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Resumo

O objetivo desta tese é gerar um tributo a um filme sob a forma de videoclip, con-
siderando como entrada um filme e um segmento musical coerente. Um tributo é con-
siderado um vídeo que contém os clips mais significativos de um filme, reproduzidos
sequencialmente, enquanto uma música toca. Nesta proposta, os clips a constar do trib-
uto final são o resultado da sumarização das legendas do filme com um algoritmo de
sumarização genérico. É importante que o artefacto seja coerente e fluido, pelo que há a
necessidade de haver um equilíbrio entre a seleção de conteúdo importante e a seleção
de conteúdo que esteja em harmonia com a música. Para tal, os clips são filtrados de
forma a garantir que apenas aqueles que contêm a mesma emoção da música aparecem
no vídeo final. Tal é feito através da extração de vetores de características áudio rela-
cionadas com emoções das cenas às quais os clips pertencem e da música, e, de seguida,
da sua comparação por meio do cálculo de uma medida de distância. Por fim, os clips
filtrados preenchem a música cronologicamente. Os resultados foram positivos: em
média, os tributos produzidos obtiveram 7 pontos, numa escala de 0 a 10, em critérios
como seleção de conteúdo e coerência emocional, fruto de avaliação humana.

Palavras-chave: Artefato Multimédia, Videoclip, Seleção de Conteúdo, Summa-
rização de Texto, Coerência, Análise de Emoções.
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Abstract

This thesis’ purpose is to generate a movie tribute in the form of a videoclip for
a given movie and music. A tribute is considered to be a video containing meaningful
clips from the movie playing along with a cohesive music piece. In this work, we collect
the clips by summarizing the movie subtitles with a generic summarization algorithm.
It is important that the artifact is coherent and fluid, hence there is the need to balance
between the selection of important content and the selection of content that is in har-
mony with the music. To achieve so, clips are filtered so as to ensure that only those that
contain the same emotion as the music are chosen to appear in the final video. This is
made by extracting vectors of emotion-related audio features from the scenes they be-
long to and from the music, and then comparing them with a distance measure. Finally,
filtered clips fill the music length in a chronological order. Results were positive: on
average, the produced tributes obtained scores of 7, on a scale from 0 to 10, on content
selection, and emotional coherence criteria, from human evaluation.

Keywords: Multimedia Artifact, Videoclip, Content Selection, Text Summariza-
tion, Coherence, Emotion Analysis.
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Chapter 1

Introduction

This thesis focuses on the automatic generation of movie tributes. The intended output

artifact consists of a short music video containing important parts of the movie playing

along with the specified song. The length of the video corresponds to the song’s. The

purpose of a movie tribute consists of reliving emotions from the movie in a quick, and

effective way. There are videos of this kind on YouTube, made manually by people who

long to gather their most meaningful scenes so as to later remember a movie that they

have seen and enjoyed very much.

The developed method has, as main concerns, content selection and coherence as-

pects.

It is essential to extract important content in order to generate a video that raises

the viewer’s interest, and to consider that the sequence of segments that composes a

video artifact should correspond to parts that make-up a narrative following some in-

tent (Branigan, 1992). If we want to collect the most important parts of the movie,

we can consider the movie script, for instance, which offers us the narrative structure

that the movie follows. Despite less informative, we can consider the subtitles as well.

The summarization of these text sources can provide us a way to find the most impor-

tant clips, through the timestamps of the output sentences a generic text summarization

algorithm would provide.
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Chapter 1. Introduction

Scripts typically include additional information in comparison with subtitles: apart

from dialog, they include scenes descriptions and characters behavior. In fact, summa-

rization of film scripts leads to better results than subtitles, however, their difference is

not significant (Aparício et al., 2015).

Coherence is another important aspect to be considered when producing videos. If

we want to ensure that we obtain a coherent video, the clips selected from the film

should have a common ground. To achieve so, we can start by to considering using a

centrality-based text summarization algorithm, that secures less diversity in its output.

Furthermore, we can try filtering the selected clips to get only the ones that have specific

emotions. For that purpose, we can consider the input music. In fact, music is known

to have a profound effect on humans’ emotions (Picard, 1997) and, for this reason, it

is often used along with stories in order to emphasize their emotive content. So, if we

compare the emotions transmitted by the music with the ones transmitted by each clip,

we can choose only the clips which are more emotionally similar to the music to be

presented in the final video. That can be performed extracting emotion-related features

from the segments audio stream and the music, represent them as vectors, and compare

them using a similarity measure.

1.1 Contributions

Two papers were produced and submitted to the arXiv, a repository of e-prints (elec-

tronic preprints) of scientific papers, which can be accessed online.

The first one is called “Summarization of Films and Documentaries Based on Subti-

tles and Scripts”. Here we assess the performance of generic summarization algorithms

when applied to subtitles and scripts, for films and documentaries. The performance of

extractive summarization methods has been assessed in detail for news documents, for

this reason we use the well–known behavior of news articles summarization as refer-

ence. We use three different datasets, the first composed of news, the second of fictional

films subtitles and scripts, and the last one of non-fictional documentaries subtitles. The

2



Chapter 1. Introduction

evaluation is carried out with the standard ROUGE metrics, comparing human refer-

ences, plot summaries, and synopses, against system-generated summaries.

Second, we produced a worked entitled “Generation of Multimedia Artifacts: An

Extractive Summarization-based Approach”, where we explore methods for content se-

lection and address the issue of coherence in the context of the generation of multimedia

artifacts. We use audio and video to present two case studies: generation of film trib-

utes, and lecture-driven science talks. For content selection, we use centrality-based

and diversity-based summarization, along with topic analysis. To establish coherence,

we use the emotional content of music, for film tributes, and ensure topic similarity

between lectures and documentaries, for science talks.

1.2 Demonstrations

Five tributes were generated, and presented in the 5th Lisbon Machine Learning School

2015 (on Demo Day), and in the “Noite Europeia dos Investigadores 2014 - 2015”, on

the National Museum of Natural History and Science, in Lisbon. The presented tribute

were the following:

• “Atonement” (2007), with “La Plage”, by Yann Tiersen;

• “300" (2006), with “To the Edge”, by Lacuna Coil;

• “Furious Seven” (2015), with “See You Again”, by Wiz Khalifa;

• “The Curious Case of Benjamin Button” (2008), with “The Last Goodbye”, by

Billy Boyd;

• “Interstellar” (2014), with “Conspiracy Agent”, by Savant.

1.3 Thesis Structure

This thesis is organized as follows:

3



Chapter 1. Introduction

• Chapter 2 presents related work for multimedia artifacts, including content selec-

tion and coherence concerns;

• Chapter 3 presents an overview of generic summarization algorithms, describing

LexRank and Support Sets on (centrality-based); Maximal Marginal Relevance

(MMR) and Graph Random-walk with Absorbing StateS that HOPs among PEaks

for Ranking (GRASSHOPPER) (diversity-based) and Latent Semantic Analysis

(LSA);

• Chapter 4 presents an overview of Music Emotion Recognition (MER), including

emotion description and music features used to identify emotions;

• Chapter 5 presents our proposed solution, including data processing, content se-

lection, emotional coherence addressing and post-production concerns;

• Chapter 6 presents the dataset used in our experiments, our results and discussion;

• Chapter 7 presents our conclusions, contributions and directions for future re-

search.

4
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Generation of Multimedia Artifacts

Automatic video generation has been explored in a wide variety of areas, including fil-

mography (Brachmann et al., 2007), conference video proceedings (Amir et al., 2004),

sports (Mendi et al., 2013), music (HUA et al., 2004), and matter-of-opinion documen-

taries (Bocconi et al., 2008). Specifically, the generation of multimedia artifacts has

gained focus recently, as demonstrated by the emergence of techniques that try to create

video summaries (Ding et al., 2012; Evangelopoulos et al., 2013; Ma et al., 2002a; Ding

et al., 2012; Evangelopoulos et al., 2013; Irie et al., 2010), as well as techniques that use

music as a means to produce videos (Nakano et al., 2011; HUA et al., 2004; Wu et al.,

2012; Wang et al., 2012).

In this work, we need to assess content selection and coherence aspects, in order

to create a movie tribute. In the following sections, we present some previous work

concerning those matters.

2.1 Content Selection

Many approaches have used text to help determine important content (Ding et al., 2012;

Evangelopoulos et al., 2013; Ma et al., 2002a). These are described in the following

subsections.

5



Chapter 2. Generation of Multimedia Artifacts

2.1.1 Ding et al. (2012)

Ding et al. (2012) proposes the fusion of text, audio, and visual features, for multimedia

summarization. This method includes extracting visual concept features and automatic

speech recognition (ASR) transcription features from a given video, and developing a

Template-Based Natural Language Generation System to produce a paragraph of natural

language which summarizes the important information in a video belonging to a certain

topic area, and provides explanations for why a video was matched, and retrieved based

on the extracted features.

Visual concept features consist of 346 Motion Scale-Invariant Feature Transform

(MOSIFT) (Chen and Hauptmann, 2009) and Coloured Scale-Invariant Feature Trans-

form (CSIFT) features (Chen et al., 2013) that describe keyframes, originated by Sup-

port Vector Machine (SVM) classifiers trained over the Semantic Indexing (SIN) task

in Text REtrieval Conference Video Retrieval Evaluation (TRECVID) 2011 Multimedia

Event Detection (MED) (NIST, 2011). To determine the video-level semantic indexing,

the average of the keyframe-level SIN is taken for all keyframes. This method includes

the ranking of the detected visual concepts, in order to mention the most important ones

in the recounting. It is then followed by the removal of less discriminative visual con-

cepts, and re-ranking of the remaining visual concepts. Finally, the ground truth for

each event is determined manually. Words spoken in a video are extracted using ASR

and more weight is put on words which are semantically related to the description of the

detected event, using the integration of WordNet (Miller, 1995) and Wikipedia (Kolb,

2009). Higher weights are assigned to unique words (words occurring more frequently

in a particular event), determined based on the given positive samples in the develop-

ment data. This system receives the features extracted from the video and triggers sev-

eral Natural Language Generation (NLG) modules to generate text using pre-defined,

static templates. The first module generates a general sentence about the topic the given

video belongs to. The visual concept module generates several sentences about the ob-

jects and scenes observed in the video and re-ranks them. The top 5% visual concepts

are picked, then compared with the topic signatures. The top visual concepts in the

6
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event’s signature are used in one to three recounting sentences; the last 50 visual con-

cepts in the event’s signature list are used in one to two recounting sentences. Some

templates are generated to express the ranked ASR Transcription list in natural lan-

guage. The “activity” module implements a grammar-based algorithm, which attempts

to generate more relevant and complex sentences than the baseline visual concept mod-

ule from frequently observed combinations of visual concepts.

2.1.2 Evangelopoulos et al. (2013)

Evangelopoulos et al. (2013) summarize movies using their subtitles (text), along with

information from the audio and visual streams, integrating cues from these sources in

a multi-modal saliency curve, using frame-level fusion (Equation 2.1, where m is the

frame index).

Savt[m] = fusion(Sa, Sv, St,m) (2.1)

Auditory saliency (Sa) is determined by cues that compute multi-frequency wave-

form modulations; visual saliency (Sv) is calculated using intensity, color, and orienta-

tion values; and, textual saliency (St) is obtained through Part-Of-Speech (POS) tagging

based on decision trees (Schmid, 1994), applied to the subtitles. A skimming percent-

age is predefined to create the final summary. First, it is created an attention curve using

median filtering on the initial audio-visual-text (AVT) saliency. A saliency threshold

Tc is selected so that only a c percentage of summarization is achieved: only frames

m with saliency value Savt[m] > Tc are chosen to be included in the summary. This

results in a video frame indicator function Ic that equals 1, Ic[m], if frame m is selected

for the summary, and 0, otherwise. Ic is then processed to form adjacent blocks of video

segments, which involves eliminating small duration, isolated, segments and merging

contiguous blocks of segments into one. Finally, the selected clips are joined using

fade-in/fade-out for both the audio and visual streams.

7
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2.1.3 Ma et al. (2002a)

Ma et al. (2002a) presents a method that models the user’s attention in order to cre-

ate video summaries. For a given video sequence, information is extracted from three

channels: visual (object and camera motion, color, texture, shapes, and text regions),

audio (speech, music, and various special sounds) and textual (obtained from closed

caption, ASR, and superimposed text) to form three attention models. A linear combi-

nation is used to merge them (Equation 2.2, where wv, wa and wl are the weights of the

linear combination, Mv, Ma and Mt are normalized visual, audio, and textual attention

models, respectively).

A = wv · M̄v + wa · M̄a + wl · M̄t (2.2)

The resulting user attention curve is composed of a time series of the attention values

associated with each frame in a video sequence. Based on the resulting curve, both key-

frames and video skims are extracted, originating a straightforward shot-based approach

to skim generation: once a skim ratio is given, skim segments are selected around each

keyframe according to the skim ratio within a shot.

The number of needed keyframes in a shot and the dynamic skims are determined

by the number of wave crests on attention curve, after smoothing and normalizing. A

derivative curve is computed to discover crest peaks. The attention value of a keyframe

is used as the importance measure of the keyframe, with which keyframes are ranked.

For shot-based extraction, keyframes between two shot boundaries are used as represen-

tative frames of a shot. Its importance indicator is the maximum attention value of the

keyframes in it. In case a shot presents no crest, the key-frame is considered the middle

frame, and its importance value is zero. If only one keyframe is required for each shot,

the keyframe with the maximum attention is selected; if the total number of keyframes

allowed is less than the number of shots in a video, shots with lower importance values

are ignored.

8



Chapter 2. Generation of Multimedia Artifacts

In order to avoid the interruption of speech within a sentence in an audio track,

sentence boundary is done through an adaptive background sound level detection, in-

volving the following steps: (1) Adaptive background sound level detection (used to

set threshold for pause detection); (2) Pause and non-pause frame identification (using

energy and zero-crossing-rate information); (3) Result smoothing based on the mini-

mum pause length and the minimum speech length; (4) Sentence boundary detection

(determined by longer pause duration).

2.2 Coherence

Coherence is an important aspect to be considering when producing videos. For in-

stance, Irie et al. (2010) proposes a method that intends to generate a coherent movie

trailer and tries to do so, re-ordering the set of the most emotional film segments. Ini-

tially, movies scenes are segmented into clips and each one is represented by a histogram

of quantified audio-visual features related to emotions, such as color, image brightness,

and motion intensity (Irie et al., 2009). Emotions are assigned to each clip considering

its topics, retrieved with Latent Dirichlet Allocation (LDA) (Landauer et al., 1998) and

a conditional probability table (CPT) containing emotional transition weights (Plutchik

and Kellerman, 2013). Clips that represent emotions are extracted using a clustering

method, named affinity propagation (AP) (Frey and Dueck, 2007), considering the

Jensen-Shannon divergence (Melville et al., 2005) as the similarity function. Apart

from that, it is considered that clips are similar if they are chronologically close. Each

clip’s duration is reduced proportionally to the trailer’s. In order to optimize the reorder-

ing of the selected clips, it is used a method that estimates the affective impact (AI) of

a clips sequence, based on a framework that calculates surprise, named Bayesian Sur-

prise (BS), which determines the surprise induced in viewers when observing visual

information (Itti and Baldi, 2006). Then, all shots are compared with each other, after

calculating each shot emotional impact, so that emotionally similar shots are presented

one after another.

9
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2.2.1 Addressing Coherence Using Music

Music data has been explored as a mechanism to provide coherence in previous works

(HUA et al., 2004; Wu et al., 2012). They are described in the following subsections.

2.2.1.1 HUA et al. (2004)

HUA et al. (2004) produces a short film to represent a song from personal home videos,

based on repetitive visual and aural patterns of short films. Their system automatically

extracts temporal structures of the video and music, as well as repetitive patterns in

the music, and tries to match important segments from the raw home video footage

accordingly.

First, the raw home video is segmented into shots, according to color similarities or

time-stamp. Then, an attention measure (importance) is attributed to each shot, the re-

sult of the average attention index of each video frame (Ma et al., 2002b). This value is

related to object motion, camera motion, color, and speech in the video. Type and speed

of camera motion, motion intensity, and color entropy (information) are also retrieved

using the results of the above analysis. Onset series are extracted to estimate the music’s

rhythm, align music clip and video shot boundaries, and discover the corresponding on-

set strengths in the incidental music. This is done by analyzing energy peaks in the

frequency domain. Temporal, spectral and Constant Q Transform (CQT) features are

extracted to identify repeating patterns and structure. Temporal features are used to es-

timate tempo, period, and the length of a musical phrase (used as the minimum length

of a significant repetition in repeating patterns discovery and boundary determination).

Spectral features are used for vocal and instrumental sound discrimination, as well as to

identify the prelude, interlude, and coda of the song. CQT features are used to represent

the note and melody information. Based on these features, a self-similarity matrix of the

music is obtained, from which the significant repeating patterns are detected, with an

adaptive threshold setting method (Equation 2.3, where 0 ≤ i < K, K is the number of

patterns (prelude, interlude, and coda are regarded as one pattern called “instrument”);
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Typei and Numi are the type (normal or instrument, the former one covers all non-

instrument patterns); (Startij , Endij , Tempoij) are the start time, end time and tempo

of j-th occurrence of a music pattern MPi in the music). The boundaries of repeat-

ing patterns are aligned using an optimization-based approach that uses the obtained

structure.

MPi = (Typei, Numi,MSij = (Startij, Endij, T empoij), 0 ≤ j < Numi) (2.3)

To find an appropriate set of shots from the video, for each music repetitive pattern,

shots with very low color entropy or extremely high camera motion speed (low-quality

shots) are removed from the shot list, as done by Hua et al. (2004a). Scene segmen-

tation is done by grouping the shots according to content similarity and time-stamp (if

available). The similarity function is given by the weighted sum of a series of histogram

intersections of both shots.

In order to select appropriate video segments for each music segment, as well as

align shot transitions with the strong onsets in music, the corresponding music segment

of every occurrence of the specific music pattern is divided into small music sub-clips

by finding strong onsets in a sliding window. To guarantee visual consistency for a

certain music pattern, the corresponding video segments are selected from the same

scene, while those for different occurrences of the same music pattern are selected from

different segments of the shots in the assigned scene, to promote visual content variety

along the time-line. However, this may introduce inconsistency.

2.2.1.2 Wang et al. (2012)

Wang et al. (2012) presents a novel machine learning model to learn the tripartite rela-

tionship among music, video, and emotion simultaneously, from an emotion-annotated

corpus of music videos, in order to bridge music and video. This model is applied

to predict emotion distributions in a stochastic emotion space from low-level acoustic
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features. The music’s and video’s emotions are met by comparing their emotion distri-

butions, using a similarity measure, the Euclidean distance.

It is proposed a novel acoustic emotion Gaussian (AEG) model that learns two

sets of Gaussian mixture models (GMM) from data, namely acoustic GMM and Va-

lence/Arousal (VA) GMM. The acoustic GMM computes low-level acoustic features,

such as loudness, timbre, rhythm, and harmony, and the VA GMM describes high-level

emotions. In order to align the two GMMs, the system performs semantic mappings

between the acoustic feature space and the music emotion space, introducing a set of

latent feature classes, zkKk=1. Each zk is defined by a latent acoustic classifier Ak, that

maps a specific pattern of acoustic features to a specific areaGk in the VA space. The set

of latent acoustic classifiers, Ak
K
k=1, can be implemented by a universal acoustic GMM,

in which Ak represents a specific acoustic pattern discovered by the GMM learning in

the frame-based acoustic feature space. Gk can be modeled by a bivariate Gaussian

distribution, becoming a latent VA Gaussian. The VA GMM corresponds to the mixture

of latent VA Gaussians.

In the process of generation of music emotion, the acoustic features of a music clip

are represented by computing the posterior probabilities over the acoustic GMM (each

Gaussian component Ak leads to a posterior probability θk, based on its frame-based

feature vectors). This clip-level acoustic feature representation is the acoustic GMM

posterior, θKk=1, subject to
∑

k θk = 1, which captures the acoustic characteristics of

every music clip in a K-dimensional probabilistic space. The emotion distribution of a

music clip in the emotion (VA) space can be generated by the weighted combination of

all latent VA Gaussians as
∑

k θkGk using θkKk=1 as weights.

The emotion-based music retrieval is divided into two phases: the feature indexing

phase and the music retrieval phase.

In the indexing phase, each music clip in the unlabeled music database is indexed

with two indexing approaches based on the music clip’s acoustic features: (a) using the

acoustic GMM posterior (a fixed-dimensional vector) of a clip using the acoustic GMM,

or (b) using the predicted emotion distribution (a single 2-D Gaussian) of a clip given

by automatic emotion prediction.

12
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In the retrieval phase, given a point query from the VA space, the system will return

a ranked list of relevant music clips. Two matching methods are applied, namely (a)

pseudo song-based matching (first indexing approach) and (b) distribution likelihood-

based matching (second indexing approach).

In the first indexing approach, the point query is first transformed into a pseudo song,

the estimated acoustic GMM posterior: it is transformed into probabilities λkKk=1, s.t.∑
k λk = 1. The resulting λk represent the importance of the k-th latent VA Gaussian

for the input query point. The pseudo-song is then matched with clips in an unlabeled

music database.

In the second indexing approach, a point query is fed into the predicted emotion

distribution of each clip in an unlabeled music database, and the system ranks all the

clips according to the estimated likelihoods.

To start the generative process of the AEG model, it is used a universal acoustic

GMM to span a probabilistic space with a set of diverse acoustic Gaussians. To cover

the emotion perception of different subjects, typically, a clip is annotated by multiple

subjects, using a user prior model to express the contribution of each individual subject.

Finally, in response to the query, the retrieval system ranks all the clips in descending

order of cosine similarity.

2.3 Summary

In this chapter, we explored previous work on multimedia artifacts generation, including

methods developed to address issues such as content selection and coherence of the final

video.

13





Chapter 3

Generic Summarization

In this chapter, we present five text-based summarization approaches, to explore the

possibilities we have to summarize the movie’s subtitles.

3.1 Generic Text Summarization Algorithms

Several generic summarization algorithms have been developed to determine relevant

content. In this section, we present five text-based summarization approaches: LexRank (Erkan

and Radev, 2004) and Support Sets (Ribeiro and de Matos, 2011), which are centrality-

based, MMR (Carbonell and Goldstein, 1998) and GRASSHOPPER (Zhu et al., 2007),

which are diversity-based, and LSA (Gong and Liu, 2001).

3.1.1 Centrality

Centrality-based algorithms consider that the most important content of an input is the

most central, considering its representation as a graph, spatial, etc.
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3.1.1.1 LexRank

LexRank (Erkan and Radev, 2004) is a centrality-based method based on Google’s

PageRank for ranking web pages (Brin and Page, 1998). A graph is built using sen-

tences, represented by TF-IDF score vectors, as vertexes and cosine similarity is used

to determine how they connect. An edge is created if the similarity score exceeds some

threshold. Then, the calculation described by Equation 3.1 is computed for each vertex

until convergence, which happens when the error rate between two successive iterations

is lower than a certain value for each vertex.

S (Vi) =
(1− d)

N
+ d×

∑
Vj∈adj[Vi]

Sim (Vi, Vj)∑
Vk∈adj[Vj ]

Sim (Vj, Vk)
S (Vj) (3.1)

where d is a damping factor which ensures the convergence of the method, N is the

total number of vertexes, and S (Vi) is the score of the ith vertex.

3.1.1.2 Support Sets

Documents typically are composed by a mixture of subjects, normally involving a

main subject and other minor (lateral) issues. Support Sets are defined based on this

idea (Ribeiro and de Matos, 2011). Important content can be determined by creating a

support set for each passage of the input, determined by comparing each passage with

all remaining ones from the source. The most semantically-related passages are in-

cluded in the support set, determined via geometric proximity. In this manner, groups

of related passages are uncovered, each one representing a topic. A summary can be

composed by selecting the most relevant passages, which are the ones present in the

largest number of support sets.

Given a segmented information source I , p1, p2, . . . , pN , support sets Si associ-

ated with each passage pi are defined as indicated in Equation 3.2, where Sim represents

a similarity function, and εi is a threshold.
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Si , {s ∈ I : Sim(s, pi) > εi ∧ s 6= pi} (3.2)

The most important passages are selected based on Equation 3.3.

arg max
s∈Un

i=1Si

|{Si : s ∈ Si}| (3.3)

3.1.2 Diversity

A very common problem in automatic summarization is the presence of redundant in-

formation in the final summary. In order to solve this issue, the following algorithms

were developed to guarantee diversity.

3.1.2.1 Maximal Marginal Relevance (MMR)

MMR is a commonly adopted method for query-focused summarization (Carbonell

and Goldstein, 1998). A linear combination of relevance and novelty is established

by configuring the model, which iteratively selects the documents that result from ap-

plying Equation 3.4, where Sim1 and Sim2 represent similarity metrics. Si represents

the non-selected documents and Sj the previously selected documents, Q is the query

and λ is the parameter that configures between relevance, λ(Sim1(Si, Q)), and novelty,

(1− λ)(maxSj
Sim2(Si, Sj)).

arg max
Si

[
λ (Sim1 (Si, Q))− (1− λ) max

Sj

Sim2 (Si, Sj)

]
(3.4)

Therefore, when λ = 1, the summary will be composed by the standard relevance

list. On the other hand, for λ = 0, maximal diversity ranking is obtained. A good

practice is to first observe the information space surrounding the query with λ ' 0.3,

and then focus on the important parts applying MMR with λ ' 0.7 (Carbonell and

Goldstein, 1998). Furthermore, the MMR approach can generate generic summaries by
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considering the input sentences centroid as a query (Murray et al., 2005; Xie and Liu,

2008).

3.1.2.2 Graph Random-walk with Absorbing StateS that HOPs among PEaks for

Ranking (GRASSHOPPER)

GRASSHOPPER (Zhu et al., 2007), is a graph-based ranking algorithm, which focuses

on maximizing diversity while minimizing redundancy. GRASSHOPPER is based on

random walks in an absorbing Markov chain and can be seen as an alternative to MMR,

because it includes diversity as well. The algorithm receives three parameters as input:

a weighted graph W , a probability distribution r (user-defined prior ranking) and λ ∈

[0, 1] that balances the weighted graph and the prior ranking. W is a n×nmatrix, where

n represents sentences, and the weights can be defined using a similarity measure such

as the cosine distance. r is a user-defined ranking (e.g., sentence position), defined by

r = (r1, . . . , rn), where
∑n

i=1 ri = 1, and ri is the probability of sentence i. When

there is no prior ranking, a uniform distribution can be used, where each sentence has

the same probability.

Sentences are ranked by applying the teleporting random walks method, which is

based on the n× n transition matrix P̃ (calculated by normalizing the rows of W ):

P = λP̃ + (1− λ) 1r> (3.5)

The first sentence to be scored is the one with the highest stationary probability

arg maxn
i=1 πi according to the stationary distribution of P : π = P>π.

The already selected sentences may never be visited again, by defining Pgg = 1 and

Pgi = 0,∀i 6= g. The expected number of visits is given by an N matrix, as defined

by Equation 3.6, where Nij is the expected number of visits to the sentence j, if the

random walker began at sentence i.

N = (I −Q)−1 (3.6)
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We then obtain the average of all possible starting sentences to get the expected

number of visits to the jth sentence, vj . The sentence to be selected is the one given by

the following equation:

arg
n

max
i=|G|+1

vi (3.7)

3.1.3 Latent Semantic Analysis (LSA)

LSA is a mathematical technique based on Singular Value Decomposition (SVD). This

approach aims at inferring contextual usage of text based on word co-occurrence. Gong

and Liu (2001) use LSA for determining important topics in documents without the need

of external lexical resources, such as an online thesauri or dictionaries. This technique

follows the notion that the occurrence context of a particular word provides informa-

tion that can be used to assess meaning. LSA produces relations between words and

sentences that correlate with the way humans make associations or discover semantic

similarity (Landauer and Dutnais, 1997; Landauer et al., 1998).

In order to use LSA for text summarization, the input document is represented

through a t × n term-by-sentences matrix A, where rows represent unique words (t)

of the input document, and columns represent sentences (n). Then, SVD is applied to

A, resulting in its decomposition (Equation 3.8): U , a t× n matrix of left singular vec-

tors (its columns); Σ, an n× n diagonal matrix of singular values; V T , an n× n matrix

of right singular vectors (its rows).

A = UΣV T (3.8)

Some of the singular values in the diagonal matrix Σ are too small and can be

discarded, by setting them to zero. Therefore, by keeping the first, non-zero entries,

of singular values of Σ, we reduce it to Σk, which represents the k × k submatrix of

Σ. U and V T are also reduced to Uk and V T
k in order to have k columns and k rows,
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respectively. Therefore, A is approximated to: Ak = UkΣkV
T
k , an m × n matrix, U is

m× k, Σ is k × k and V is k × n.

When SVD is applied to matrixA, the transformation can be seen from two perspec-

tives: as a mapping from one dimensional space to another, resulting in dimensionality

reduction; and a semantic structure derived by aggregating words and sentences in sim-

ilar contexts. If a pattern of words occurs very often in a document, this pattern will

be captured and represented by one of the singular vectors, which represent topics or

concepts, following the notion that similar words appear in similar contexts.

3.2 Summary

In this chapter, we presented five summarization approaches, which have been success-

fully applied to text. These algorithms extract the most relevant and/or diverse informa-

tion from the input, according to each algorithm’s definition of relevance and diversity.

This is done by scoring and ranking sentences and then picking the ones with highest

scores to include in the summary.
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Chapter 4

Music Emotion Recognition (MER)

One of the main issues addressed in this thesis is the coherence of our final multimedia

artifact. We use emotions to filter the clips resulting from the content selection phase.

Specifically, we extract emotion-based features from the clips’ auditory channel to per-

ceive the present emotions, and compare them with the emotion-based features of the

music piece, and consider only the most similar to the latter to compose the final video.

This chapter presents an overview of emotion characterization and emotion identifica-

tion, including types of emotion-related features that have been explored to perceive

emotions in music, some of which we used in this thesis.

4.1 Emotion Characterization

Languages of emotion include music as “one of the finest” (Picard, 1997).

Psychologists have been studying the relationship between music and emotion for

the past decades, facing the important problem of conceptualization of music emo-

tion (Juslin and Sloboda, 2011). Two approaches have emerged that try to conceptualize

emotion: the first is a category-based; the second is a dimension-based approach. They

emerged from empirical studies, where people’s verbal reports of emotion responses are

considered.
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4.1.1 Categorical Approach

The categorical approach to emotion conceptualization is based on the concept of the

existence of a limited set of basic, innate and universal emotions, such as happiness,

sadness, anger, fear, disgust, and surprise. This approach groups emotions into cate-

gories from which all other emotion classes can be derived (Anderson and McOwan,

2006; Ekman, 1992; Picard et al., 2001; Schuller et al., 2010). Schubert’s nine clusters

and the correspondent emotional adjectives (Schubert, 2003) (Table 4.1) is an example

of such approach.

TABLE 4.1: The Nine Emotion Clusters Proposed by Schubert (2003)

Cluster Emotions in Each Cluster

1 Bright, cheerful, happy, joyous

2 Humorous, light, lyrical, merry, playful

3
Calm, delicate, graceful, quiet, relaxed, serene, soothing, tender, tran-

quil

4 Dreamy, sentimental

5 Dark, depressing, gloomy, melancholy, mournful, sad, solemn

6 Heavy, majestic, sacred, serious, spiritual, vigorous

7 Tragic, yearning

8 Agitated, angry, restless, tense

9
Dramatic, exciting, exhilarated, passionate, sensational, soaring, tri-

umphant

4.1.2 Dimensional Approach

The dimensional approach to emotion conceptualization identifies different emotion

“dimensions” that correspond to internal human representations of emotion, which are
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found by analyzing the correlation between emotional terms. These dimensions are rep-

resented as axes in a 2D plan. It differs from the categorical approach, which focuses

on characteristics that distinguish emotions between them.

Russell proposed a two-dimensional circular structure as a model of affect (Russell,

1980), that identifies valence and arousal as emotion dimensions (Figure 4.1).

2 1

3 4

Arousal (High)

(Low)

Valence 

(Positive)(Negative)

Annoying

Angry

Nervous

Exciting

Happy

Pleasing

Sad

Boring

Sleepy

Relaxing

Peaceful

Calm

FIGURE 4.1: Circumplex model of emotion (Russell, 1980).

In order to identify all these different human emotions in music, emotion-related

features are used in Music Emotion Recognition (MER) tasks (Yang and Chen, 2011).

In this thesis, we only need to compare emotions, but we do it by comparing these fea-

tures, extracted from the clips selected from the content selection phase and from the

music. Emotion-related music features are then presented and described in the follow-

ing section.

4.2 Emotion-related Music Features

Emotions transmitted by music are highly associated with different patterns of acoustic

cues (Hevner, 1935; Juslin, 2000; Krumhansl). Table 4.2 relates arousal and valence to

musical cues.
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TABLE 4.2: Arousal and valence associated to acoustic cues (Gabrielsson, 2001).

Arousal

Tempo (fast/slow)

Pitch (high/low)

Loudness (high/low)

Timbre (bright/soft)

Valence
Mode (major/minor)

Harmony (consonant/dissonant)

Emotion perception is almost never dependent on a single music factor but on a

combination of music factors (Hevner, 1935; Rigg, 1964). For instance, loud chords

and high-pitched chords may be related to more positive valence than soft chords and

low-pitched chords, irrespective of mode.

If we consider energy, rhythm, temporal, spectrum, and harmony as perceptual di-

mensions of music listening, we can extract features that best represent them (Table 4.3).
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TABLE 4.3: Extracted Feature Sets

Feature Set Features

Energy
Dynamic loudness, audio power (AP), total loudness (TL), and specific

loudness sensation coefficients

Rhythm

Beat histogram, rhythm pattern, rhythm histogram, and tempo, rhythm

strength, rhythm regularity, rhythm clarity, average onset frequency, and

average tempo (Lu et al., 2006)

Temporal Zero-crossings, temporal centroid, and log attack time

Spectrum

Spectral centroid, spectral rolloff, spectral flux, SFM, and SCF, MFCC,

spectral contrast (Jiang et al., 2002), DWCH (Li and Ogihara, 2006),

tristimulus, even-harm, and odd-harm (Wieczorkowska, 2004), rough-

ness, irregularity, and inharmonicity

Harmony
Salient pitch, chromagram centroid, key clarity, pitch histogram,

SWIPE (Camacho, 2007)

Spectrum and temporal features summarize the timbre content of a song (Yang and

Chen, 2011).

4.2.1 Energy Features

The energy of a song is frequently highly correlated with arousal perception (Gabriels-

son, 2001).
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We can measure perceived loudness by the dynamic loudness model of Chalupper

and Fastl (2002), modeling parameters of auditory sensation based on some psychoa-

coustic models, such as the Bark critical ban (Zwicker, 1961) for modeling auditory

filters in our ears, an auditory temporal integration model, and a Zwicker and Fastl

(1999) model for modeling sharpness.

We can also extract audio power (AP), total loudness (TL), and specific loudness

sensation coefficients (SONE), which are energy-related features as well. Experiences

show that audio power (AP) and total loudness (TL) for each frame are related to the

arousal perception of music pieces and the SONE coefficients of songs of different

emotions may have different characteristics (Yang and Chen, 2011). AP is the power

of the audio signal, while the extraction of TL and SONE is based on an outer-ear

model, the Bark critical-band rate scale (psycho-acoustically motivated critical bands),

and spectral masking (by applying spreading functions). The resulting power spectrum,

the sonogram, represents better human loudness sensation. The sonogram consists of

up to 24 Bark critical-bands, depending on the sampling frequency of the audio signal.

SONE coefficients are computed from the sonogram based on the Hartmann (1997)

method. TL is computed as an aggregation of SONE, which takes the sum of the largest

SONE coefficient and a 0.15 ratio of the sum of the remainder coefficients. All these

features can be extracted for each short time frame and then aggregated by taking the

average and standard deviation for temporal integration (Meng et al., 2007).

4.2.2 Rhythm Features

Experiences show that rhythm features are associated with the perception of both va-

lence and arousal (Yang and Chen, 2011).

Rhythm is the pattern of pulses/notes of varying strength and it is often described

in terms of tempo, meter, or phrasing. A song with fast tempo commonly means that

it has high arousal. Apart from that, flowing rhythm is normally correlated to positive

valence, whereas firm rhythm is correlated to negative valence (Gabrielsson, 2001).
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We can obtain some rhythm features from the beat histogram of music, including

beat strength, amplitude and period of the first and second peaks of the beat histogram,

and the ratio of the strength of the two peaks in terms of beats per minute (bpm). The

beat histogram is constructed by computing the autocorrelation of the signal envelope

in each octave frequency band. The dominant peaks of the autocorrelation function are

various periodicities of the signal’s envelope.

We can also extract rhythm patterns to see how strong and fast beats are played

within a specific frequency band (Pampalk et al., 2002). We can apply short-time

Fourier transform (STFT) to obtain the amplitude modulation of SONE of each segment

of a music piece. Repetitive patterns in the individual modulation frequency indicates

the presence of rhythm. The rhythm pattern of the entire music piece can be obtained

calculating the median of the rhythm patterns of its segments (no overlapping).

Rhythm strength, rhythm regularity, rhythm clarity, average onset frequency, and

average tempo are also relevant to both valence and arousal perception. Considering

“onset” as the starting time of each musical event (note), rhythm strength is calculated

as the average onset strength of the onset detection curve, that we can compute using

the algorithm described by Klapuri (1999). Rhythm regularity and rhythm clarity can

be acquired by performing autocorrelation on the onset detection curve. If a music

segment has a regular rhythm, the peaks of the corresponding autocorrelation curve will

be strong. Onset frequency corresponds to the number of note onsets per second, while

tempo corresponds to the periodicity of the onset detection curve. We can also estimate

tempo, obtaining the mean of a 60-bin rhythm histogram, which sums the amplitude

modulation coefficients across critical bands.

4.2.3 Temporal Features

Zero-crossing rate, temporal centroid, and log attack time are useful temporal features

we can extract from music.

Zero-crossing rate is a measure of the signal noisiness and is computed by taking

the mean and standard deviation of the number of signal values that cross the zero axis
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in each time window (Equation 4.1, where T is the length of the time window, st is the

magnitude of the t-th time-domain sample, and w(∆) is a rectangular window). The

standard deviation of zero-crossing rate may be useful for valence prediction (Yang and

Chen, 2011).

zero-crossing rate =
1

T

m∑
t=m−T+1

|sgn(st)− sgn(st−1)|
2

w(m− t) (4.1)

Zero-crossing rate is normally high for noise and speech, moderate for music with

vocals, and low for instrumental music.

Temporal centroid and log attack time are two timbre descriptors that depict the

energy envelope (Allamanche, 2001). Temporal centroid is the average time over the

energy envelope, while log attack time is the logarithm of the duration between the time

the signal starts (defined as the time the signal reaches 50% of the maximum energy

value, by default) and the time the signal reaches its maximum energy value.

4.2.4 Spectrum Features

Spectrum features are features computed from the STFT of an audio signal (Peeters,

2004). One can extract the timbral texture features including spectral centroid, spec-

tral rolloff, spectral flux, spectral flatness measures (SFM), and spectral crest factors

(SCF). These features are extracted for each frame and then by taking the mean and

standard deviation for each second. The sequence of feature vectors is then collapsed

into a single vector representing the entire signal by taking again the mean and standard

deviation (Tzanetakis and Cook, 2002).

The average spectral centroid is highly related to arousal perception (Yang and

Chen, 2011). It consists of the center of gravity of the magnitude spectrum of STFT

and is calculated using Equation 4.2, where At
n is the magnitude of the spectrum at the

t-th frame and the n-th frequency bin, and N is the total number of bins. The centroid

is a measure of the spectral shape. Higher spectral centroid means “brighter” audio

texture.
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spectral centroid =

∑N
n=1 nA

n
t∑N

n=1A
n
t

(4.2)

The standard deviation of spectral rolloff seems to be correlated with arousal (Yang

and Chen, 2011). It is defined as the frequency kt below which a certain fraction of the

total energy is contained (Equation 4.3).

kt∑
n=1

An
t = 0.85 ∗

N∑
n=1

An
t (4.3)

Spectral rolloff is another measure of the spectral shape and estimates the amount

of high frequency in the signal.

Spectral flux estimates the amount of local spectral change and is given by Equa-

tion 4.4 (Tzanetakis and Cook, 2002), where a denotes the magnitude of the spectrum,

normalized for each frame.

spectral flux =
N∑

n=1

(ant − ant−1)2 (4.4)

Tonalness is often related to the valence perception: joyful and peaceful melodies

are tonal (tone-like), while angry melodies are atonal (noise-like) (Thompson and Ro-

bitaille, 1992).

SFM and SCF can help describe the tonalness of audio signal (Allamanche, 2001).

SFM is the ratio between the geometric and arithmetic average of the power spectrum

(Equation 4.5), whereas SCF is the ratio between the peak amplitude and the root-mean-

square amplitude (Equation 4.6).

spectral flatness measure =
(
∏

n∈Bk An
t )1/Nk

1
Nk

∑
n∈Bk An

t

(4.5)

spectral crest factor =
maxn∈BkAn

t

1
Nk

∑N
n=1A

n
t

(4.6)
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Bk denotes the k-th frequency subband, and Nk is the number of bins in Bk.

We can also extract MFCC, which are the coefficients of the discrete cosine trans-

form (DCT) of each short-term log power spectrum defined on a nonlinear perceptual-

related Mel-frequency scale (Davis and Mermelstein, 1980), to represent the formant

peaks of the spectrum.

Octave-based spectral contrast considers the spectral peak, spectral valley, and their

dynamics in each subband to describe, although roughly, the relative distribution of the

harmonic and non-harmonic components in the spectrum (Jiang et al., 2002).

Daubechies wavelets coefficient histogram (DWCH) features have better ability to

represent both local and global information of the spectrum than traditional features,

due to the use of the wavelet technique (Li and Ogihara, 2006). DWCH is computed

from the Daubechies wavelet coefficients at different frequency subbands with different

resolutions (Li and Ogihara, 2004, 2003, 2006).

We can also generate three sensory dissonance features, namely roughness, irregu-

larity, inharmonicity.

Roughness seems to be correlated with our valence perception (Yang and Chen,

2011). It measures the noisiness of the spectrum, based on the fact that any note that

does not respect prevailing harmony is considered dissonant. It is estimated by comput-

ing the peaks of the spectrum and taking the average of all the dissonance between all

possible pairs of peaks (Sethares, 2005).

Irregularity measures the degree of variation of successive peaks of the spectrum (Fu-

jinaga and MacMillan, 2000) and it is computed using Equation 4.7, where the square

of the difference of the amplitude of adjoining partials is summed (Jensen, 1999).

irregularity =

∑N
n=1(A

n
t − An+1

t )2∑N
n=1A

n
t ∗ An

t

(4.7)

Inharmonicity (Equation 4.8, where fn is the n-th harmonic of fundamental fre-

quency (f0)) is computed as an energy-weighted divergence of the spectral components

from the multiples of the f0 (Peeters, 2004).
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inharmonicity =
2

f0

∑N
n=1 |fn − nf0|(An

t )2∑N
n=1(A

n
t )2

(4.8)

The inharmonicity represents the divergence of the signal spectral components from

a strictly harmonic signal. Its value ranges from 0 (harmonic) to 1 (inharmonic).

Tristimulus measures the mixture of harmonics. The first tristimulus (Equation 4.9)

measures the relative weight of the first harmonic; the second tristimulus (Equation 4.10)

measures the relative weight of the second, third, and fourth together; and the third tris-

timulus (Equation 4.11) measures the relative weight of the remaining.

tristimulus1 =
(A1

t )
2∑N

n=1(A
n
t )2

(4.9)

tristimulus2 =

∑
n=2,3,4(A

n
t )2∑N

n=1(A
n
t )2

(4.10)

tristimulus3 =

∑N
n=5(A

1
t )

2∑N
n=1(A

n
t )2

(4.11)

Even-harm and odd-harm represent the even and odd harmonics of the spectrum (Wiec-

zorkowska, 2004; Wieczorkowska et al., 2005, 2006) (Equation 4.12 and Equation 4.13).

even-harm =

√∑N/2
n=1(A

2n
t )2∑N

n=1(A
n
t )2

(4.12)

odd-harm =

√∑N/2+1
n=1 (A2n−1

t )2∑N
n=1(A

n
t )2

(4.13)

31



Chapter 4. Music Emotion Recognition

4.2.5 Harmony Features

Harmony features are features computed from the sinusoidal harmonic modeling of the

signal (Peeters, 2004). Musical sounds are harmonic, meaning that each sound consists

of a series of multiplied frequencies over the lowest frequency, f0.

Harmony features include two pitch features: salient pitch and chromagram center.

A chromagram is the CQT for a vector containing the added complex module of the

bins that correspond to octaves. Experiences show that high arousal values are usually

associated with high average pitch and positive valence values seem to be associated

with higher standard deviation of pitch values (Yang and Chen, 2011). The pitch (the

perceived f0) of each short time frame is estimated based on the multi-pitch detection

algorithm described by Tolonen and Karjalainen (2000). The algorithm decomposes

an audio waveform into two frequency bands (below and above 1 kHz), computes the

autocorrelation function of the envelope in each subband, and estimates pitch by picking

the peaks from the sum of the two autocorrelation functions. The highest peak’s pitch

estimate is the salient pitch.

One can also compute the wrapped chromagram for each frame and use the centroid

of the chromagram as another estimate of f0. This feature is called the chromagram

centroid. A wrapped chromagram projects the frequency spectrum onto 12 bins that

represent the 12 distinct semitones/chroma of the musical octave (it does not consider

absolute frequency).

Harmony features also include three tonality features: key clarity, mode, and har-

monic change. Each bin of the chromagram corresponds to one of the twelve semitone

classes in the Western twelve-tone equal temperament scale. By comparing a chro-

magram to the 24 major and minor key profiles (Gómez, 2006), we can perform key

detection and estimate the strength of the frame in association with each key. The high-

est key strength is returned as the key clarity.

Mode is often related to the valence perception of music (Gabrielsson, 2001; Oliveira

and Cardoso, 2009) and describes a certain fixed arrangement of the diatonic tones of

an octave (Oliveira and Cardoso, 2008).
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We can use the algorithm developed by Harte et al. (2006) to compute a 6-dimensional

feature vector called tonal centroid from the chromagram and use it to detect the har-

monic changes, such as chord change, in musical audio, and then aggregate them by

taking mean and standard deviation (Fastl, 1982).

We can also generate features like tonic, main pitch class, octave range of the dom-

inant pitch, main tonal interval relation, and the overall pitch strength by computing

the pitch histogram (Tzanetakis and Cook, 2002). Additionally, we can compare 16

pitch-related features including the mean, standard deviation, skewness, and kurtosis of

the pitch and pitch strength time series estimated by Sawtooth Waveform Inspired Pitch

Estimator (SWIPE), and SWIPE’ (Camacho, 2007).

4.3 Summary

In this chapter, we presented well-known approaches to emotion characterization, such

as categorical-based and dimension-based. Additionally, we described emotion-related

music features used in MER, including those used in this thesis to address emotion

coherence of our final artifact, which are: intensity features (computation of root-mean-

square signal frame energy), timbre features (computation of zero-crossing rate of time

signal, the voicing probability computed from the Autocorrelation Function (ACF), f0

computed from the Cepstrum, and spectral features), and rhythm features (computation

of Fast Fourier Transform (FFT) coefficients). These are detailed in the next chapter.
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Chapter 5

Generation Of A Movie Tribute

This chapter presents our approach for the generation of a movie tribute.

We first proceed to data preprocessing, which includes subtitles’ text, and music’s

and movies’ sound normalization.

Considering a movie tribute to be a videoclip that contains clips from a movie play-

ing with a song in background, we face the problem of collecting the most important

parts of the movie to make the tribute credible. In order to determine the film’s most

important content, and avoid diversity (to guarantee coherence), we summarize its sub-

titles using the centrality-based LexRank algorithm, and use the timestamps to obtain

the corresponding video clips.

To assure emotional coherence among the selected clips, we focus on the music’s

emotion-related features. So, we extract emotion-related audio features from the music

and the scenes the clips belong to, and compare them to obtain the scenes that are

emotionally more similar to the music. Emotion-related audio features include intensity,

timbre, and rhythm features.

The final video is composed by joining the top-ranked clips that are also in the

selected scenes from the emotional coherence addressing phase, and the input music.

Post-production (volume adjustment) is necessary in order to avoid conflicts be-

tween the clips’ audio stream and the music’s.
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Figure 5.1 shows an overall scheme of the production of a movie tribute. Figure 5.2

presents a more detailed diagram containing the processes involved.

(1)

(3) (2)

FIGURE 5.1: Movie tribute generation. (1) content selection. (2) emotion synchro-
nization. (3) video composition.

Data Preprocessing

Movie

Song
Video

Composition
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Movie
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Emotion-related Audio

Features Extraction

Emotion-related Audio

Features Comparison
Clips Filtering

Post-production

(Audio Adjustments)

Video Stream

Subtitles

Audio

Stream

Audio

Stream

Sentences

FIGURE 5.2: Movie tribute generation processes.
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5.1 Data Preprocessing

All subtitles were segmented at the sentence level. Timestamps and punctuation inside

sentences were removed.

We normalize the volume of the music pieces and the movies to a standard value

to mitigate the production effect (some songs are recorded with a higher volume, while

others are recorded with a lower volume). Our approach to volume normalization is

to look for the loudest volume of the audio waveform and then amplify or attenuate

the entire waveform until the loudest volume reaches 0 dB (peak normalization). We

perform it using Ffmpeg (Bellard et al., 2003). We also trim the songs in order to remove

silence at the beginning and ending of each song, using Wavosaur, a free audio editing

software.

5.2 Content Selection

We use subtitles on account of their total coverage of the movies’ dialogs, which can

give us narrative information, easy text-audio/video stream mapping (using their times-

tamps), and availability.

In order to maintain some consistency concerning the selected content, we use

a centrality-based approach. For this reason, we obtain relevant sentences from the

movie, summarizing its subtitles, using LexRank. We chose LexRank due to previous

work (Aparício et al., 2015) that shows that LexRank is the centrality-based algorithm

to provide better summaries using the movie’s subtitles, according to Recall-Oriented

Understudy for Gisting Evaluation (ROUGE) (Lin, 2004). The length of the summary

corresponds to the number of seconds of the song given as input.

In LexRank’s implementation, the damping factor is set to 0.85 and the convergence

threshold to 0.0001. After the similarity between each pair of sentences is calculated,

each sentence’s score is iteratively updated by the algorithm until there is convergence.

Finally, sentences are picked until summary imposed length is reached.

37



Chapter 5. Generation of a Movie Tribute

5.3 Emotional Coherence

For each clip obtained from the content selection phase, we detect the scene in which it

appears. Then, we extract emotion-related audio features from the music and the scenes

of the video clips, and compare them to obtain the ones that are more emotionally

similar to the music. We chose to compare the clip’s scene instead of the clip itself for

the scenes may provide more auditory information concerning the events involving the

clip.

5.3.1 Movie Segmentation

In order to obtain the movie’s scenes, we segment the movie’s video stream using

Lav2yuv, a program distributed with the MJPEG tools (Chen et al., 2012).

5.3.2 Feature Extraction

All music pieces are converted to a unique format: 22,050 Hz sampling frequency, 16

bits precision, and mono channel.

5.3.2.1 Intensity Features

The intensity feature set is represented by the average and standard deviation of the root-

mean-square signal frame energy, extracted with OpenSMILE (Eyben et al., 2013).

5.3.2.2 Timbre Features

In order to characterize the music’s timbre, we calculate the average and standard devi-

ation of the following features (50 ms frames, no overlap): MFCC (1-12), zero-crossing

rate of time signal (frame-based), the voicing probability computed from the ACF, f0

computed from the Cepstrum, spectral centroid, spectral spread, spectral skewness,
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spectral kurtosis, spectral flatness, spectral flux, spectral rolloff, spectral brightness,

spectral entropy.

These features were also extracted with OpenSMILE (Eyben et al., 2013).

5.3.2.3 Rhythm Features

We consider high frequencies 9-dimensional rhythmic features and low frequencies 9-

dimensional rhythmic features to represent rhythm (Antunes et al., 2014). Low fre-

quencies rhythmic features are computed from FFT coefficients on the 20 Hz to 100 Hz

range and high frequencies on the 8000 Hz to 11025 Hz range.

Considering v as a matrix of FFT coefficients with frequency represented by its

columns and time by its lines, each component of the 9-dimensional vector is: maxamp

(maximum of the average v along time), minamp (minimum of the average v along

time), number of v values above 80% of maxamp, number of v values above 15% of

maxamp, number of v values above maxamp, number of v values below minamp,

mean distance between peaks, standard deviation of distance between peaks, maximum

distance between peaks.

These features were extracted using a Matlab implementation by Antunes et al.

(2014).

5.3.3 Feature Comparison

The resulting vector for each clip is compared with the music’s vector using the cosine

distance (Equation 5.1). If the similarity between them is greater than 0.7 (empirically

determined value), we consider that the video clip has the same emotion of the music.

cosine similarity(A,B) =

∑n
i=1Ai ×Bi√∑n

i=1 (Ai)
2 ×

√∑n
i=1 (Bi)

2
(5.1)

A and B are two different vectors.
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5.3.4 Video Composition

The length of the audio clip containing the music is filled with the clips resulting from

the content selection phase, following the chronological order of the input movie. In the

end, a black screen appears containing “Thank you for the memories, [movie’s main

character]1”.

5.3.4.1 Subtitles Timestamps Adjustments

The text stream is mapped to the video using subtitles, occasionally causing the time

interval corresponding to the sentences of the subtitles not to encompass the speech

that it is portraying. To resolve the identified abrupt shot transitions, the underlying

audio stream is used to provide continuity cues. For that, a data-drive voice activity

detector based on Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN)

is used (Eyben et al., 2013) to extend and/or compress the subtitles’ timestamps.

5.4 Post-production: Volume Adjustments

We use OpenSMILE (Eyben et al., 2013) to obtain the energy produced throughout the

music piece to determine the moments where it presents a higher volume, which inter-

feres with the voices from the video. The music’s volume is reduced to 30% whenever

its energy is higher than -7.82 (logarithmic energy). We also extract the movie’s en-

ergy with the same intent (but to reduce its own volume), so that audio continuity is

not broken with high variances of loudness from one clip to another (due to the movie’s

soundtrack playing loud, for instance).

In order to retrieve sound energy from music, we extract prosodic features, which

include f0, the voicing probability, and the loudness contours. f0 is computed via the

sub-harmonic sampling algorithm. Pitch smoothing is done with a modification of the

Viterbi algorithm (Ryan and Nudd, 1993).

1Given as input.
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5.5 Summary

In this chapter, we presented our tribute generation method, including details about data

preprocessing, the content selection method, the way we addressed emotional coher-

ence (including the movie segmentation tool we used, which features were extracted,

and how they were compared), final video composition (including subtitles timestamps

adjustments), and post-production (volume adjustments).
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Chapter 6

Experiments

In this chapter, we present the dataset used in our experiments, and information on the

subjects that evaluated the final tributes, followed by the evaluation and the discussion

of the results.

6.1 Dataset

Five tributes were generated using five different movies and songs (Table 6.1)

TABLE 6.1: Generated tributes.

Movie Song Duration

“Atonement” (2007) “La Plage” (by Yann Tiersen) 02:01

“300” (2006) “To The Edge” (by Lacuna Coil) 03:18

“Furious 7” (2015) “See You Again” (by Wiz Khalifa) 03:57

“The Curious Case of Ben-

jamin Button” (2008)
“The Last Goodbye” (by Billy Boyd) 04:13

“Interstellar” (2014) “Conspiracy Agent” (by Savant) 01:01
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“To The Edge”, “See You Again”, and “The Last Goodbye” contain vocals, while the

remaining don’t.

6.2 Setup

22 subjects were invited to participate in this experiment. Figure 6.1 shows a character-

ization of the viewers, answering the following questions: “What is your age?”, “What

is your gender?”, “What is your level of Education?”; “What is your area of training?”;

“How often do you watch movies?”; “How often do you watch movie tributes?”.

44



Chapter 6. Experiments

64%

36%

Gender

Male

Female
55%

9%

36%

Age

17 or less

18 - 25

26 - 49

50 or more

(A)

9%

36%

32%

18%

5%

Level of Education

Doctorate or higher

Master's degree

Bachelor's degree

High School

Middle School or less

4%

59%14%

4%
5%

14%

Area of Training

Engineering

Computer Engineering

Economics

History of Art

Tourism

None (Middle School or less)

5%
9%

24%
62%

How often do you watch movies?

On Tv

More than 7 times a week.

3-6 times a week.

At least, once a week.

At least, once a month.

5%

19%

38%
5%

33%

How often do you watch movie 

tributes?

At least, once a day.

At least, once a week.

At least, once a month.

At least, once a year.

Less than once a year.

I've never seen one before.

(B)

FIGURE 6.1: Viewers characterization.

Most people were males (64%), had between 18 and 25 years (55%), had a bach-

elor’s degree (32%) or a master’s degree (36%), and were Computer Engineers (59%).
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Most people watches movies once a month, at least (62%), and 33% didn’t know what

a movie tribute was, while 38% watches one once a year, at least.

6.3 Results

For each tribute, we present the results for content selection, and emotional coherence

criteria, and overall scores (Figure 6.2).
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FIGURE 6.2: Each tribute’s evaluation results.

46



Chapter 6. Experiments

The tributes that had the best scores were “The Curious Case of Benjamin Button”

and “Atonement”, with an average of 8 points in both content selection, and emotional

coherence criteria, and overall evaluation, on a scale from 1 to 10.

“300” obtained the worst scores, with less than 6 points on overall evaluation, de-

spite having 7.5 on content selection criteria and 6.9 on emotional coherence criteria.

All tributes obtained more than 7 points on content selection and more than 6.9 point

in emotional coherence. On overall evaluation, the minimum of points given were 5.5.

On average, our method led to scores above 7 on both content selection, and emotional

coherence criteria, and overall evaluation (Figure 6.3).

0

2

4

6

8

10

Content

Selection

Coherence Overall

FIGURE 6.3: Average tributes’ evaluation results.

Regarding content selection, while some evaluators thought the selected content

was adequate, it was sometimes suggested the inclusion of specific scenes, or more

important ones, or even later parts of the movie, in the final tribute. “300”, “Furious 7”

and “The Curious Case of Benjamin Button” tributes were considered too big by some

viewers. A few evaluators considered that the end of the tributes ended abruptly, and a

few others considered it negative to appear similar scenes in different clips.

Concerning emotional coherence, the clips have not always been considered consis-

tent with each other and hence with the music. It was sometimes expected that the most

intense portions of the music (e.g., the chorus) would show more aggressive scenes,

when all of them illustrated very calm scenes, suggesting the scenes could match the

pace of the music, or even be rearranged to fit better with the music parts. It was highly

pointed out the music was not well chosen, in the case of “300”, and “Furious 7”.
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One of the main post-production related critics had to do with the overlap of song/-

dialogs, suggesting the speech volume should be higher than the background music.

Some disliked the music of the tribute being mixed with the original soundtrack and ac-

tors speaking. In addition, there are some abrupt transitions, so that some clips should

continue when the song is in a steady move (in a verse, for instance), avoiding forced

breaks. Some clips ended with speech being interrupted. It was also suggested that

contiguous clips of the same scene should not exist.
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(B) “Atonement”
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(C) “Interstellar”
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(E) “Furious 7”

FIGURE 6.4: Each tribute’s identified emotions distribution in the circumplex model
of emotion (Russell, 1980).
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The identified emotions for each tribute (Figure 6.4) were diverse and belonged to

different areas in the Russell’s circumplex model of affect (Russell, 1980). The “The

Curious Case of Benjamin Button” and “Furious 7” tributes are the most emotionally

diverse, while the others tend to show emotions that are present in a certain pole of

either valence or arousal (“Atonement” lays on negative valence, and “Interstellar” and

“300” lay on high arousal).

An average of 23% of viewers might have given less than 7 points on tribute overall

evaluation because they hadn’t watched the movie yet (and watch movies on a regular

basis, at least, once a month; which might mean they don’t like this type of movie)

and/or don’t/didn’t like the song, not because they thought the tribute was poorly pro-

duced.

An average of 42% of viewers who gave 7 points or more on tribute overall eval-

uation had already watched the movie, which means the tribute may have achieved its

purpose: to relive the movie in a quick, effective and pleasant way.
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FIGURE 6.5: Spearman’s ranks.

Figure 6.5 shows that content selection and emotional coherence convey strong,

positive correlation, as well as content selection and emotional coherence, and overall
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scores. In fact, content selection seems to affect the tribute’s emotional coherence and

content selection and emotional coherence seem to be directly related to the overall

scores. On the other hand, except for “Interstellar”, the song’s appreciation doesn’t

seem to influence the tribute’s emotional coherence.

Despite the critics, some viewers were astonished by the produced tributes, for

knowing they were generated automatically. Some were interested in watching more

of this kind of videos on YouTube.

6.4 Discussion

In this work, content selection is driven by a text stream that corresponds to transcripts

of speech monologues and dialogs, presented in the input document’s subtitles. In that

sense, important content is not detected based on visual or audio cues, except those

corresponding to speech (via subtitles). Hereof, other approaches can be used, using

audio and visual cues for video abstraction (Coldefy and Bouthemy, 2004).

For text-based selection, different approaches are available depending on the aspects

of interest (such as diversity). For movie tributes, which target the viewer’s emotions,

algorithms that focus on the most central (important) content may be indicated. Apart

from LexRank, other algorithms can be used, for instance, Support Sets, which is also

a centrality-based algorithm.

Subtitles are segmented at sentence-level. The song is used to obtain an emotionally-

coherent multimedia artifact. Results show that segmentation at sentence-level does not

affect, significantly, its overall coherence.

6.5 Summary

This chapter presented the results and an analysis of the produced tributes, and ended

with an overall discussion.
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Conclusions

This thesis presented methods for the generation of multimedia artifacts, specifically,

movie tributes, focusing on content selection and coherence aspects.

Considering a movie tribute to be a videoclip that contains clips from a movie play-

ing with a song in background, we faced the problem of collecting the most important

parts of the movie to make a tribute. In order to determine the film’s most important con-

tent, we summarize its subtitles using the LexRank algorithm and use the timestamps to

obtain the corresponding video clips.

To guarantee coherence among the selected clips, we focus on the music’s emotion-

related features. So, we extract audio features that describe emotions from the music

and the scenes of the clips, and compare them to obtain the scenes more similar to the

music.

The final video is composed by joining the top-ranked clips that are also in the

selected scenes from the previous phase, and the input music with adjusted volume.

Five tributes were produced and the human evaluation was positive, having, on av-

erage, achieved scores above 7 (on a scale from 1 to 10). All tributes obtained more

than 7 points on content selection and more than 6.9 point in emotional coherence. On

overall evaluation, the minimum of points given were 5.5.
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Content selection seems to affect the tribute’s emotional coherence and content se-

lection and emotional coherence seem to be directly related to the overall scores.

Ours results show that segmentation at sentence-level does not affect, significantly,

the overall coherence.

7.1 Contributions

This thesis offers a simple and tested way to generate multimedia artifacts, specifically,

videoclips that portray a film with the aid of music, combining these two distinct and

valuable cultural areas. It provides a means to remember films in just a few minutes, as

well as promote them and eventually raise its number of visualizations.

Two papers were produced and submitted to the arXiv. The first one was “Sum-

marization of Films and Documentaries Based on Subtitles and Scripts”, and here we

assess the performance of generic summarization algorithms when applied to subtitles

and scripts, for films and documentaries. The second one was “Generation of Mul-

timedia Artifacts: An Extractive Summarization-based Approach”, where we explore

methods for content selection and address the issue of coherence in the context of the

generation of multimedia artifacts.

7.2 Future Work

Regarding future work and concerning the identified issues, if the music has vocals, its

lyrics can be taken into account to relate their topics to the movie. A possible solution

is to receive only the movie as input, then, choose a topic-related song from an existing

dataset, for instance, The Million Song Dataset (Bertin-Mahieux et al., 2011). Further-

more, to improve the final artifact’s structural coherence, we can take into account the

music’s structure and align it to the video stream (Nieto and Bello, 2014).
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Still regarding coherence, locally-coherent sentences for the summarized movie can

be identified. LSA can be used as a technique for measuring coherence, by compar-

ing vectors of adjacent sentences in the generated semantic space. Thus, they can be

considered as groups of locally-coherent sentences.

Coherence can also be established by means of composition techniques for video

production, based on temporal constraints, along with thematic and structural continu-

ity (Ahanger and Little, 1998). In fact, these can be used as a means to build a narrative,

which can be seen as a series of events in a chain (Branigan, 1992). Ahanger and Lit-

tle (1998) establishes content progression in the final multimedia artifact by comparing

adjacent video segments and ensuring that they are not too similar or too different.
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Appendix A. A User Test Interface

Evaluation of Automatically Generated
Movie Tributes
This form was developed in the context of my master's thesis in Computer Engineering in 
ISCTE-IUL entitled "Automated Generation of Movie Tributes".

My thesis aims to automatically produce a tribute to a movie in the form of a videoclip. We 
consider a movie tribute to be a video which shows clips from the movie while a song is 
playing. In this work, we wanted to be able to automatically produce a coherent, fluid video, 
emotionally related to the song.

Here I present five movie tributes that I produced and I need your opinion about them! 

The estimated time of completion is of 30 minutes. Your answers are anonymous, 
therefore do not put your name anywhere in the form. Any comments and suggestions are 
welcome!

My email: marta.aparicio47@gmail.com.

Thank you so much!,
Marta Aparício

PS: Your answers can be written in Portuguese!

*Obrigatório

What is your age? *

What is your gender? *

 Male

 Female

What is your level of education? *

 Middle School or less

 High School

 Bachelor's degree

 Master's degree

 Doctorate or higher

What is your area of training?
If you answered with a level of education superior to High School in the previous question, please
tell me your area of training. Ex: Computer Engineering, Genetics, Biophysics, Marketing, etc.

How often do you watch movies? *

Editar este formulário

FIGURE A.1: General user information request (page 1).
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Appendix A. A User Test Interface

FIGURE A.2: General user information request (page 2).
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Appendix A. A User Test Interface

Evaluation of Automatically Generated
Movie Tributes
*Obrigatório

Video 1

Do you like the movie? *

 I haven't seen it.

 I hate it.

 I don't like it.

 I don't like it nor dislike it.

 I like it.

 I love it.

Do you know this song? *

 Yes.

 No.

Do/did you like the song? *

1 2 3 4 5 6 7 8 9 10

Automatically Generated Tribute To "The Curious
Case Of Benjamin Button" (with "The Last Goodbye")

In case you aren't able to watch this tribute on YouTube, please follow this link:
https://drive.google.com/file/d/0B1T01RbbRdksSWV1VkVNanZ1QzQ/view?usp=sharing

Automatically Generated …

Editar este formulário

FIGURE A.3: Individual tribute evaluation (page 1).
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FIGURE A.4: Individual tribute evaluation (page 2).
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FIGURE A.5: Individual tribute evaluation (page 3).
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