option “cfg80211 - wireless configuration API” 

viii. Back to the main menu 

ix. Open menu “Device Drivers” 

x. Open sub menu “Staging drivers” 

xi. Disable option “Qualcomm Atheros Prima WLAN module” 

xii. Close and save the configuration menu 

 

Finnaly make the zimage: 

$ make zImage  

7. Build Backports driver  

Download backport 3.16.2-1: http://drvbp1.linux-foundation.org/~mcgrof/rel-
html/backports/ 

 

$ mkdir ~/android/driver 

$ cd ~/Downloads 

$ tar -xf backport-3.16.2-1.tar.xz 

$ mv backport-3.16.2-1 ~/android/driver/ 

$ cd ~/android/driver/backport-3.16.2-1 

$ make defconfig-wcn36xx  

$ make menuconfig  

And enable “Enable mac80211 mesh networking (pre-802.11s) support” 

 

Comment “clk_disable” and “clk_enable”. Edit and Exit 

$ gedit backport-3.16.2-1/compat/compat-3.6.c 

//EXPORT_SYMBOL_GPL(clk_disable);  

//EXPORT_SYMBOL_GPL(clk_enable); 

 

$ make KLIB=~/android/kernel KLIB_BUILD=~/android/kernel 

8. Build wcn36xx_msm driver 

Link: https://github.com/KrasnikovEugene/wcn36xx 

$ mv wcn36xx-master ~/android/driver  

$ cd ~/android/driver/wcn36xx-master/wcn36xx_msm 

$ make KLIB=~/android/kernel KLIB_BUILD=~/android/kernel 

 



	   	   	   76	  

9. Root Device (Nexus 4) 

To root the device (Nexus 4) was used Nexus Root Toolkit. 

Download Link: http://www.wugfresh.com/nrt/ 

Follow this video: https://www.youtube.com/watch?v=K25n7i6zgb0 

10. Install Android SDK 

Original Tutorial Link: https://androidonlinux.wordpress.com/2013/05/12/setting-up-
adb-on-linux/ 

Download SDK: http://developer.android.com/sdk/index.html 

 

$ cd ~/Downloads/android-sdk-linux/tools 

$ ./android 

Select “Android SDK Tools” and “Android SDK Platform-tools” and install the two 
packages 

$ gedit ~/.bashrc 

export PATH=${PATH}:~/Downloads/android-sdk-linux/tools      

export PATH=${PATH}:~/Downloads/android-sdk-linux/platform-tools 

$ sudo reboot 

11. SetUp ADB 

$ sudo gedit /etc/udev/rules.d/51-android.rules 

#x-x-x-x-x-x 

SUBSYSTEM=="usb", ATTR{idVendor}=="xxxx", ATTR{idProduct}=="xxxx", 

MODE="0666", GROUP="adbandy" 

$ android update adb 

$ cd ~/Downloads/android-sdk-linux/platform-tools/ 

$ ./adb kill-server 

$ sudo ./adb start-server 

 

Next, Open “Home” Directory and configure it to show hidden files and folders by 
pressing Ctrl + H. A bunch of Files and Folders will show up. Find the .android folder 
and open it. In there, you will find a file called adb_usb.ini, open it and add this line: 

0xxxxx  

Replace the red Xs with your Vendor ID and save the file 

$ cd ~/Downloads/android-sdk-linux/platform-tools/ 

$ sudo service udev restart 

$ ./adb kill-server 

$ sudo ./adb start-server 



	   	   	   77	  

$ ./adb devices 

12. Get old boot.img from Nexus 4  
Original Tutorial: http://forum.xda-developers.com/showthread.php?t=2131953 

 

$ adb shell 

$shell@mako: su 

$root@mako: dd if=/dev/block/mmcblk0p6 of=/sdcard/boot.from_n4.img   

$root@mako: exit 

$shell@mako: exit 

$ cd ~/android/ 

$ mkdir nexus 

$cd nexus 

$ adb pull /sdcard/boot.from_n4.img 

 

13. Create new boot.img with ABOOTIMG 

Link: http://www.ubuntuupdates.org/package/core/precise/universe/base/abootimg 

 

$ cp boot.from_n4.img myboot.img 

$ abootimg -u myboot.img -k ~/android/kernel/arch/arm/boot/zImage 

$ adb boot myboot.img  

 

$ adb shell 

$shell@mako: cd sdcard 

$shell@mako: mkdir mesh_driver 

$shell@mako: exit 

14. Copy the new boot.img to device 

To copy the new boot.img to device (Nexus 4) was used Nexus Root Toolkit. 

Follow this video: https://www.youtube.com/watch?v=bHktiqjXbDk 

15. Move drivers to Nexus 4  
Drivers location: 

backports-3.16.2-1/compat/compat.ko 

backports-3.16.2-1/net/wireless/cfg80211.ko  

backports-3.16.2-1/net/mac80211/mac80211.ko  

backports-3.16.2-1/drivers/net/wireless/ath/wcn36xx/wcn36xx.ko 

wcn36xx-master/wcn36xx_msm/wcn36xx_msm.ko 



	   	   	   78	  

 

Use ADB to push the drivers to device: 

$ adb push compat.ko sdcard/mesh_driver 

$ adb push cfg80211.ko sdcard/mesh_driver 

$ adb push mac80211.ko sdcard/mesh_driver 

$ adb push wcn36xx.ko sdcard/mesh_driver 

$ adb push wcn36xx_msm.ko sdcard/mesh_driver 

16. Install IW 

Download IW compiled for Android -> www.onlyxool.net/wp-
content/uploads/2012/06/iw.tar.gz 

 

$ adb push ~/Downloads/iw  /sdcard/    

$ adb shell 

$shell@mako: su 

$root@mako: cp sdcard/iw data/local/tmp 

$root@mako: chmod 755 data/local/tmp/iw 

$root@mako: mount -o rw,remount /system 

$root@mako: cp data/local/tmp/iw /system/bin 

$root@mako: mount -o ro,remount /system 

17. Install IPERF 
Download Iperf compiled for Android -> http://sourceforge.net/p/iperf/patches/23/ 

 

$ adb push ~/Downloads/iperf  /sdcard/    

$ adb shell 

$shell@mako: su 

$root@mako: cp sdcard/iperf data/local/tmp 

$root@mako: chmod 755 data/local/tmp/iperf 

$root@mako: mount -o rw,remount /system 

$root@mako: cp data/local/tmp/iperf /system/bin 

$root@mako: mount -o ro,remount /system 

18. Create a script to load drivers and setup the mesh network 
#!/bin/bash 

lsmod /sdcard/mesh_driver/compat.ko 

lsmod /sdcard/mesh_driver/cfg80211.ko 

lsmod /sdcard/mesh_driver/mac80211.ko 

lsmod /sdcard/mesh_driver/wcn36xx.ko 



	   	   	   79	  

lsmod /sdcard/mesh_driver/wcn36xx_msm.ko 

 

iw dev wlan0 interface add mesh0 type mp mesh_id cmmesh 

iw dev mesh0 set channel 1 

ifconfig wlan0 down 

ifconfig mesh0 up 

ifconfig mesh0 192.168.10.6 

iw dev mesh0 set power fixed 0 

 

 

 

 

 

  



	   	   	   80	  

10. Appendix D – New Artime Link 
Metric with energy consideration 

	  

1. Disable USB charging 

$ adb shell 

$shell@mako: su 

$root@mako: echo 0 > /sys/class/power_supply/usb/device/charge 

	  

2. Install Fast Discharge App 

Download Link: www.apk20.com/apk/192596/start 

$ cd ~/Downloads/ 

$ adb install jp.gr.java_conf.taketake.KyusokuHouden.apk 

3. Change Airtime Link Metric calculation 

For change the Airtime Link metric calculation: 

$ vi backport-3.16.2-1/net/mac80211/mesh_hwmp.c 

 

4. Re-build kernel modules 

$ cd ~/android/driver/backport-3.16.2-1 

$ make defconfig-wcn36xx  

$ make menuconfig (enable “Enable mac80211 mesh networking (pre-802.11s) 
support”) 

$ make KLIB=~/android/kernel KLIB_BUILD=~/android/kernel 

 


