
University Institute of Lisbon

Department of Information Science and Technology

Engineering Evolutionary Control for
Real-world Robotic Systems

Miguel António Frade Duarte

A Thesis presented in partial fulfillment of the Requirements for the Degree of
Doctor in Information Science and Technology

Supervisor

Prof. Dr. Anders Lyhne Christensen, Assistant Professor
ISCTE-IUL

Co-Supervisor

Prof. Dr. Sancho Moura Oliveira, Assistant Professor
ISCTE-IUL

April 2016

University Institute of Lisbon

Department of Information Science and Technology

Engineering Evolutionary Control for
Real-world Robotic Systems

Miguel António Frade Duarte

A Thesis presented in partial fulfillment of the Requirements for the Degree of

Doctor in Information Science and Technology

Jury:

Dr. Ricardo A. Fonseca, Associate Professor, Instituto Universitário de Lisboa
Dr. Mauro Birattari, Senior Research Associate, Université Libre de Bruxelles

Dr. Luís Correia, Associate Professor, Faculdade de Ciências - Universidade de Lisboa
Dr. Pedro U. Lima, Associate Professor, Instituto Superior Técnico - Universidade de Lisboa

Dr. Pedro Santana, Assistant Professor, Instituto Universitário de Lisboa
Dr. Anders L. Christensen, Assistant Professor, Instituto Universitário de Lisboa

April 2016

Resumo

A Robótica Evolutiva (RE) é a área de investigação que estuda a aplicação de
computação evolutiva na conceção de sistemas robóticos. Dois principais desafios
têm impedido a aplicação da RE em tarefas do mundo real: a dificuldade em solu-
cionar tarefas complexas e a transferência de controladores evoluídos para sistemas
robóticos reais. Encontrar soluções para tarefas complexas é desafiante para as
técnicas evolutivas devido ao bootstrap problem e à deception. Quando o objetivo
é demasiado difícil, o processo evolutivo tende a permanecer em regiões do espaço
de procura com níveis de desempenho igualmente baixos, e consequentemente não
consegue inicializar. Por outro lado, o espaço de procura tende a enrugar à medida
que a complexidade da tarefa aumenta, o que pode resultar numa convergência
prematura. Outro desafio na RE é a reality gap. O controlo robótico é tipicamente
evoluído em simulação, e só é transferido para o sistema robótico real quando uma
boa solução tiver sido encontrada. Como a simulação é uma abstração da realidade,
a precisão do modelo do robô e das suas interações com o ambiente é limitada,
podendo resultar em controladores com um menor desempenho no mundo real.

Nesta tese, apresentamos uma abordagem de síntese de controlo hierárquica
que permite o uso de técnicas de RE em tarefas complexas com hardware robótico
real, mitigando o bootstrap problem, a deception e a reality gap. Decompomos
recursivamente uma tarefa em sub-tarefas, e sintetizamos controlo para cada sub-
tarefa. Os comportamentos individuais são então compostos hierarquicamente.
A possibilidade de transferir o controlo incrementalmente à medida que o con-
trolador é composto permite que problemas de transferibilidade possam ser en-
dereçados localmente na hierarquia do controlador. A nossa abordagem permite
o uso de diferentes técnicas de síntese de controlo, resultando em controladores
híbridos. Demonstramos a nossa abordagem em várias tarefas que vão para além
da complexidade das tarefas onde a RE foi aplicada. Também mostramos que o
controlo hierárquico pode ser aplicado em sistemas de um robô ou sistemas multi-
robô. Dado o nosso objetivo de longo prazo de permitir o uso de técnicas de
RE em tarefas no mundo real, concebemos e desenvolvemos uma plataforma de
robótica de enxame, e mostramos a primeira transferência de controlo evoluído e
hierárquico para um exame de robôs fora de condições controladas de laboratório.

Palavras-chave: Robótica evolutiva, sistemas de controlo hierárquicos, con-
trolo híbrido, robótica de enxame, sistemas multi-robô, redes neuronais artificiais.

iii

Abstract

Evolutionary Robotics (ER) is the field of study concerned with the appli-
cation of evolutionary computation to the design of robotic systems. Two main
issues have prevented ER from being applied to real-world tasks, namely scaling to
complex tasks and the transfer of control to real-robot systems. Finding solutions
to complex tasks is challenging for evolutionary approaches due to the bootstrap
problem and deception. When the task goal is too difficult, the evolutionary pro-
cess will drift in regions of the search space with equally low levels of performance
and therefore fail to bootstrap. Furthermore, the search space tends to get rugged
(deceptive) as task complexity increases, which can lead to premature convergence.
Another prominent issue in ER is the reality gap. Behavioral control is typically
evolved in simulation and then only transferred to the real robotic hardware when
a good solution has been found. Since simulation is an abstraction of the real
world, the accuracy of the robot model and its interactions with the environment
is limited. As a result, control evolved in a simulator tends to display a lower
performance in reality than in simulation.

In this thesis, we present a hierarchical control synthesis approach that enables
the use of ER techniques for complex tasks in real robotic hardware by mitigating
the bootstrap problem, deception, and the reality gap. We recursively decom-
pose a task into sub-tasks, and synthesize control for each sub-task. The individ-
ual behaviors are then composed hierarchically. The possibility of incrementally
transferring control as the controller is composed allows transferability issues to
be addressed locally in the controller hierarchy. Our approach features hybridity,
allowing different control synthesis techniques to be combined. We demonstrate
our approach in a series of tasks that go beyond the complexity of tasks where ER
has been successfully applied. We further show that hierarchical control can be ap-
plied in single-robot systems and in multirobot systems. Given our long-term goal
of enabling the application of ER techniques to real-world tasks, we systematically
validate our approach in real robotic hardware. For one of the demonstrations in
this thesis, we have designed and built a swarm robotic platform, and we show the
first successful transfer of evolved and hierarchical control to a swarm of robots
outside of controlled laboratory conditions.

Keywords: Evolutionary robotics, hierarchical control systems, hybrid con-
trol, swarm robotics, multirobot systems, artificial neural networks.

v

Acknowledgements

First of all, I would like to acknowledge my supervisors, Anders Christensen
and Sancho Oliveira. While the journey toward a Ph.D. is very challenging, having
them as my supervisors made it enjoyable, fun, and rewarding. I will never forget
their friendship, dedication, scientific integrity, commitment to excellence, and
how they transmit these values to their students. I don’t think it would have been
possible to have two better supervisors, and I thank them for their mentorship.

Being part of the BioMachines Lab from the very beginning and watching
it grow to what it is today has been really exciting. I’ve had the opportunity
to work with some amazing people over the years that have contributed to my
scientific and personal growth. I would like to acknowledge Carlos Duque, Piotr
Szczawiński, Hao Zong, Amr Hamouda, Gustavo Martins, Inês Mamede, Rita
Ramos, and Pedro Romano. Special thanks go out to Vasco Costa, without whom
I would not have been able to develop our aquatic robots, and who taught me so
much about electronics, hardware and rock climbing, Tiago Rodrigues, my daily
research colleague for over two years, and Fernando Silva and Jorge Gomes, for
all the interesting and stimulating discussions, and their willingness to collaborate
and share knowledge.

The Vitruvius FabLab crew, João Sousa, Maria João de Oliveira, Bárbara
Varela, and Alexandra Paio, have been essential during my research. FabLab was
the place where I learned the ins and outs of digital (and classical!) fabrication,
and where we found many of the tools and much of the knowledge that allowed a
few software guys to develop a robotics platform from scratch.

I would like to acknowledge my fellow IEEE volunteers. When we started our
local IEEE Student Branch at ISCTE, I never imagined the amazing things that
we would end up accomplishing: from participating in robotics competitions, to
kickstarting numerous technical workshops, organizing huge events, and taking
the best of what is done here to many national and international venues. It was
fantastic to be able to learn from and collaborate with so many talented and driven
individuals.

I would also like to leave a word of appreciation to the administrative staff
at ISCTE and IT that made many of the unavoidable bureaucracies so much
easier to handle: Fátima Silva, Marisa Manteigas, and Alice Espada from ISTA,

vii

Fátima Estevens from ISTAR, Sónia Viveiros from GAI, and Sara Correia, Tereza
Traquinas and Ana Rodrigues from IT.

I thank all my friends, who have always encouraged me, particularly Fábio
Francisco, Ricardo Gomes, Gabriel Veiga, João Machado, Carlos Lima, and David
Jardim.

I would like to express my gratitude to my parents, António and Isabel, and
my sister, Mariana, for the unwavering support and love, and who always pushed
me to follow my passions. Who I am today and what I have accomplished is only
a consequence of all they have given and taught me.

Finally, I thank Margarida, who has been my pillar of strength, and whose love
and emotional support have given me the motivation to follow through with this
adventure.

This work has been supported by the Portuguese Foundation for Science
and Technology (Fundação para a Ciência e Tecnologia) under the grants
SFRH/BD/76438/2011, EXPL/EEI-AUT/0329/2013, and by Instituto de Tele-
comunicações under the grant UID/EEA/50008/2013.

Contents

Resumo iii

Abstract v

Acknowledgements vii

List of Figures xi

Acronyms xv

1 Introduction 1
1.1 Problem Statement . 6
1.2 Thesis Structure and Contribution

of Research . 7
1.3 Other Scientific Contributions . 11
1.4 Summary . 13

2 State of the Art 15
2.1 Crossing the Reality Gap . 17
2.2 Task Complexity in ER . 20
2.3 Swarm Robotics . 24

3 Methodology 29
3.1 Overview and Definitions . 29
3.2 Task Decomposition . 32
3.3 High-level Composition of Control 32
3.4 Hybridity and Manually Programmed Control 34
3.5 Studied Hierarchical Controllers . 35
3.6 Discussion . 36

4 Synthesis of Hierarchical Control for Single-robot Systems 39
4.1 Experimental Setup . 40
4.2 Evolving and Transferring Controllers for Complex Tasks 42
4.3 Hybrid Controllers . 53
4.4 Hierarchical Evolution for Integrated Tasks 55
4.5 Summary . 62

ix

Contents

5 Synthesis of Hierarchical Control for Swarm Robotic Systems 65
5.1 Experimental Setup . 66
5.2 Transferring Controllers to Real Robots 77
5.3 Scalability and Robustness in Real Robotic Hardware 83
5.4 Sequential Environmental Monitoring Task 87
5.5 Hierarchical Control for SRS . 89
5.6 Discussion . 101
5.7 Summary . 105

6 Conclusions and Future Work 107
6.1 Future Work . 109

Appendices 115

A Other Contributions 115
A.1 The CORATAM and HANCAD projects 115
A.2 COHiTEC . 116
A.3 Media Coverage . 117
A.4 Software Tools . 118

B Aquatic Robotic Platform 123
B.1 Hardware Design and Specifications 124
B.2 Onboard Software . 126
B.3 Remote Monitoring . 127

C Experimental Parameters for Aquatic Tasks 129

Bibliography 133

x

List of Figures

3.1 Representation of a hierarchical controller. A behavior arbitra-
tor delegates the control of the robot to one or more of its sub-
controllers. A behavior primitive controls the actuators of the
robots directly. 30

4.1 The e-puck with a range & bearing board. 41
4.2 The environment is composed of a room with obstacles and a double

T-maze. The room is rectangular with varying side lengths. The
double T-maze has a total size of 200 cm ⇥ 200 cm. The two
rows with the lights are located in the central maze corridor. The
activation of these two rows of lights indicates the location of a
teammate. 44

4.3 Hierarchical Rescue Task Controller. The controller used in our
experiments is composed of three behavior arbitrators (with darker
background) and four behavior primitives. In each node, we list its
name, the number of generations for which the sub-controller was
evolved, the number of alleles, the number of input, hidden and
output neurons, the sensors and actuators, the number of control
cycles for each evaluation and the average and best solve rate of the
post-evaluation. We performed an initial set of experiments to test
different parameter values and used the set of parameters yielding
the highest performance for the experiments summarized in the figure. 47

4.4 The average fitness trajectory of each of the highest scoring con-
trollers of all ten evolutionary runs, and the fitness trajectory of
the highest scoring controller for the complete rescue task. 51

4.5 Hierarchical “Solve T-Maze” Controller. The controller used in our
experiments is composed of one behavior arbitrator and three manu-
ally programmed behavior primitives. All controllers were manually
programmed, with the exception of the main behavior arbitrator.
Both the “Turn Left” and the “Turn Right” manually programmed
behavior primitives lock the network during execution, in order to
ensure that the behavior completes before another primitive can be
executed. 54

4.6 The environment is composed of two rooms, connected by a corri-
dor. The corridor is blocked by two doors that the robot can open
by pushing a red button. 56

xi

List of Figures

4.7 Hierarchical Dust Cleaning Controller. The controller synthesized
for the dust cleaning experiment is composed of three behavior ar-
bitrators and four behavior primitives. 58

4.8 Results of the real-robot experiments in the dust cleaning experi-
mental setup. The box plots represent 100 samples in simulation,
while the scatter plots represent the fitness obtained in the real-
robot experiments. The whiskers extend to the most extreme data
point within 1.5⇥ the interquartile range. 61

5.1 The control synthesis and performance assessment process. 67
5.2 The robot is an autonomous surface vehicle equipped with Wi-Fi

for communication, and a compass and GPS for navigation. It has
a length of 60 cm and can move at speeds of up to 1.7 m/s. 69

5.3 Illustration of the three types of emulated sensors. 70
5.4 Fitness plot for the four different tasks. The plot shows the highest

fitness scores found so far at each generation. The red lines de-
pict the three highest-scoring evolutionary runs, while the blue line
depicts the average of the ten runs, with the respective standard
deviation shown in gray. 76

5.5 Aerial photograph of the location of our experiments at Parque das
Nações, Lisbon, Portugal. The waterbody used has an area of 330 m
⇥ 190 m, and is connected to the Tagus river. 78

5.6 Real-world homing experiments with eight robots. The robots
started around S. The active waypoint was then changed at 60 sec-
ond intervals, in the order A!B!C!B, for a total of four minutes
per experiment. Top: comparison between the real and simulated
robots, showing the average distance to the active waypoint, for
similar conditions. The top of the figure shows the current active
waypoint. Bottom: trajectory traces of the real robots for Con-
troller 3. The waypoints are marked with yellow circles. 79

5.7 Real-world dispersion experiments with eight robots, one for each
controller tested, over a period of 90 seconds. Top: average error to
target distance (20 m) of the nearest robot in the last 10 s of each
dispersion experiment. Bottom: trajectory traces of the real robots.
The black squares mark the starting positions, and the red circles
mark the final positions. 81

5.8 Real-world clustering experiments with eight robots, over a period
of 180 seconds. Top: minimum number of clusters obtained in each
sample. Bottom: trajectory traces of the real robots. The final
clusters are highlighted in blue. 82

5.9 Real-world monitoring experiments with eight robots for Controller
1, over a period of five minutes. Top: coverage of the three different
monitoring areas. Bottom: coverage maps in the experiments with
the real swarm. The coverage of the area is presented in blue, and
has a decay of 100 s. Trajectories for the full duration of the task
are presented in red, and all the areas visited by the robots are filled
in gray. 83

xii

List of Figures

5.10 Scalability experiments with dispersion (Controller 3, left) and clus-
tering (Controller 1, right) controllers. In each task, the same con-
troller was used in a swarm of four, six, and eight robots, with three
samples for each setup. 84

5.11 Robustness experiments with Controller 3 of the dispersion behav-
ior. The red area represents the period where the robots of G

b

are
disturbing the dispersion of G

a

, and the black vertical line indicates
the point where the robots in G

b

start dispersing, and where the
distance error starts being measured for all eight robots. 86

5.12 Robustness experiments with Controller 1 of the monitoring behav-
ior. The time regions highlighted in red correspond to the periods
when robots where either entering or leaving the monitoring area. . 87

5.13 Results for the sequential controller mission. Top: robot trajecto-
ries for each sub-task. Middle and bottom: temperatures in the
monitoring area. Data collection started after the robots arrived
at the waypoint (t = 100 s). The middle row shows the predicted
temperatures, while the bottom row shows the estimated error in
the predictions. 88

5.14 A photo of a group of robots in the area where the experiments
were performed. 89

5.15 Fitness plot for the pursue intruder task. The plot shows the highest
fitness cores found so far at each generation. The red lines depict the
three highest-scoring evolutionary runs, while the blue line depicts
the average of the ten runs, with the respective standard deviation
shown in gray. 91

5.16 Representation of the experimental environment. The robots are
deployed from a base station, to which they must regularly return
in order to recharge their batteries. An intruder makes a total of
four crosses (1-4, in red) through the monitoring area (dashed lines),
and the experiment ends after the last cross. 92

5.17 Conceptual representation of the hierarchical controller used in the
intruder detection task. 93

5.18 An FSM representing the manually programmed top-level arbitra-
tor. The differently colored states and transitions represent incre-
mental extensions to the arbitrator. Monitor: the controller will
monitor the area and manage the battery level (black states and
transitions). Pursue All: the controller will actively pursue a de-
tected intruder (red extension). Pursue N : we limit the number
of robots that can actively pursue the intruder (blue extension). In
this last case, the dashed red transition from the “Pursue Intruder”
state to the “Area Monitoring” state is no longer used. 93

5.19 The plots show three different metrics (near robots, detection time,
and coverage) for four variations of the behavior arbitrator. Each
boxplot corresponds to 60 data points (10 samples per monitoring
area size). 95

xiii

List of Figures

5.20 Proportion of time the intruder was detected when inside the arena,
in different task setups with varying number of robots and arena
size. Each setup was repeated in 100 simulations. 96

5.21 Top: number of robots pursuing the intruder over time for the three
real-robot experiments (crosses 1-4 for each experiment). The pe-
riod in which the intruder is traversing the monitoring area is shown
in gray, and the number of robots pursuing at any given instant is
shown in blue. Bottom: comparison of the results in simulation and
in the real environment, using the metrics presented before. 97

5.22 Traces of the first 300 seconds from sample C of the real-robot ex-
periments, taken at 50 second intervals. The swarm is shown in
blue, and the intruder is shown in red. The labels identify spe-
cific events that highlight the behavioral capabilities of the swarm.
A: swarm going to the monitoring area. M: swarm monitoring the
area. P: robots pursuing an intruder. F: temporary motor failure
in one of the robots. B: robots abandoning the pursuit when the
intruder leaves the monitoring area. R: robot going to the base
station to recharge. 98

5.23 Map of the island of Lampedusa in the Mediterranean Sea, with a
20 km by 0.5 km monitoring area. Robots are deployed from two
base stations to a random location inside the monitoring area. . . . 99

5.24 The figure shows both the percentage of detected intruders as
points, and the percentage of time that the intruders were pur-
sued by (i) one robot, and (ii) two or more robots, as histograms
for the different simulated scenarios. 100

5.25 Plot of the states of the robots’ manually programmed behavior
arbitrators in the scenario with 1000 deployed robots over a period
of 24 hours of simulation. 101

B.1 A swarm of 10 robots performing a homing task during REX’15 at
the Lisbon Naval Base, Alfeite. 124

B.2 Top and side view of the final robot prototype with a description
of the components. 125

B.3 Robot Control Console . 127

xiv

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

AUV Autonomous Underwater Vehicle

CPPN Compositional Pattern Producing Networks

CTRNN Continuous-time Recurrent Neural Network

EA Evolutionary Algorithm

ER Evolutionary Robotics

ESP Enforced Sub-Populations

FSM Finite State-machine

HyperNEAT Hypercube-based NeuroEvolution of Augmenting Topologies

NS Novelty Search

SRS Swarm Robotic Systems

xv

Chapter 1

Introduction

The first records of complex, moving machines, or automata, date back to the Hel-

lenistic scientific period (323 BC to 31 BC), where inventors and scientists such as

Archytas, Ctesibius and Heron designed and built moving mechanical devices (Be-

dini, 1964; Rossi et al., 2009). The interest in such machines has increased as

technology advanced, and the concept of automata has morphed into what we

now call robots. A robot is, according to the Oxford English Dictionary, “a ma-

chine capable of carrying out a complex series of actions automatically, especially

one programmable by a computer”. Advanced robots were suddenly made pos-

sible with the computer revolution of the mid 20th century, and research in this

area grew rapidly. Nowadays, robots can be found in almost every sector of soci-

ety (Bekey and Yuh, 2008), such as industrial robots that can operate continuously

in factories, medical robots that assist doctors in complicated surgeries, domestic

robots that clean up our home’s floor, and consumer-grade robots that can be

controlled using our phones.

The apparent ubiquity of smart robots, however, is deceiving. While current

robots are extremely technologically advanced machines, they are not very intelli-

gent. Advances in Artificial Intelligence (AI) have consistently failed at achieving

the so-called “strong AI”, a general type of intelligence intellectually equivalent to

human intelligence. The development of strong AI robots would allow them to

be applied to whole new classes of tasks in our complex, dynamic world, and be

1

Chapter 1. Introduction

actively involved in our daily lives. While robots are very good at carrying out

precise instructions, they are unable to adapt to unforeseen situations or operate

in arbitrary real-world task environments.

Most robots are manually programmed by engineers to perform a particular

task. In many cases, the algorithms that govern the behavior of the robots are not

flexible, and the robot’s behavior is limited to specific manually programmed rules.

Many different types of “narrow AIs”, extremely specialized decision systems, have

been developed for robotic applications. While these control systems work in very

specific situations, such as classifying objects from a video feed or recognizing

speech, the ability to solve many everyday tasks in general is still lacking.

In order to overcome this inflexibility in traditional robotic control systems,

alternative control synthesis methodologies have emerged. Evolutionary Robotics

(ER) is a research field inspired by Darwin’s theory of evolution (Darwin, 1859). It

employs artificial evolution with the aim of automatically synthesizing robotic con-

trol (Nolfi and Floreano, 2000), and sometimes even the robots’ morphology (Hiller

and Lipson, 2012). The robot’s control system is typically encoded in a genotype,

which is then subject to an iterative evaluation, selection and variation process. ER

techniques have the potential to automate the design of control systems without

the need for manual and detailed specification of the desired behavior (Floreano

and Keller, 2010) and to exploit the way in which the world is perceived through

the robot’s (often limited) sensors. Numerous studies have demonstrated evolved

control systems that enable robots to solve simple tasks in surprisingly elegant

ways (Floreano and Mondada, 1996; Nolfi and Floreano, 2000; Nakamura et al.,

2000; Hornby et al., 2005; Christensen and Dorigo, 2006a; Duarte et al., 2011).

ER techniques have been applied to single-robot systems and to multirobot

systems. Swarm robotics is a promising approach to collective robotics, where large

groups of relatively simple robots with the ability to display collectively intelligent

behavior are used, as opposed to relying on a single, complex robot (Brambilla

et al., 2013). Inspiration for Swarm Robotic Systems (SRS) comes from biological

swarms (Şahin, 2005). Colonies of social insects, such as ants, termites or bees,

2

Chapter 1. Introduction

display certain interesting properties: while each individual is relatively simple,

the swarm as a whole is capable of solving complex tasks, in a classic example of

the collective being more than the sum of its parts.

Control in a SRS is decentralized, meaning that each individual robot operates

based on its local observations of the environment, and interaction with neigh-

boring robots. During task execution, the swarm-level behavior emerges from the

interactions between neighboring robots, and from the interactions between robots

and the environment. The swarm robotics approach is associated with important

properties in multirobot systems (Şahin, 2005), namely: (i) robustness, the ability

to cope with the faults and loss of individual robots, and (ii) scalability, the abil-

ity to operate under a wide range of group sizes. Due to these properties, swarm

robotics systems have an enormous potential in several real-world domains, such

as search and rescue, exploration, surveillance, and cleaning (Bayındır and Şahin,

2007; Brambilla et al., 2013).

One of the key challenges in SRS is the synthesis of behavioral control for the

constituent robots. Manually designing control for each robot requires the de-

composition of the macroscopic, swarm-level behavior into microscopic behavioral

rules so that the global, collectively self-organized behavior emerges (Brambilla

et al., 2013). That is, the designer needs to be able to understand the relation

between robot interactions and emerging global properties. There is, however, no

known way to derive the microscopic behavioral rules based on a desired global be-

havior or task description for the general case (Dorigo et al., 2004). In this respect,

the use of evolutionary computation techniques has been studied as an alterna-

tive to traditional control approaches such as manual programming, see (Nolfi and

Floreano, 2000; Harvey et al., 1997; Lipson and Pollack, 2000) for examples.

Despite its potential, a number of critical issues currently prevent ER from

becoming a viable mainstream approach for engineers (Silva et al., 2015a). Even

though numerous studies have applied evolution for the synthesis of control sys-

tems, the approach has so far failed to scale to more complex tasks (Nelson et al.,

2009). If a task is too difficult, an initial randomly generated population may

3

Chapter 1. Introduction

be located in a region of the search space without a fitness gradient. The evolu-

tionary process may therefore drift around in such a region and fail to bootstrap.

Even when a gradient is present, the gradient may lead the evolutionary process

toward low-quality local optima, a problem known as deception (Whitley, 1991).

As the complexity of a task increases, the fitness landscape typically becomes

rugged (Nelson et al., 2009), and the evolutionary process becomes more vulnera-

ble to deception (Lehman and Stanley, 2011).

Another issue is related to the transfer of evolved control from simulation to re-

ality. In ER, a large number of candidate solutions typically have to be evaluated.

As a consequence, evaluations are usually conducted in computer simulation and

not on real robotic hardware. Despite best efforts to accurately simulate the real

world, differences are bound to exist between simulation and reality. The differ-

ences between simulation and reality are often referred to as the reality gap (Jakobi,

1997). The presence of the reality gap means that controllers evolved in simulation

may exploit aspects of the simulated world that are different or may not exist in

the real world. Controllers evolved in simulation are therefore not guaranteed to

maintain their performance when executed on real robotic hardware (Koos et al.,

2013).

The bootstrap problem, deception, and the reality gap remain major chal-

lenges in ER. While there has been considerable progress in the field of ER in

recent years, there have been no significant breakthroughs indicating that ER

scales to tasks with the level of complexity found outside strictly controlled labo-

ratory conditions. As discussed by Nelson et al. (2009) in a review of single-robot

ER tasks and fitness functions, and Brambilla et al. (2013) and Bayındır (2016) in

recent reviews of the field of swarm robotics, all experiments presented in the lit-

erature covered have, in fact, been performed either in simulation or in controlled

environments, such as enclosed arenas, where the relevant conditions are defined

by the experimenter. That is, although ER-based control is ultimately intended

to be applied in potentially unstructured, real-world environments, no study has

been able to truly leverage and demonstrate the benefits of ER in such environ-

ments. Notwithstanding, evolutionary techniques still have significant potential

4

Chapter 1. Introduction

in controller design that can be realized if we depart from the tradition unadul-

terated application of ER and embrace more practical and engineering-oriented

approaches as the work presented in this thesis demonstrates.

In this thesis, we propose an approach for decomposable complex tasks that

combines the benefits of ER, namely automatic synthesis of control, and human

engineering to circumvent the bootstrap problem, to avoid deception, and to suc-

cessfully cross the reality gap. If a robotic controller cannot be evolved for a par-

ticular task, we manually divide the task into two or more sub-tasks and evolve an

independent sub-controller for each sub-task. An additional controller that selects

which sub-controller is active at any given time is then synthesized. Behavioral

control for complex tasks can thus be obtained in an incremental and hierarchical

manner, and issues related to performance on real hardware can be addressed at

each increment. Our approach allows for the reuse of previously synthesized con-

trollers and for the combination of different control synthesis techniques. Some

tasks, such as those that require the robot to perform actions with a high degree of

accuracy, might be difficult to simulate with sufficient fidelity to allow for success-

ful transfer of evolved control to a real robot. Examples include object grasping

and manipulation (Okamura et al., 2000), morphogenesis (O’Grady et al., 2009),

where robots attach to each other to form specific shapes, and fine sensorimotor

coordination (Er et al., 2002; Hehn and D’Andrea, 2011), where accurate sensing,

actuation and control is necessary. For such tasks, a manually programmed be-

havior can be developed directly for the real robotic hardware and integrated in

the hierarchical structure of the controller.

Our approach introduces four important features related to the use of ER tech-

niques as an engineering tool: (i) incremental evolution: by taking an incremental,

divide-and-conquer approach to evolution, bootstrapping issues and deception can

be avoided, (ii) scalability (in task complexity): as partial solutions are combined,

fitness functions can be derived based on the immediate task decomposition, and

an increase in fitness function complexity as increasingly complex tasks are con-

sidered is thereby averted, (iii) incremental transfer : sub-controllers can be tested

5

Chapter 1. Introduction

incrementally on real robotic hardware and issues related to real-robot perfor-

mance can be addressed locally in the controller hierarchy, and (iv) hybridity : our

methodology allows for seamless integration of behavior synthesized with different

approaches and even manually programmed behavior.

In summary, the contribution of this thesis is as follows. We present the hierar-

chical control synthesis approach, which allows evolutionary methodologies to be

successfully applied to complex tasks by decomposing the robotic control into a hi-

erarchy of behaviors. We systematically validate our approach in real robotic hard-

ware and in tasks that are beyond the state of the art in terms of task complexity.

We go on to demonstrate the first instance of a robotic swarm with evolved con-

trol performing tasks outside of strictly controlled laboratory conditions, showing

that SRS, ER and hierarchical control systems are viable approaches for complex

real-world tasks.

1.1 Problem Statement

The focus of this thesis is to address the main issues in the field of ER that

have prevented the application of evolutionary techniques to real-world robotic

systems, through the proposal and study of an engineering-centric hierarchical

control synthesis approach. The approach consists of decomposing a task into

several sub-tasks, and then synthesizing control for each sub-task separately. The

behavioral blocks, which can be synthesized using different techniques, such as

artificial evolution and manual programming, are combined hierarchically, allowing

for increasingly complex tasks to be solved.

The hierarchical control synthesis approach was designed in order to address

multiple issues in the field of ER: (i) the bootstrap problem and deception are

avoided, since each individual controller only solves part of the task, (ii) the re-

ality gap effect is minimized by adding significant amounts of noise in simula-

tion (Miglino et al., 1996), thus promoting the evolution of general and robust

controllers, and (iii) hybridity in the controller structure allows for the synthesis

6

Chapter 1. Introduction

of control for tasks where the application of evolutionary techniques would not

feasible, such as in tasks that require fine sensorimotor coordination.

In this thesis, we evaluate the hierarchical control synthesis approach in several

different scenarios. The approach is first validated in a single-robot system using

different variations of the approach, such as purely-evolved hierarchical controllers

and hybrid controllers. After the first validation, we apply the approach to SRS,

where it becomes infeasible to manually program robotic controllers for general

tasks. We validate our approach by conducting systematic real-robot experiments,

including the first demonstration of a SRS with evolved control outside of strictly

controlled laboratory conditions.

1.2 Thesis Structure and Contribution

of Research

In this section, we provide an overview of the thesis structure and the scientific

publications produced over the past four years leading to this thesis.

In Chapter 2, we review the current state of the art in the field of evolutionary

robotics and swarm robotics. The chapter is divided in four major sections: an

introduction of the field of ER, the challenges in transferring control to real robots,

the challenges in evolving control for complex tasks, and an overview of the swarm

robotics field. Part of this section was presented in a survey of the key open issues

in the field of ER:

• F. Silva, M. Duarte, L. Correia, S. M. Oliveira, A. L. Christensen, “Open

Issues in Evolutionary Robotics”, Evolutionary Computation, 24(2):1-

32, 2016.

In Chapter 3, we present the hierarchical control synthesis methodology pro-

posed in this thesis. In our methodology, a task is decomposed into sub-tasks, and

7

Chapter 1. Introduction

robotic control is synthesized for each sub-task. The different sub-controllers are

then composed hierarchically, allowing more complex tasks to be solved. Actuation

nodes are at the lower levels of such a controller, and are called behavior primi-

tives, while decision nodes, called behavior arbitrators, are higher up the hierarchy

and select which sub-controller should be active at any given time. A controller

can be hybrid, which means it can be composed of control nodes synthesized with

different techniques, such as evolution and manual programming.

In Chapter 4, we validate our hierarchical control synthesis technique in a

series of experiments with an e-puck robot (Mondada et al., 2009). Firstly, we

demonstrate a hierarchical controller for a complex, sequential task in which all

modules are evolved for a rescue task (see Section 4.2). Secondly, we explore

the concept of hybrid controllers, where control is composed of both evolved and

manually programmed control, in a navigation sub-task of the complete rescue

task (see Section 4.3). Finally, we demonstrate a hybrid controller for a complex,

non-sequential task where the need for fine sensorimotor control can prevent the

use of evolutionary techniques in real robots (see Section 4.4). The work presented

in Chapter 4 resulted in the following publications:

• M. Duarte, S. M. Oliveira and A. L. Christensen, “Evolution of Hybrid

Robotic Controllers for Complex Tasks”, Journal of Intelligent and

Robotic Systems, 78(3-4):463-484, 2015.

• M. Duarte, S. Oliveira and A. L. Christensen, “Automatic Synthesis

of Controllers for Real Robots Based on manually programmed

Behaviors”, Proceedings of the International Conference on Adaptive Be-

haviour, Springer, Berlin, Germany, 2012, pp. 249-258.

• M. Duarte, S. Oliveira and A. L. Christensen, “Hierarchical evolution

of robotic controllers for complex tasks”, in Proceedings of the IEEE

International Conference on Development and Learning and on Epigenetic

Robotics (ICDL EpiRob), IEEE Press, Piscataway, NJ, 2012, pp. 1-6. Paper

of Excellence award

8

Chapter 1. Introduction

• M. Duarte, S. Oliveira and A. L. Christensen, “Structured Composition

of Evolved Robotic Controllers”, in Proceedings of the 5th International

Workshop on Evolutionary and Reinforcement Learning for Autonomous

Robot Systems (ERLARS), N. Siebel, Ed., 2012, pp. 19-25.

Although they are not presented in this thesis, the experiments reported in

Section 4.4 were extended to a simulated multirobot-system and resulted in the

following publication:

• M. Duarte, S. M. Oliveira and A. L. Christensen, “Evolution of Hier-

archical Controllers for Multirobot Systems”, in Proceedings of the

International Conference on the Synthesis & Simulation of Living Systems

(ALIFE), MIT Press, Cambridge, MA, 2014, pp. 657-664.

Preliminary versions of the experiments presented in Sections 4.2 and 4.3 were

presented in my MSc thesis (see reference below). The MSc research overlapped

with the first 6 months of doctoral research (starting in January 2012), and re-

sulted in the compilation of the MSc thesis in June 2012. Both the simulated

and real-robot experiments were later redone based on the feedback from review-

ers’ comments during the submission to the abovementioned article to Journal of

Intelligent and Robotic Systems.

• M. Duarte, “Hierarchical Evolution of Robotic Controllers for Com-

plex Tasks”, Master’s thesis, University Institute of Lisbon (ISCTE-IUL),

2012.

In Chapter 5, we apply our methodology to robotic swarms. The experiments

presented in this chapter were conducted in the context of the CORATAM and

HANCAD projects, which focused on swarms of aquatic robots. The robotic plat-

form used was designed and built during the projects, and a total of 10 robots were

produced. The first part of the chapter focuses on describing the robotic platform

(see Section 5.1.1) and the simulation model (see Section 5.1.2). Then, we present

9

Chapter 1. Introduction

a series of validation experiments based on four canonical swarm robotics tasks

(homing, clustering, dispersion and area monitoring, see Section 5.1.3) and the

results of the evolutionary process in simulation (see Section 5.1.4). The highest-

performing controllers for these tasks are systematically tested in the real robotic

platform (see Chapter 5.2), and we conduct an additional set of experiments to

validate key swarm robotics characteristics in our platform, such as scalability

and robustness (see Section 5.3). To finish the validation experiments, we demon-

strate the modularity of the evolved controllers by applying our hierarchical control

synthesis approach with a simple time-based manually programmed behavior arbi-

trator for an environmental monitoring task (see Section 5.4). The work presented

in the aforementioned sections has been accepted at the international conference

OCEANS and submitted to the journal PLoS ONE:

• M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira, A.

L. Christensen, “Evolution of Collective Behaviors for a Real Swarm

of Aquatic Surface Robots”, PLoS ONE, 11(3):e0151834, 2016.

• M. Duarte, J. Gomes, V. Costa, T. Rodrigues, F. Silva, V. Lobo, M. M.

Marques, S. M. Oliveira and A. L. Christensen, “Application of Swarm

Robotic Systems for Marine Environmental Monitoring”, in Pro-

ceedings of the MTS-IEEE OCEANS, 2016, in press.

In Section 5.5, we apply our hierarchical control methodology to an intruder

detection task. In our intruder detection task, a swarm of robots must remain

within a previously designated area, delimited by a geo-fence, and pursue intruders

that try to cross the area. The robots are initially located on a base station, to

which they must periodically return in order to recharge their batteries. The

homing and area monitoring controllers previously evolved in Section 5.1.3 are

reused for this task, in addition to a newly evolved pursue intruder controller.

These behaviors are then combined with a behavior arbitrator consisting of a

manually programmed finite state-machine. We further test the scalability and

flexibility of the behavior arbitrator, and finally transfer control from simulation

10

Chapter 1. Introduction

to the real swarm of aquatic robots. The experiments presented in Section 5.5

have been published in the following paper:

• M. Duarte, J. Gomes, V. Costa, S. M. Oliveira and A. L. Christensen, “Hy-

brid Control for a Real Swarm Robotic System in an Intruder

Detection Task”, in Proceedings of the 19th European Conference on the

Applications of Evolutionary Computation (EvoStar), 2016, pp. 213-230.

We further extend the intruder detection experiments in order to test the

scalability of the controllers in swarms of up to 1000 robots in a monitoring area

with an area of 10 km2 (see Section 5.5.5). A preliminary version of the scalability

experiments was presented in:

• M. Duarte, S. M. Oliveira and A. L. Christensen, “Hybrid Control for

Large Swarms of Aquatic Drones”, in Proceedings of the International

Conference on the Synthesis & Simulation of Living Systems (ALIFE), MIT

Press, Cambridge, MA, 2014, pp. 785-792.

In Chapter 6, we conclude the thesis and discuss future directions of research.

All experiments presented in this thesis (except for the scalability experiments

with up to 1000 robots in Section 5.5.5) were validated in real robotic hardware.

1.3 Other Scientific Contributions

During our research, we have conducted a series of studies not directly related to

the topic of this thesis. These studies are related with traditional evolutionary

robotics, and evolutionary techniques in the context of swarm robotics. These

contributions have resulted in one book chapter and eight conference publications:

• T. Rodrigues, M. Duarte, M. Figueiró, V. Costa, S. M. Oliveira, A. L. Chris-

tensen, “Overcoming Limited Onboard Sensing in Swarm Robotics

11

Chapter 1. Introduction

through Local Communication”, in Transactions on Computational Col-

lective Intelligence XX, vol. 9420 of Lecture Notes in Computer Science

(LNCS), pp. 201-223. Springer, Berlin, Germany, 2015.

• M. Duarte, F. Silva, . T. Rodrigues, S. M. Oliveira, A. L. Christensen,

“JBotEvolver: A Versatile Simulation Platform for Evolutionary

Robotics”, in Proceedings of the International Conference on the Synthesis

& Simulation of Living Systems (ALIFE), MIT Press, Cambridge, MA, 2014,

pp. 210-211.

• F. Silva, M. Duarte, S. M. Oliveira, L. Correia, A. L. Christensen, “The case

for engineering the evolution of robot controllers”, in Proceedings

of the International Conference on the Synthesis & Simulation of Living

Systems (ALIFE), MIT Press, Cambridge, MA, 2014, pp. 703-710.

• T. Rodrigues, M. Duarte, S. M. Oliveira, A. L. Christensen, “What you

choose to see is what you get: an experiment with learnt sen-

sory modulation in a robotic foraging task”, in Proceedings of the

16th European Conference on the Applications of Evolutionary Computation

(EvoStar), Springer, Berlin, Germany, 2014, pp. 789-801.

• T. Rodrigues, M. Duarte, S. M. Oliveira, A. L. Christensen, “Beyond

Onboard Sensors in Robotic Swarms: Local Collective Sensing

through Situated Communication”, in Proceedings of the International

Conference on Agents and Artificial Intelligence (ICAART), SCITEPRESS,

Lisbon, Portugal, 2015, pp. 111-118.

• A. L. Christensen, S. Oliveira, O. Postolache, M. J. d. Oliveira, S. Sargento,

P. Santana, L. Nunes, F. Velez, P. Sebastião, V. Costa, M. Duarte, J. Gomes,

T. Rodrigues, F. Silva, “Design of Communication and Control for

Swarms of Aquatic Surface Drones”, in Proceedings of the International

Conference on Agents and Artificial Intelligence (ICAART), SCITEPRESS,

Lisbon, Portugal, 2015, pp. 548-555.

12

Chapter 1. Introduction

• P. Romano, L. Nunes, A. L. Christensen, M. Duarte, S. M. Oliveira,

“Genome Variations: Effects on the robustness of neuroevolved

swarm controllers”, in Proceedings of the Iberian Conference on Robotics

(ROBOT), Springer, Berlin, Germany, 2015, pp. 309-319.

• F. J. Velez, A. Nadziejko, A. L. Christensen, S. Oliveira, T. Rodrigues, V.

Costa, M. Duarte, F. Silva, J. Gomes, “Wireless Sensor and Networking

Technologies for Swarms of Aquatic Surface Drones”, in Proceedings

of the IEEE 82nd Vehicular Technology Conference (VTC Fall), 2015, pp.

1-2.

• V. Costa, M. Duarte, T. Rodrigues, S. M. Oliveira and A. L. Chris-

tensen, “Design and Development of an Inexpensive Aquatic Swarm

Robotics System”, in Proceedings of the MTS-IEEE OCEANS, 2016, in

press.

A detailed description of other contributions, such as the participation in the

CORATAM and HANCAD projects, the participation in the COHiTEC program,

media coverage, and software tools developed can be found in Appendix A.

1.4 Summary

In this chapter, we have provided an overview of the key advantages and limita-

tions in the field of ER. While evolutionary techniques have a significant potential

for the automatic synthesis of robotic control, they are currently limited in terms

of complexity of the evolved behavior, and of the transfer of control from simu-

lation to reality. In order to address these issues, we introduced the topic of this

thesis, namely the hierarchical control synthesis approach. We listed scientific con-

tribution which lead to this thesis, as well as other scientific contributions related

to ER and SRS.

13

Chapter 2

State of the Art

Evolutionary robotics is the research field that studies the application of evolu-

tionary computation to the synthesis of robotic control (Nolfi and Floreano, 2000).

Given a specification of the task by the experimenter, an evolutionary algorithm

evaluates and optimizes controllers in a holistic manner, iteratively fine-tuning

the parameters and the microscopic rules guiding the robots based on the per-

formance of the resulting behavior. Evolution therefore eliminates the need for

manual and detailed specification of low-level control (Floreano and Keller, 2010)

and facilitates the emergence of self-organized behavior (Nolfi, 1998; Trianni and

Nolfi, 2011).

Evolutionary Algorithms (EAs) are a search heuristic inspired by Darwinian

evolution (Darwin, 1859) that rely on blind variations and survival of the fittest to

find increasingly better solutions for a particular problem. EAs are composed of a

population of candidate solutions, which are randomly selected from the complete

search space in the first stage of evolution. The performance of each candidate

solution is assessed, and the highest-performing solutions are then selected and

subject to variations (mutation and/or crossover). The process then continues

iteratively until a termination condition is reached, such as a specific number of

generations or a performance threshold.

15

Chapter 2. State of the Art

Each candidate solution is represented by a genome. An encoding mechanism

is then used to transcribe a particular genotype, which describes the solution’s

hereditary information, to the corresponding phenotype, which represents the so-

lution itself. In the case of ER, the phenotype is typically the robot’s controller.

Genotype-phenotype mappings can be direct, where each value of the genotype

directly translates to a feature of the phenotype (Nelson et al., 2009), or indirect,

where each gene can be used multiple times to construct different parts of the

phenotype (Stanley and Miikkulainen, 2003).

In ER, it is common to use Artificial Neural Networks (ANNs) as robotic

controllers. ANNs are computational models based on biological neural net-

works. They are composed of neurons and inter-neuron connections, also known

as synapses. Neurons are computational units, which integrate a number of inputs

and compute the corresponding output. ANNs are composed by an input and an

output layer, and can have any number of hidden layers, although certain networks

are not directly organized in distinct layers (Stanley and Miikkulainen, 2002).

By using an evolutionary process, the parameters of the neural network (such

as the number of neurons, the synaptic weights, or their activation threshold func-

tion) are changed from one generation to the next. Evolution therefore allows for

the self-organization of the controller, in contrast with the traditional approaches

of behavior-based robotics in which the designer has to program the robots’ be-

haviors manually. The input neurons of the ANN receive activations from the

robot’s sensors, and the output neurons are mapped to the robot’s actuators. The

usage of ANNs in ER is widespread because they (Floreano and Mondada, 1994):

(i) provide evolution with a relatively smooth search space, (ii) are able to tolerate

noisy input inherent to most real-world sensors, and (iii) have been shown capable

of representing general and adaptive solutions.

After two decades of research in ER, controllers have been successfully evolved

for robots with varied functionality, from terrestrial robots to flying robots (Flo-

reano et al., 2005). Although there has been significant progress in the field, it

16

Chapter 2. State of the Art

is arguably on a scale that still precludes the widespread adoption of ER tech-

niques (Silva et al., 2014b). Two of the main issues (Silva et al., 2015a) that have

prevented ER from becoming a mainstream topic in robotics (Stanley, 2011) are

the difficulty in transferring control from simulation to real robots (known as the

reality gap), and limitations in terms of task complexity (caused by the bootstrap

problem and deception). Below, we discuss these two issues, and we provide an

overview of the field of swarm robotics.

2.1 Crossing the Reality Gap

In traditional ER approaches, controllers are synthesized offline, in simulation,

to avoid the time-consuming nature of performing all evaluations on real robotic

hardware. When a suitable controller is found, it can be deployed on real robots.

One of the central issues with the simulate-and-transfer approach is the real-

ity gap (Jakobi, 1997), a frequent phenomenon in ER experiments. Controllers

evolved in simulation can become inefficient once transferred onto the physical

robot due to their exploitation of features of the simulated world that may be

different or that do not exist in the real world.

Several authors have addressed such transferring issues. Miglino et al. (1996)

proposed three complementary approaches: (i) using samples from the real robots’

sensors to more accurately model them in simulation, (ii) introducing a conser-

vative form of noise to promote the evolution of robust controllers, and (iii) con-

tinuing evolution in real hardware to tune controllers to the differences between

simulation and reality. Using samples from real sensors increases the accuracy of

simulations by using a more realistic sensor model, which in turn can decrease

the difference between the sensory input experienced in simulation and in real-

ity. Noise can be applied to promote the evolution of robust controllers that can

better tolerate variations in the sensory inputs during task execution. Finally, if

the performance of the controller decreases after transfer, continuing evolution on

17

Chapter 2. State of the Art

real hardware can potentially enable the synthesis of a well-adapted controller in

a timely manner.

Jakobi (1997) introduced the concept of minimal simulations, in which the

experimenter only implements features of the real world deemed necessary for

successful evolution of controllers. All remaining features are hidden in an “en-

velope of noise” in order to minimize the effects of simulation-only artifacts that

can prevent successful transfer of evolved control to real robotic hardware. The

approach was demonstrated in three tasks. The first task was a T-maze naviga-

tion task where a wheeled robot had to choose whether to turn left or right at

an intersection depending on the location of a light source in the initial corridor.

The second task was a shape discrimination task, in which a gantry robot had to

distinguish between two shapes and move towards one of them. The third task

was a locomotion and obstacle avoidance task for an eight-legged robot.

It is not clear if Jakobi’s approach scales well to complex tasks, since such

tasks: (i) typically involve richer robot-environment interactions, and therefore

more features, and (ii) require that the experimenter can determine the set of rele-

vant features and build a task-specific simulation model. For example, if the tasks

considered involve a large number of robots or robots with high-resolution sensory

capabilities such as vision, minimal simulations call for considerable engineering

effort because the critical simulation features become more difficult to ascertain

and to model (Watson et al., 2002).

Koos et al. (2013) proposed the transferability approach, a multi-objective for-

mulation of ER in which controllers are evaluated both by their performance in

simulation and their performance on real robots. Contrarily to approaches that

simply use individual fitness comparisons of reality versus simulation as a feed-

back to adapt the simulation model (Zagal and Ruiz-Del-Solar, 2007), the goal of

the transferability approach is to learn the discrepancies between simulation and

reality, and to constrain evolution in order to avoid behaviors that do not cross the

reality gap effectively. The transferability approach relies on a surrogate model

that is updated periodically by evaluating candidate solutions in real hardware.

18

Chapter 2. State of the Art

The authors tested the approach in a T-maze navigation task with a differential

drive robot, and in a locomotion task with a quadruped robot. In both tasks, the

transferability approach was able to find a solution to the task in relatively few

generations (100 or less). However, the approach can become unfeasible if sev-

eral hundreds or thousands of generations are required. Moreover, the difficulty

in automatically evaluating controllers in real hardware represents an additional

challenge.

Lehman et al. (2013) propose a different approach where the evolutionary pro-

cess explicitly rewards the evolved behaviors for displaying a high reactivity, as

measured by the mutual information between the magnitude of changes in a robot’s

sensors and effectors. The authors showed that reactive controllers transfer better

to real robots, regardless of the noise conditions with which the controllers were

evolved.

As opposed to the simulate-and-transfer discussed above, online evolution ex-

ecutes the evolutionary algorithm on the robots themselves, while they perform

their tasks. The main components of the evolutionary algorithm (evaluation, se-

lection, and reproduction) are carried out autonomously by the robots without

any external supervision. If the environmental conditions or task requirements

change, the robots can modify their behavior to cope with the new circumstances.

Online evolution in a real, ANN-driven robot was first studied by Floreano and

Mondada (1994, 1996). The authors evolved navigation and homing controllers

for a Khepera robot (Mondada et al., 1999) using an online generational evolu-

tionary algorithm, which was executed on a workstation due to limitations of the

robot hardware. The evolution of controllers for a standard navigation and ob-

stacle avoidance task required almost three full days, at a rate of 39 minutes per

generation (total of 100 generations), showing that evaluation time is a key aspect

in real-robot experiments.

Watson et al. (2002) attempted to accelerate online evolution by distribut-

ing the evolutionary process across a group of robots, in an approach known as

embodied evolution. Robots can test a large number of candidate solutions in

19

Chapter 2. State of the Art

parallel and then transmit the best controllers to other robots in the group. Fol-

lowing Watson et al.’s studies on embodied evolution, a number of algorithms for

online evolution in multirobot systems were introduced. Examples include an ap-

proach for self-assembling of robots (Bianco and Nolfi, 2004), the combination of

embodied evolution and reinforcement learning (Wischmann et al., 2007), (µ+1)-

online (Haasdijk et al., 2010), mEDEA (Bredeche et al., 2012), MONEE (Noskov

et al., 2013), and odNEAT (Silva et al., 2015b).

Online evolution still remains unfeasible to apply in real robotic hardware due

to the the large number of evaluations needed until adequate solutions are found,

and consequently the large amount time required (Silva et al., 2014b).

2.2 Task Complexity in ER

Driving the evolutionary process towards high-quality solutions, thereby avoiding

local optima, is another challenge in ER besides the specific shortcomings of offline

evolution and online evolution. When the task to which solutions are sought

reaches a certain level of complexity, traditional evolutionary approaches are prone

to suffer from bootstrap problems and deception (Doncieux and Mouret, 2014).

Numerous studies have demonstrated evolved controllers for basic tasks. Nel-

son et al. (2009) surveyed different types of fitness functions used in the field of evo-

lutionary robotics. In the discussion of their findings, they state that evolutionary

robotics may possibly “generate autonomous systems with limited general abilities

at some point in the future”. In their survey of more than one hundred different ER

studies, there were only reports on the successful application of ER techniques to

relatively simple tasks, such as locomotion and obstacle avoidance (Floreano and

Mondada, 1996), goal homing (Harvey et al., 1994), foraging (Nakamura et al.,

2000), and phototaxis (Watson et al., 2002). In a different survey, Meyer et al.

(1998) argued that “the challenge is to move from basic robot behaviors to ever

more complex, non-reactive ones”. The lack of successful applications to complex

tasks can partly be attributed to the bootstrap problem and deception.

20

Chapter 2. State of the Art

An approach to avoiding deception was proposed by Celis et al. (2013), which

allows for non-expert users to interact with the evolutionary process by allowing

them to guide evolution away from local optima. The approach was demonstrated

on a simple navigation task with a deceptive fitness function, where the robot

has to reach a goal by moving around an obstacle. The non-expert user can aid

evolution by defining an intermediate waypoint that the robot should pass through

on its way to the target location.

Different approaches have been proposed to solve increasingly more complex

tasks. In incremental evolution, the experimenter decomposes a task to bootstrap

evolution and to circumvent deception. There are numerous ways to apply in-

cremental evolution (Mouret and Doncieux, 2008), such as dividing the task into

sub-tasks that are solved sequentially, or making the task progressively more dif-

ficult through environmental complexification (Christensen and Dorigo, 2006b).

Although incremental evolution can be seen as an approach in which engineering

and evolution are combined, it is typically performed in an unstructured manner.

The experimenter has to perform a manual switch between the execution of each

component of the evolutionary setup, such as different sub-tasks, which can signif-

icantly affect the global performance of solutions evolved (Mouret and Doncieux,

2008). In addition, if the components of the setup are highly integrated, incre-

mental evolution can be difficult to apply successfully (Christensen and Dorigo,

2006b).

With the advent of behavior-based robotics, Brooks (1986) introduced the sub-

sumption architecture, in which a controller is divided into a number of manually

programmed modules that are organized in a layered structure reflecting their rel-

ative priorities. The architecture allows modules to inject data in layers of lower

priority and to subsume control. The division of control into modules has since

been applied in other approaches. Neural ensembles (Hansen and Salamon, 1990)

are compositions of ANNs that collectively decide on a particular action, typically

by averaging their output. While modules in neural ensembles all contribute to a

particular output simultaneously, the modules in our hierarchical controllers are

specialized to perform different tasks.

21

Chapter 2. State of the Art

Moioli et al. (2008) used a homeostatic-inspired GasNet to control a robot in

two sub-tasks: obstacle avoidance and phototaxis. The authors used two different

sub-controllers that were inhibited or activated by the production and secretion

of virtual hormones, and they were able to evolve a controller that activated the

appropriate sub-controller depending on external stimulus and internal stimulus.

An alternative hormone-based control system was introduced by Hamann et al.

(2012) for decentralized control for cooperative multirobot systems. Nolfi and

Parisi (1995) experimented with dividing a neural network into different modules

in a garbage collection task. The robot had to grasp objects and release them

outside of the environmental bounds. For their experiments, they used a Khepera

robot with a gripper module. They divided the network’s output layer into two

modules that competed for activation. The controller evolved one of the modules

to find and pick up the objects, and one to release them outside the bounds of the

environment.

Lehman and Stanley (2011) introduced Novelty Search (NS) as a means to

avoid premature convergence and to overcome bootstrapping issues. In NS, be-

haviors are not scored based on a traditional fitness function, but based on behav-

ioral novelty with respect to previously evaluated individuals. Since NS does not

have a static objective, bootstrapping is typically not an issue, and the constant

evolutionary pressure toward behavioral innovation means that NS is unaffected

by deception. The features chosen by an experimenter to characterize behavior

might not be directly related to the task. If NS exploits such features, the evo-

lutionary process may be unable to find suitable solutions for the task (Gomes

et al., 2013). To avoid excessive exploration of regions of the behavior space that

are unrelated to the goal task, NS is often combined with fitness-based evolu-

tion (Gomes et al., 2014). Despite the promising results obtained with NS, to the

best of our knowledge, there has still been no demonstration of control evolved

with NS on real robotic hardware that is significantly beyond what has been shown

using fitness-based evolution.

Stanley and Miikkulainen (2002) introduced Neuroevolution of Augmenting

Topologies (NEAT), an evolutionary algorithm that not only optimizes the weights

22

Chapter 2. State of the Art

of the neural controller’s connections, but also incrementally augments the con-

troller’s topology with new connections and new neurons. NEAT has been shown

capable of producing solutions with minimal complexity and to outperform tradi-

tional evolutionary techniques in some instances, such as in double pole balancing

task, a roving eye for the board game Go, and in the evolution of plastic net-

works that are able to adapt in a foraging task where food items can become

poisonous (Stanley and Miikkulainen, 2004).

Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT)

extends NEAT by evolving connective Compositional Pattern Producing Networks

(CPPN) (Stanley et al., 2009). Evolved connective CPPNs are then used to encode

large-scale ANNs by exploring geometric regularities of the network’s topology.

Neurons are localized in space, and the connection weights are determined for the

entire network by inputing the coordinates of pairs of neuron in the evolved CPPN.

The spatial sensitivity of the resulting HyperNEAT network allows the network’s

topography to be exploited by the evolutionary algorithm. HyperNEAT is able

to find the geometric aspects of a task, and can typically lead to highly regular

networks (Clune et al., 2011), a feature that can be observed in many biological

networks.

Enforced Sub-Populations (ESP) (Gomez and Miikkulainen, 1997) is a cooper-

ative coevolutionary method in which individual neurons are evolved in separate

populations. Neurons from the different sub-populations are combined to form a

complete ANN controller during evaluation. In approaches such as HyperNEAT

and ESP, modularity is thus exploited in different ways and for different parts of

the controller. In our approach, each module is an independent controller that

solves a particular sub-task and the combination of different modules is decided

by the experimenter. Moreover, modules can be reused across different tasks,

as opposed to approaches such as HyperNEAT and ESP in which modules are

exclusively reused within the context of a single controller or not at all.

Silva et al. (2014a) introduced an approach where a neural controller can have

both simple neurons, and more complex macro-neurons. Both the structure and

23

Chapter 2. State of the Art

the parameters of the macro-neurons and of the network as a whole are subject to

variation during an online evolutionary process, which means that the weights and

the topology of the ANN can be optimized simultaneously. The authors show how

introducing macro-neurons allows for the evolutionary process to find solutions

in a significantly lower amount of time, while leading to higher performance in a

deceptive phototaxis task with multiple light sources.

Behavior composition has been advocated as an engineering-centric approach

when single, monolithic controllers are unable to solve a task (see Floreano, 1998;

Correia, 1998 for examples). Several studies have applied behavior composition

with different control synthesis techniques, such as genetic programming (Lee,

1999), neuroevolution (Larsen and Hansen, 2005; Becerra et al., 2005), or fuzzy

logic control (Tunstel, 1996; Abreu and Correia, 1999, 2001). The tasks in which

the approaches have been demonstrated are relatively simple, and have been shown

to be solvable by traditional evolutionary techniques. The hierarchical control

synthesis approach presented in this thesis is distinct in a number of key aspects:

(i) our approach allows for hybrid controllers in which different control synthesis

methods are used. Hybrid controllers can take advantage of the benefits of ER,

namely the automatic synthesis of behavior, and at the same time the use of

manual programming for behaviors that would be infeasible to evolve; (ii) we test

our approach in tasks that go beyond the state of the art in terms of complexity.

We further demonstrate transfer of behavioral control from simulation to real

robotic hardware without loss of performance; (iii) derived fitness functions are

introduced as a solution to prevent an increase in fitness function complexity as

the tasks considered become more complex; and (iv) we demonstrate our approach

in a swarm robotic system.

2.3 Swarm Robotics

The field of swarm robotics, as well as the more general field of swarm intelli-

gence, takes inspiration from the observation of social insects, such as ants, bees,

24

Chapter 2. State of the Art

wasps, and termites (Şahin, 2005). In these animal societies, relatively simple

units rely on self-organization to display collectively intelligent behavior. The

self-organized behavior of social insects confers the swarms a high scalability, ver-

satility, parallelism of operation, and robustness to individuals failures (Camazine

et al., 2003). The key motivation behind swarm robotics is to harness these prop-

erties to build large-scale decentralized multirobot systems (Şahin, 2005; Jones

and Mataríc, 2006). Due to their properties, swarm robotic systems have signif-

icant potential to take on a number of applications requiring distributed sensing

and/or action. In the majority of studies on evolutionary SRS, the swarm is ho-

mogeneous (Brambilla et al., 2013), meaning that all robots are morphologically

identical, and each robot is independently controlled by a copy of the same evolved

controller.

Evolutionary robotics has become a popular alternative to manual program-

ming in a variety of swarm robotic systems applications (Brambilla et al., 2013).

Evolutionary approaches have been used to solve a large number of swarm robotics

tasks such as coordinated motion (Baldassarre et al., 2007; Sperati et al., 2008),

chain formation (Sperati et al., 2011), aggregation (Trianni et al., 2003; Bahgeçi

et al., 2005; Soysal et al., 2007), flocking (Baldassarre et al., 2003), hole avoid-

ance (Trianni et al., 2006), aerial vehicles communication (Hauert et al., 2009),

categorization (Ampatzis et al., 2008), group transport (Groß and Dorigo, 2008,

2009), social learning (Pini and Tuci, 2008), and sharing of an energy recharging

station (Gomes et al., 2013).

Several large-scale projects have explored the use of SRS for a variety of ap-

plications. The SWARM-BOTS project (Dorigo et al., 2005) focused on the de-

velopment of hardware and control of a SRS composed of robots known as the

s-bots (Mondada et al., 2004). The s-bots are able to physically connect to one

another using a gripper, allowing them to form complex, multirobot morphologies.

This capability can be used to solve various collective tasks, such as form pulling

chains to retrieve heavy objects (Groß et al., 2006), crossing holes in the environ-

ment (Trianni et al., 2006), or navigate steep terrain (O’Grady et al., 2005). The

project studied several areas of swarm behavior, such as aggregation, coordinated

25

Chapter 2. State of the Art

motion, collective and cooperative transport of items, exploration, task-allocation,

navigation, and self-assembly.

The SWARMANOID project (Dorigo et al., 2013) extended SWARM-BOTS

by studying heterogenous swarms, that is, swarms composed of robots with differ-

ent morphologies and capabilities. Behavior heterogeneity can allow for a better

efficiency through the division of labor, and morphology heterogeneity has the

potential of augmenting the swarm’s capabilities, while reducing the overall cost

by keeping each robot simple. SWARMANOID extended the application of SRS

to three-dimensional human-centric environments by using three types of robot:

the hand-bot, which was able to climb structures, the eye-bot, a flying robot that

can attach to ceilings, and the foot-bot, small differential drive ground robots.

In the final demonstration of the system, the robots performed a search and re-

trieval task, where a book had to be located and collected from a bookshelf. In

the task, a group of foot-bots carried a hand-bot to the bookshelf, which in turn

climbed and retrieved the book. During the task, various eye-bots guided the

ground robots (Dorigo et al., 2013).

The SYMBRION project (Kernbach et al., 2008) explored large-scale robotic

organisms composed of multiple simple robots. By physically docking with one

another, the robots can symbiotically share computational resources and energy,

as well as perform tasks that would be impossible for a single robot to per-

form. The authors advocate that such a robotic system can have several advan-

tageous features, such as being self-configuring, self-healing, self-optimizing and

self-protecting from both the software and the hardware perspectives

The CoCoRo (Schmickl et al., 2011) project, which focuses on synthesis of con-

trol for underwater robots, and the ASSISIbf project (Halloy et al., 2013), which

aims to develop communication channels between robots and animals (fish and

honeybees, in particular), have studied the application of SRS to aquatic environ-

ments. While these projects rely on bio-inspired control systems, they are only

tangentially related with evolved ANN-based control, such as the one presented

in this thesis. Although the use of ER in aquatic robots has not yet been widely

26

Chapter 2. State of the Art

explored, a few studies have approached the subject. Some examples include the

evolution of locomotion behaviors (Meyer et al., 2003; Ijspeert et al., 2007), sta-

tion keeping for an underwater robot (Moore et al., 2013), and a neuroaugmenting

approach to the evolution of centralized control for a small team of Autonomous

Underwater Vehicles (AUVs) (Praczyk, 2014).

Swarm robotic systems have not leveraged their full potential up to this point,

and are still far from real-world applications. In recent and broad surveys of

SRS research, Brambilla et al. (2013) states that “in all real-robot experiments

presented in the analyzed literature, the experiments are performed in controlled

environments”, and Bayındır (2016) advocates that “to this date the use of robotic

swarms in real-world applications is still lacking: while laboratory experiments can

give a sense of what a given robotic system might achieve, large-scale deployments

in the field would provide new insights on the different factors affecting the opera-

tion of a swarm and would stimulate further research”.

There are multiple reasons for the absence of real-world swarm robotic sys-

tems, one of the most prevalent being the difficulty in designing behavioral control

for the individual robots that results in the desired swarm-level behavior. This

problem is exacerbated when trying to achieve behaviors capable of dealing with

the complexity of real tasks and uncontrolled environments, as opposed to the

abstract tasks and highly controlled environments that have been used in the ma-

jority of previous works. In this thesis, we demonstrate for the first time a SRS

with evolved control performing swarm behaviors outside of controlled laboratory

conditions. We designed and developed an aquatic swarm robotics platform, syn-

thesized control offline (in simulation), and transferred successfully transferred

control to the real robots (see Chapter 5). Furthermore, we go beyond the current

state of the art in terms of task complexity for SRS by applying the hierarchical

control synthesis approach.

27

Chapter 3

Methodology

In this chapter, we describe the hierarchical control synthesis approach. The

motivation for introducing the proposed approach was to address key issues in

the field of ER, namely the bootstrap problem, deception, and the reality gap

(see Chapter 1). Even though the hierarchical control synthesis approach was

designed with the field of ER in mind, it also allows for non-ER components,

such as manually programmed control, to be seamlessly integrated in the control

structure.

The chapter is divided in six different sections that explore the following top-

ics: (i) an overview of the hierarchical approach and the definition of key con-

cepts, (ii) how the structure of a controller is derived from the task decomposition,

(iii) high-level composition of control, (iv) hybridity and manually programmed

control, (v) the types of controllers used throughout this thesis, and (vi) the po-

tential advantages and limitations of the approach as a whole.

3.1 Overview and Definitions

The hierarchical control synthesis approach aims at structuring a robot’s control

program hierarchically by dividing it into multiple modules and organizing them

29

Chapter 3. Methodology

in a tree structure. The approach is inspired by the general concept of hierar-

chy, which can be found in many fields, such as engineering, social organizations,

computer systems, and biology (Simon, 1991). Hierarchy allows for a divide-and-

conquer approach to complex problems by breaking them down to smaller and

more manageable blocks.

The application of a hierarchical control system allows for the combination

of artificial evolution with more traditional robotics engineering techniques, such

as manual programming, by combining different approaches at different points

of the controller hierarchy. Our hierarchical controllers are composed of several

independent nodes and organized hierarchically, as seen in Figure 3.1. Each node

in the hierarchy is either a behavior arbitrator or a behavior primitive (Lee, 1999)

(see Figure 3.1). The different nodes are obtained by decomposing a task into

multiple sub-tasks, synthesizing control for each sub-task, and then composing

the nodes based on the task decomposition.

Behavior

Primitive

Primitive

Behavior

Primitive

Behavior

Arbitrator

Behavior

Behavior

Arbitrator

Figure 3.1: Representation of a hierarchical controller. A behavior arbitra-
tor delegates the control of the robot to one or more of its sub-controllers. A
behavior primitive controls the actuators of the robots directly.

The control mechanism of each node in the hierarchy is completely independent

from other nodes. Our approach allows for any type of control synthesis technique

to be used, such as artificial evolution, manual programming, fuzzy logic, etc. If

evolution is used, different nodes in the same controller can also be evolved under

30

Chapter 3. Methodology

different simulation conditions and even using different evolutionary algorithms. If

a hierarchical controller is composed of nodes synthesized with different techniques,

we refer to such a controller as hybrid. Hybrid controllers allow the experimenter

to leverage the advantages of each control synthesis method for specific nodes, for

instance artificial evolution for nodes that can benefit from self-organization and

automatic synthesis of behavior, and manual programming for nodes that require

fine sensorimotor coordination (Er et al., 2002; Hehn and D’Andrea, 2011).

Below, we identify and define key concepts associated with our approach.

Behavior node: A behavior node is a single block of behavior in the con-

troller hierarchy. It can be either a single behavior primitive or a single

behavior arbitrator. Each behavior node is independent from other nodes in

the controller hierarchy.

Behavior primitive: Behavior primitives are self-contained control nodes

that directly actuate the robot. These nodes are the leafs of the controller,

which means that they have no child nodes. Behavior primitives have access

to the robot’s sensors, and can control the actuators of the robot, such as

wheels or grippers. A behavior primitive can access either all or a sub-set of

the robot’s sensors and actuators, allowing for different robot configurations

for different behavior primitives.

Behavior arbitrator: Behavior arbitrators are decision nodes that delegate

control to one or more of its child nodes. Each behavior arbitrator has two

or more sub-controllers, which can, in turn, be either behavior arbitrators

or behavior primitives. The term sub-controller refers to a specific node and

all of the node’s child nodes. Similarly to behavior primitives, a behavior

arbitrator can have access to either all or a sub-set of the robot’s sensors.

Since the behavior arbitrator delegates control to one of its sub-controllers,

it does not directly control the robot’s actuators.

Controller: A controller is a behavior node and all its child nodes. When

we consider a behavior primitive as a controller, we are only referring to

31

Chapter 3. Methodology

the behavior primitive itself, since it is a leaf node. When we consider a

behavior arbitrator as a sub-controller, we are referring to that behavior

arbitrator and all its descendants. We can also refer to a controller as a

sub-controller, if it is part of the structure of a more complex controller.

3.2 Task Decomposition

In the hierarchical control synthesis approach, we resort to manual division of a

task into simpler sub-tasks when an evolutionary process is unable to find a so-

lution for the task. For each sub-task, a sub-controller is defined, which means

that the hierarchy of the controllers is defined by the task decomposition. If it is

possible to find an appropriate fitness function for a given task, a behavior primi-

tive composed of a single ANN is evolved to solve the task. An appropriate fitness

function is one that (i) allows evolution to bootstrap, (ii) leads to controllers that

are able to solve the task consistently and efficiently in simulation, and (iii) leads to

controllers that maintain performance when transferred to real robotic hardware.

In case an appropriate fitness function cannot be found, the task is manually

and recursively divided into sub-tasks until an appropriate fitness functions has

been found for each sub-task, resulting in multiple hierarchical levels. Even though

we ideally rely on evolutionary techniques to solve every sub-task, different control

synthesis can be used if deemed more suitable for a particular sub-task. In this

thesis, we resort to manual programming of behavior primitives if an appropriate

fitness function cannot be found for a sub-task that cannot be further divided, or

if fine sensorimotor behaviors are required (see Section 4.4).

3.3 High-level Composition of Control

As we move up the controller hierarchy and attempt to evolve behavioral control

for increasingly complex tasks, fitness functions that lead to the evolution of ad-

equate solutions may be challenging to define. The challenge can stem from the

32

Chapter 3. Methodology

need to carry out a various high-level objectives, which can lead to convoluted fit-

ness functions that present evolution with multiple local optima. In such cases, the

fitness function can be derived based on the task decomposition. The derived fit-

ness function is constructed based on the immediate task decomposition to reward

the arbitrator for activating a sub-controller that is valid for the current sub-task,

rather than for solving the global task. The experimenter may not always know

which sub-controller is the optimal one for a given situational context, and for

such cases, more than one sub-controller can be specified as valid for a context.

A general example of a derived fitness function can be see in f
derived

, where the

controller is rewarded for the number of control cycles where it executed a valid

sub-controller, and penalized for the number of control cycles where it executed

an invalid sub-controller:

f
derived

=
nX

s=1

t
s

� w
s

T
s

!
+

8
><

>:

1� c

C
if task completed

0 otherwise
(3.1)

where the sum is over all the started sub-tasks, n is the total number of sub-tasks,

t
s

is the number of control cycles in which the controller chose a valid sub-controller

for sub-task s, T
s

is the number of cycles that the controller has spent in sub-task

s, w
s

is the number of cycles in which the controller chose an invalid sub-controller

for sub-task s, C is the maximum number of control cycles for the given complete

task, and c is the number of control cycles spent during task execution.

Derived fitness functions can be applied in offline evolution, where it is possible

to have global knowledge of the states of the robots and the environment, poten-

tially leading the evolutionary process towards high-quality solutions. The set of

valid sub-tasks can be defined using simple rules, such as the position of the robot,

the proximity to a particular environmental feature, or based on onboard sensory

readings. Derived fitness functions therefore rely on the evolutionary process to

find controllers that are able to differentiate the different sub-tasks automatically

based only on the robots’ onboard sensory readings.

33

Chapter 3. Methodology

3.4 Hybridity and Manually Programmed Control

Although the hierarchical control synthesis approach allows for the evolution of

simpler behavior nodes by decomposing the task into simpler sub-tasks, it can still

prove challenging to apply evolutionary methods in some situations, such as tasks

that require fine sensorimotor coordination, behaviors that must always execute

for a fixed amount of time, or very complex behavior arbitrators. In such cases, it

can be beneficial from an engineering point of view to forego the use of evolutionary

techniques.

Manually programmed behavior primitives can be an alternative to evolved be-

havior primitives when fine sensorimotor behaviors are required. Fine sensorimotor

behaviors are those that require the robot to perform actions with a high degree of

accuracy, and that depend on the precise information obtained through the robot’s

sensors. When such behaviors are necessary for solving the task, evolved control

may be combined with manually programmed behaviors, which can be fine-tuned

manually for the real robotic hardware.

The use of manually programmed behaviors is particularly beneficial for sub-

tasks and behaviors that are infeasible to simulate with sufficient accuracy to allow

for the successful transfer to real robotic hardware. Behaviors that have only

been implemented for the real robotic hardware can be integrated in simulation in

different ways. We propose two alternative approaches: (i) sensor playback, where

samples can be collected from the real robot performing the manually programmed

behavior and then played back in simulation, or (ii) offline behavior, where the

normal control cycle is stopped completely while the robot executes the manually

programmed behavior. In either case, it is only necessary to change the state of

the environment according to the robot’s actions, and not to simulate the detailed

robot-environment interaction. We explore the offline behavior technique in the

experiments described in Section 4.4.

When using manually programmed control, it might be necessary to allow

a particular behavior to finish executing. Examples include changing behavior

34

Chapter 3. Methodology

half-way through its execution in such a way that the robot would be in an un-

desirable or unsafe state (for instance, a legged robot climbing an obstacle), or

when using the offline behavior approach in which only the outcome of an action

is defined in simulation. For such behavior nodes, we introduce the concept of

locking the controller. While a locking manually programmed behavior is execut-

ing, no other behavior primitive can be executed. The locking mechanism helps to

guarantee transfer of control from simulation to a real robot by allowing manually

programmed behaviors to complete before another behavior is executed. Locking

behaviors are demonstrated in the task presented in Section 4.3.

Control for high-level behavior arbitrators can be challenging to synthesize,

especially if the task is sequential and/or composed of many different sub-tasks. In

such cases, simple decision mechanisms, such as the Finite State-machines (FSMs),

can be a flexible way of achieving the desired macroscopic behavior. As shown in

Chapter 5, FSMs behavior arbitrators can allow the high-level robotic behavior to

be fine-tuned to suit particular constraints of the task.

3.5 Studied Hierarchical Controllers

For the experiments presented in this thesis, we use the following control synthe-

sis techniques to generate control nodes: evolution of Continuous-time Recurrent

Neural Networks (CTRNNs) (Beer and Gallagher, 1992) (Chapter 4) and NEAT

networks (Stanley and Miikkulainen, 2002) (Chapter 5), manually programmed

instructions (Chapter 4), and finite state-machines (Chapter 5).

In our experiments, behavior arbitrators delegate control to a single sub-

controller at any given time. ANN-based behavior arbitrators have one output

neuron for each sub-controller that they can activate. The output with the high-

est activation determines which sub-controller is activated at each control cycle.

Alternative methods for activating sub-controllers could be used, such as allowing

for multiple sub-controllers to be active at the same time, or combining the outputs

of different behavior primitives. The activation of multiple sub-controllers could

35

Chapter 3. Methodology

be useful, for instance, to activate locomotion and communication sub-controllers

simultaneously, or to generate control based on the combination of the locomotion

patterns from multiple behavior primitives.

The state of a node, which can be represented by the states of hidden neu-

rons in the case of ANNs or variables in the case of preprogramed controllers, is

reset whenever it is deactivated. Reseting sub-controllers allows for predictable

action patterns when a behavior arbitrator switches from one sub-controller to

another, since uncertainty regarding the controller’s current state (and therefore

its behavior) is eliminated. Alternatively, sub-controllers could be simply resumed

when they are handed control, or even allowed to constantly integrate new sensory

readings even when deactivated.

3.6 Discussion

The division of control in our approach has significant advantages when compared

with traditional monolithic ER-based approaches. On the one hand, we can still

take advantage of the benefits of ER techniques, such as the automatic synthesis of

self-organized behavior. On the other hand, we are not limited by the key issues of

ER, such as the difficulties associated in scaling to complex tasks. By maintaining

a repertoire of previously synthesized behaviors, it becomes possible to reuse these

behaviors in subsequent experiments if sub-tasks are sufficiently similar or if the

behavior is sufficiently general.

Transferability issues can be addressed incrementally during the development

of the control system, that is, as soon as a sub-controller has been synthesized,

it can be tested in real robotic hardware. Transferability can also be improved

by promoting the evolution of robust and general behaviors through the inclu-

sion of noise during evolution and the evaluation of controllers in a multitude of

different scenarios. Such an approach would be detrimental for the evolution of

complex, monolithic controllers, since it generally makes the evolutionary process

more challenging.

36

Chapter 3. Methodology

The potential cost of applying our approach is that evolution is constrained.

In ER, the solution space is restricted by various factors, such as the character-

istics of the robot, the type of controller, and the fitness function. By dividing a

controller into various sub-controllers, we are further limiting the set of potential

solutions. While it may be argued that manual decomposition could potentially

prevent certain solutions from ever being discovered by the evolutionary process,

the experimenter only decomposes a task when evolution is unable to find a solu-

tion. It is only in cases where the task cannot be decomposed that our approach

cannot be applied, since it would be necessary to synthesize a monolithic solution

with an alternative technique.

37

Chapter 4

Synthesis of Hierarchical Control for

Single-robot Systems

In this chapter, we apply our approach (see Chapter 3) for decomposable complex

tasks that combines the benefits of ER, namely automatic synthesis of control, and

human engineering to circumvent the bootstrap problem, to avoid deception, and

to successfully cross the reality gap. We demonstrate our approach in two distinct

tasks, which are beyond the complexity level of current state of the art in ER: a

rescue task involving a double T-Maze, and a dust cleaning task where a robot

must press a button to move between two rooms. In both tasks, controllers evolved

in simulation maintain their performance when transferred to a real robot. This

chapter is structured as follows: in Section 4.1, we describe the experimental setup;

in Section 4.2, we demonstrate the synthesis of an evolved hierarchical controller

for a complex task; in Section 4.3, we combine evolved behavior arbitrators and

manually programmed behavior primitives; and in Section 4.4, we show how our

approach can be used to solve a non-sequential, integrated task where both evolved

and manually programmed behavior primitives are used.

39

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

4.1 Experimental Setup

In simulation, we run a total of ten evolutionary runs with a population size of 100

genomes for each evolved node in a controller hierarchy. The fitness score assigned

to each genome is the average score obtained in 50 simulations with different

initial conditions. The five highest scoring genomes are copied directly to the next

generation. Another 19 copies of each genome are made and mutation is applied

to each gene with a probability of 10%. A Gaussian offset with a mean of zero

and a standard deviation of one is applied when a gene undergoes mutation. The

evolutionary runs for each node are terminated after an empirically determined

number of generations. Upon termination, we conduct a post-evaluation of the

highest scoring controller of each evolutionary run in a total of 100 samples for

each different configuration of the environment. Genomes consist of floating-point

alleles that encode the parameters of a CTRNN with one hidden layer of fully-

connected neurons. The neurons in the hidden layer are governed by the following

equation:

⌧
i

dH
i

dt
= �H

i

+
JX

j=1

!
ji

I
j

+
KX

k=1

!
ki

Z(H
k

+ �
k

) (4.1)

where ⌧
i

is the decay constant, H
i

is the neuron’s state, J is the number of input

neurons, !
ji

the strength of the synaptic connection from neuron j to neuron

i, I is the set of input neurons, K is the number of hidden neurons, � is the

bias term, and Z(x) = (1 + e�x)�1 is the sigmoid function. The bias terms �
i

,

the decay constants ⌧
i

, and the connection weights !
ji

are genetically controlled

network parameters. The possible ranges of these parameters are: �
i

2 [�10, 10],

⌧
i

2 [0.1, 32] and !
ji

2 [�10, 10]. Circuits are integrated using the forward Euler

method with an integration step-size of 0.2 and the states of hidden neurons are

set to 0 when the network is initialized.

For our real hardware experiments, we used an e-puck robot (Mondada et al.,

2009) (see Figure 4.1). The e-puck is a small circular (diameter of 75 mm) differ-

ential drive mobile robotics platform designed for educational use. The e-puck’s

40

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

E−puck

Range & Bearing

Board

Figure 4.1: The e-puck with a range & bearing board.

set of actuators is composed of two wheels that enable the robot to move at speeds

of up to 13 cm/s, a loudspeaker, and a ring of eight LEDs. The e-puck is equipped

with several sensors: (i) eight infrared proximity sensors which are able to detect

nearby obstacles and changes in light conditions, (ii) three microphones (one near

each wheel of the robot, and one toward the front), (iii) a color camera, and (iv) a

3D accelerometer. Additionally, our e-puck robots are equipped with a range and

bearing board (Gutiérrez et al., 2008), which allows them to communicate with

one another.

We use four of the e-puck’s eight infrared proximity sensors: the two front

sensors and the two lateral sensors. We collected samples from the sensors on a real

e-puck robot in order to model them in simulation, as advocated by Miglino et al.,

1996. Each sensor was sampled for 10 seconds (at a rate of 10 samples/second) at

distances from an obstacle ranging from 0 cm to 12 cm. We collected samples at

increments of 0.5 cm for distances between 0 cm and 2 cm, and at increments of

1 cm for distances between 2 cm and 12 cm.

We use ray-casting to model the infrared sensors in simulation. Seven rays are

cast from each sensor in different directions, from �↵

2 to ↵

2 , where ↵ is the sensor’s

opening angle. Based on experimental data from the robot, we used an ↵ value of

70�. The distances at which the rays intersect with an obstacle are averaged and

the final sensor reading is the interpolation of the closest samples collected on the

41

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

real robot. Finally, noise is added to the reading with an amount based on the

variance measured on the real robot for the particular distance.

The e-puck’s infrared sensors can also be used to measure the level of ambient

light. In the experiments presented in Section 4.2 and Section 4.3, we use ambient

light readings from the two lateral proximity sensors to detect light flashes. When

a light flash is detected on one of the sides, the activation of its corresponding

sensor is set to 1. The sensor remains activated for 15 control cycles (equivalent

to 1.5 seconds) to indicate that a flash has been detected. In simulation, we added

Gaussian noise to the wheel speeds, with a standard deviation corresponding to

5% of the current wheel speed in each control cycle. The robot’s speed is limited

to 10 cm/s in our experiments.

The e-puck only has 8 kb of onboard memory. If the control code does not

fit within the e-puck’s limited memory, we run the control code off-board. When

the control code is executed off-board, the e-puck starts each control cycle by

transmitting its sensory readings to a workstation via Bluetooth. The workstation

then executes the controller, and sends back the output of the controller (wheel

speeds) to the robot. Due to memory constraints on the chosen robotic platform,

we use off-board execution of control code in the real-robot experiments conducted

in Section 4.2 and Section 4.4. We use on-board execution of control code in the

real-robot experiments conducted in Section 4.3.

4.2 Evolving and Transferring Controllers for

Complex Tasks

In this section, we apply the proposed methodology to a rescue task. The task

is relatively complex and requires several behaviors typically associated with

ER (Nelson et al., 2009) such as exploration and obstacle avoidance (Floreano

and Mondada, 1996), delayed response (Tuci et al., 2004), and the capacity to

navigate safely through corridors (Reynolds, 1994).

42

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

We purposefully designed the task to be more complex than any previously

solved by real robots with evolved controllers: (i) a robot must first find its way out

of a room with obstacles, (ii) the robot must then solve a double T-maze (Blynel

and Floreano, 2003), and finally (iii) the robot must guide a teammate safely to the

room. Variations of the T-maze task have been used extensively in studies of learn-

ing and motivation in animals (Tolman and Honzik, 1930), neuroscience (Torta

et al., 2008), and robotics. In robotics, T-mazes have been used to study different

neural network models such as diffusing gas networks (Husbands, 1998), the on-

line learning capability of continuous time recurrent neural networks (Blynel and

Floreano, 2003), and the evolution of transferable controllers (Jakobi, 1997; Koos

et al., 2013). While a T-maze task may appear simple from an anthropomorphic

perspective, robots’ sensors are often limited, which makes it challenging. In our

experiment, each sensor only provides the controller with a single scalar or binary

value. The information available to the controller about the environment and

about the robot’s position in the environment is thus very limited. In previous

studies in which evolved control has been tested on real hardware, only single

T-mazes were used.

A number of obstacles are located in the initial room. The room has a single

exit that leads to the start of a double T-maze (see Figure 4.2). In order to find

its teammate, the robot should exit the room and navigate to the correct branch

of the maze. Two rows of flashing lights in the main corridor of the double T-maze

give the robot information about the location of the teammate. Each row of lights

indicates the branch leading to the teammate in a junction. For instance, if the

left light of the first row and the right light of the second row are activated, the

robot should turn left at the first junction and right at the second junction. Upon

navigating to the correct branch of the maze, the robot must guide the teammate

back to the initial room. We included a boolean near robot sensor that indicates

if the teammate is within 15 cm. For this sensor, we use readings from the range

and bearing board.

For the real-robot experiments, we built a double T-maze with a size of

200 cm ⇥ 200 cm (see Figure 4.2). In the real maze, a Lego Mindstorms NXT

43

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

Second
row

First row
of lights

120 cm

20 cm

130 cm

120 cm

160 cm

Teammate

Obstacle

Double T−Maze

Room

Figure 4.2: The environment is composed of a room with obstacles and a
double T-maze. The room is rectangular with varying side lengths. The double
T-maze has a total size of 200 cm ⇥ 200 cm. The two rows with the lights are
located in the central maze corridor. The activation of these two rows of lights
indicates the location of a teammate.

brick controlled the flashing lights. The brick was connected to four ultrasonic

sensors that detected when the robot passed by. Lights were turned on by the first

and third ultrasonic sensor and turned off by the second and fourth ultrasonic

sensor. The NXT brick controlled the state of the lights using two motors.

We use simple, functional incremental fitness functions (Nelson et al., 2009) for

the evolution of behavioral primitives in the experiments presented below. Each

fitness function typically has a number of cases that represent different outcomes

of an experiment such as whether a robot reached its destination or not. Each case

is kept simple and typically has only one or two terms. The cases are weighted by

adding a constant and by multiplying by a factor, initially with values of zero and

one, respectively. The values of the constants and factors are adjusted through

an empirical trial-and-error process when necessary: if a bootstrapping case is

exploited over a goal case, guiding evolution toward local optima, the relative

44

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

weight of the exploited case is either decreased or the weight of the other cases are

increased. While the exact weights are not crucial, the relative weight between

cases need to be such that solving the task is significantly better than not solving

the task. For instance, bootstrapping cases should have significantly lower weights

than high-level goal cases. The constants and factors that appear in the fitness

functions below are the result of such a process. Given the simplicity of the fitness

functions used, this process usually only required a couple of iterations.

4.2.1 Attempting to Evolve a Monolithic Controller

We attempted to evolve a monolithic controller, that is, a controller with a single

neural network for the complete rescue task. The chosen neural network was

composed of seven input neurons (two light sensors, four infrared sensors, and one

robot sensor), ten hidden neurons and two output neurons (two wheels). The robot

was placed at a random position and with a random orientation in the room. The

complexity of the task translates to a difficulty in finding an appropriate fitness

function that allows evolution to bootstrap. In order to evaluate the controller,

we chose a functional incremental, gradient-based fitness function with a bonus

for reaching three intermediate points of the task: exiting the room, finding the

teammate, and returning to the room. The fitness function is defined as follows:

f
monolithic

=
3X

i=1

�
i

+
D

i

� d
s

D
i

(4.2)

where �
i

is the bonus constant for reaching each intermediate point, D
i

is total

Euclidean distance from the previous intermediate point of task to the current

intermediate point of the task, d
s

is the robot’s Euclidean distance to the next

intermediate point of the task. The bonus constant of each term in the fitness

function was chosen based on a derived fitness function (see Section 3). The

controllers were evolved for 1000 generations, and were post-evaluated in order to

measure how many times they navigated to each of the intermediate points of the

task. The controllers were able to solve the first part of the task and leave the

45

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

room in 92% of the post-evaluation samples, and navigated to the correct exit of

the double T-maze in 51% of the samples. The highest-performing controllers in

some of the runs specialized in solving the task for a particular maze exit (25% of

the samples in which the robot managed to leave the room), and as a result, the

average solve rate for the complete task was only 17%.

We also tried to evolve a monolithic controller for the rescue task using

NEAT (Stanley and Miikkulainen, 2002). The controllers were evaluated based

on f
monolithic

(see Equation 4.2) in a total of 10 evolutionary runs. Each run was

evolved for 1000 generations, and we used the parameter values proposed in (Stan-

ley and Miikkulainen, 2002). We observed that evolution typically got stuck in a

local optimum after around 300 generations. On average, the highest-performing

controllers of the 10 evolutionary runs were able to leave the room in 77% of the

samples, navigated to the correct exit of the room in 19% of the samples, but none

of the controllers was able to return to the initial room. We experimented with

several variations of the default parameter values, but obtained similar or inferior

results.

4.2.2 Decomposition of the Rescue Task

As shown in Section 4.2.1, the rescue task is relatively complex, which meant that

we were unable to find an appropriate fitness function that allows evolution of a

controller based on a single ANN. We therefore divided the rescue task into three

sub-tasks: (i) exit the room, (ii) solve the double T-maze to find the teammate, and

(iii) return to the room, guiding the teammate. We evolved sub-controllers to solve

each of the sub-tasks. A behavior arbitrator was then given access to each of the

sub-controllers and evolved to solve the complete rescue task. Figure 4.3 shows the

hierarchical structure of the complete controller, the description of each behavior

arbitrator and behavior primitive, including the topology, inputs (sensors) and

outputs (actuators) used by of each neural controller, and the performance results

in simulation.

46

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

A
ll

el
es

:

S
o

lv
e

R
a

te

M
a
in

I/
H

/O
 N

eu
ro

n
s:

S
en

so
rs

:
IR

,
N

ea
r

R
o

b
o

t

2
0

3

5
/1

0
/3

3
0

0
0

C
o

n
tr

o
l

C
y

cl
es

:

E
v

o
lv

ed
 f

o
r

1
0

0
0

 g
en

s

S
o
lv

e
 M

a
ze

I/
H

/O
 N

eu
ro

n
s:

S
en

so
rs

:
IR

,
L

ig
h

t
S

o
lv

e
R

a
te

A
ll

el
es

:

6
/1

0
/3

2
1

3
E

v
o

lv
ed

 f
o

r
3

0
0

 g
en

s

1
0

0
0

C
o

n
tr

o
l

C
y

cl
es

:

R
e
tu

rn
 t
o
 R

o
o
m

I/
H

/O
 N

eu
ro

n
s:

S
en

so
rs

:
IR

A
ll

el
es

:

S
o

lv
e

R
a

te

4
/1

0
/3

1
9

3
E

v
o

lv
ed

 f
o

r
3

0
0

 g
en

s

1
0

0
0

C
o

n
tr

o
l

C
y

cl
es

:

E
xi

t
R

o
o
m A

ll
el

es
:

S
o

lv
e

R
a

te1
8

2

C
o

n
tr

o
l

C
y

cl
es

:
I/

H
/O

 N
eu

ro
n

s:
4

/1
0

/2

E
v

o
lv

ed
 f

o
r

3
0

0
 g

en
s

W
h

ee
ls

1
0

0
0

A
ct

u
a

to
rs

:

S
en

so
rs

:
IR

T
u
rn

 L
e
ft

S
en

so
rs

:

A
ct

u
a

to
rs

:
W

h
ee

ls

I/
H

/O
 N

eu
ro

n
s:

IR

A
ll

el
es

:

S
o

lv
e

R
a

te3
5

4
/3

/2

E
v

o
lv

ed
 f

o
r

1
0

0
 g

en
s

3
0

0
C

o
n

tr
o

l
C

y
cl

es
:

S
en

so
rs

:

A
ct

u
a

to
rs

:
W

h
ee

ls

IR

I/
H

/O
 N

eu
ro

n
s:

T
u
rn

 R
ig

h
t

4
/3

/2

A
ll

el
es

:

S
o

lv
e

R
a

te3
5

E
v

o
lv

ed
 f

o
r

1
0

0
 g

en
s

3
0

0
C

o
n

tr
o

l
C

y
cl

es
:

F
o
llo

w
 W

a
ll

S
en

so
rs

:

A
ct

u
a

to
rs

:
W

h
ee

ls

IR

I/
H

/O
 N

eu
ro

n
s:

A
ll

el
es

:

S
o

lv
e

R
a

te

4
/3

/2

3
5

E
v

o
lv

ed
 f

o
r

1
0

0
 g

en
s

3
0

0
C

o
n

tr
o

l
C

y
cl

es
:

A
vg

:6
2%

±
42

%
B

es
t:

94
%

A
vg

:8
7%

±
12

%
B

es
t:

10
0%

A
vg

:9
7%

±
3%

B
es

t:
10

0%
A
vg

:5
8%

±
29

%
B

es
t:

94
%

A
vg

:5
5%

±
27

%
B

es
t:

95
%

A
vg

:6
5%

±
30

%
B

es
t:

98
%

A
vg

:8
5%

±
27

%
B

es
t:

98
%

F
ig

ur
e

4.
3:

H
ie

ra
rc

hi
ca

lR
es

cu
e

T
as

k
C

on
tr

ol
le

r.
T

he
co

nt
ro

lle
r
us

ed
in

ou
r
ex

pe
ri

m
en

ts
is

co
m

po
se

d
of

th
re

e
be

ha
vi

or
ar

bi
tr

at
or

s
(w

it
h

da
rk

er
ba

ck
gr

ou
nd

)
an

d
fo

ur
be

ha
vi

or
pr

im
it

iv
es

.
In

ea
ch

no
de

,w
e

lis
t

it
s

na
m

e,
th

e
nu

m
be

r
of

ge
ne

ra
ti

on
s

fo
r

w
hi

ch
th

e
su

b-
co

nt
ro

lle
r

w
as

ev
ol

ve
d,

th
e

nu
m

be
r

of
al

le
le

s,
th

e
nu

m
be

r
of

in
pu

t,
hi

dd
en

an
d

ou
tp

ut
ne

ur
on

s,
th

e
se

ns
or

s
an

d
ac

tu
at

or
s,

th
e

nu
m

be
r

of
co

nt
ro

l
cy

cl
es

fo
r

ea
ch

ev
al

ua
ti

on
an

d
th

e
av

er
ag

e
an

d
be

st
so

lv
e

ra
te

of
th

e
po

st
-e

va
lu

at
io

n.
W

e
pe

rf
or

m
ed

an
in

it
ia

ls
et

of
ex

pe
ri

m
en

ts
to

te
st

di
ffe

re
nt

pa
ra

m
et

er
va

lu
es

an
d

us
ed

th
e

se
t

of
pa

ra
m

et
er

s
yi

el
di

ng
th

e
hi

gh
es

t
pe

rf
or

m
an

ce
fo

r
th

e
ex

pe
ri

m
en

ts
su

m
m

ar
iz

ed
in

th
e

fig
ur

e.

47

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

4.2.2.1 Exit Room Sub-task

The first part of the rescue task is an exploration and obstacle avoidance task. The

robot is located in a room and must find a narrow exit leading to the maze. The

room is rectangular with side lengths that vary between 100 cm and 120 cm drawn

from a uniform distribution. We evolved the “Exit Room” behavior primitive

to solve this sub-task. In each sample, we placed either two or three obstacles

in the room depending on its size. Each obstacle was rectangular with random

side lengths ranging from 5 cm to 20 cm drawn from a uniform distribution.

The location of the room exit was also randomized in each trial. The robot was

randomly oriented and positioned inside the room at the beginning of each sample.

Controllers were evaluated differently depending on whether they found the exit

of the room within the allotted time or not, according to f
exit_room

:

f
exit_room

=

8
><

>:

5 + C�c

C

, if exit was found

D�d

D

, time expired
(4.3)

where C is the maximum number of control cycles (1 second = 10 cycles), c is the

number of cycles spent, D is the distance from the center of the room to its exit,

and d is the closest point to the exit that the robot reached. f
exit_room

rewards

controllers that move from the center of the room and toward the exit.

In two of the ten evolutionary runs, the highest scoring controller was able to

find the exit of the room in over 90% of the post-evaluation samples. The highest

performing controller starts by moving away from the center of the room until it

senses a wall, which it then follows counter-clockwise until the room exit is found.

The remaining eight runs did not produce successful behaviors: the robots would

spin around in circles, sometimes finding the exit by chance but often colliding

with one of the walls or with an obstacle.

48

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

4.2.2.2 Solve Maze Sub-task

In the second sub-task, the robot has to solve a double T-maze in order to find

a teammate that needs to be rescued (see Figure 3). Controllers were evaluated

according to f
maze

:

f
maze

=

8
>>>>><

>>>>>:

1 + C�c

C

, if navigated to destination

D�d

3D , if collided or chose wrong path

0 , if time expired

(4.4)

where C is the maximum number of control cycles, c is the number of cycles spent,

D is the distance from the start of the maze to the robot’s destination, and d is

the final distance between the robot to its destination. f
maze

awards a score of

one plus a speed bonus in case the robot reaches the destination. If the robot

collides with a wall or chooses a wrong path, a lower fitness is awarded, calculated

based on how close to the destination it managed to get. The experiment ends

prematurely if the robot either collides with a wall or reaches one of the maze

exits. In such cases, we do not count the time as having expired.

We divided the “Solve Maze” sub-task into three different sub-tasks: “Follow

Wall”, “Turn Left”, and “Turn Right”, for which appropriate fitness functions could

easily be specified. For each sub-task, we evolved a behavior primitive. Although

the intended behaviors were quite simple, we evolved the controllers in a wide

variety of simple mazes, some of which had a high degree of difficulty due to the

starting position and orientation of the robot. The difficulty of some of the mazes

had an impact on the solve rates of these controllers, bringing the average down to

55% in the turn left controller and 65% in the turn right controller (see Figure 4.3).

We used ten different mazes for the “Turn Left” and “Turn Right” controllers. For

the “Follow Wall” controllers, only four different types of corridors were used: (i)

a normal corridor, two corridors with respectively (ii) the left and (iii) the right

walls missing, so that the controllers learn how to navigate when they can only

detect one of the walls, and (iv) a corridor with small gaps both in the left and

49

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

right walls so that controllers are robust to variations in the wall detection on both

sides simultaneously.

We then evolved the “Solve Maze" behavior arbitrator with the three highest

scoring behavior primitives as sub-controllers. At the beginning of each trial, the

robot was placed at the start of the double T-maze and had to navigate to the

correct branch based on the activations of the lights in the central corridor (see

Figure 4.2). The robot was evaluated by f
maze

, and the simulation sample was

terminated if the robot collided with a wall or if it navigated to a wrong branch

of the maze.

4.2.2.3 Return to Room Sub-task

The final sub-task consists of the robot guiding its teammate back to the room.

We initially tried to evolve a behavior primitive for this sub-task, but the evolved

solutions proved difficult to transfer successfully to the real robot. We therefore

reused the behavior primitives previously evolved for maze navigation (“Follow

Wall”, “Turn Left” and “Turn Right”), and evolved a new behavior arbitrator. The

new behavior arbitrator was evolved in the double T-maze with the robot starting

in one of the four branches of the maze (chosen at random in the beginning of

each trial). In the guidance sub-task, the robot had to navigate correctly through

the maze, and we therefore used the same fitness function, f
maze

, as in the “Solve

Maze” sub-task. The only difference was the objective: the robot was evaluated

based on how close it got to the initial room (see Figure 4.2), and not the distance

to the teammate.

For the complete task, we evolved a behavior arbitrator with the highest scoring

controllers for the “Exit Room”, the “Solve Maze”, and the “Return to Room” sub-

tasks as sub-controllers. The teammate being rescued continuously emitted a

signal while waiting for the rescuing robot. We used a derived fitness function,

f
derived

(see Section 3), to evolve the “Main’ behavior arbitrator for the rescue

task. The derived fitness function rewards the selection of a valid behavior for the

current sub-task and penalizes the selection of an invalid behavior (for instance,

50

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

selecting the “Exit Room” behavior primitive if the robot was in the T-maze). The

controller was awarded a fitness score between 0 and 1 for each sub-task (hence a

maximum score of 3 for successful completion of all sub-tasks), depending on the

proportion of the time that it selected the valid behavior, plus a time bonus.

The fitness trajectory for the highest scoring controller evolved and the average

fitness trajectory of all ten evolutionary runs for the rescue task can be seen in

Figure 4.4. The highest scoring controller had a solve rate of 94%. Out of the

ten controllers, seven were able to consistently solve the whole rescue task in over

89% of the samples, while the remaining three were not able to solve the three

sub-tasks.

0

1

2

3

4

0 250 500 750 1000
Generation

Fi
tn

es
s

Maximum

Mean

Hierarchical Fitness

Figure 4.4: The average fitness trajectory of each of the highest scoring con-
trollers of all ten evolutionary runs, and the fitness trajectory of the highest
scoring controller for the complete rescue task.

4.2.3 Transfer to the Real Robot

We tested each sub-controller incrementally on the real robot, which enabled us

to ensure the transferability of the complete controller. After evaluating all the

different evolutionary runs of the complete controller, we tested the highest per-

forming controller from the simulation on a real e-puck. The robot had to solve

51

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

the complete rescue task: find the exit of the initial room, navigate to the correct

branch of the double T-maze, and return to the room. We used a room with a size

of 120 cm ⇥ 60 cm for our real-robot experiments. Three identical obstacles with

side lengths of 17.5 cm and 11 cm were placed in the room as shown in Figure 4.2.

We sampled the controllers six times for each light combination, resulting in a

total of 24 samples.

To avoid interference between the two robots during the systematic testing

of the controllers in real hardware, we excluded the teammate in the real-robot

experiments, and manually triggered the near-robot sensor when the robot reached

the correct maze branch. We ran additional proof-of-concept experiments in which

we included a teammate that was manually programmed to follow the main robot

back to the initial room.

The controller solved the composed task on the real robot in 22 out of 24

samples (a solve rate of 92%). The “Main” behavior arbitrator consistently chose

the correct sub-controller at each point of the task, and only failed once in the

“Solve Maze” behavior (the robot turned the wrong way in the second intersection

of the maze), and once in the “Return to Room” behavior (the robot did not turn

at the intersection, ending up in a different maze branch).

4.2.4 Discussion

The experiments and results presented above demonstrate how controllers can be

composed in a hierarchical fashion to allow for the evolution of behavioral control

for a complex task. For the main behavior arbitrator, we used a fitness function

directly derived from the immediate decomposition of the task, that is, we used

a fitness function that rewards a controller for activating a valid sub-controller

given the current situational context. During evolution, an arbitrator (an ANN)

was rewarded for (i) activating the “Exit Room” sub-controller while the robot

was in the room, (ii) the “Solve Maze” sub-controller while the robot was in the

maze, and (iii) the “Return to Room” sub-controller after the teammate had been

52

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

located. In this way, we avoid that the complexity of the fitness function increases

with the task complexity as sub-controllers are combined. The highest scoring

controller in simulation was able to cross the reality gap, achieving a performance

on real robotic hardware similar to the performance obtained in simulation.

4.3 Hybrid Controllers

In this section, we explore the evolution of hybrid control systems that can take

advantage of manually programmed behavior primitives in a different set of exper-

iments. There are examples in literature where researchers have combined evolved

control and manually programmed control, but it has been done in an ad-hoc

manner (see for instance Groß et al., 2006). Our approach, on the other hand,

allows for a structured integration of learned and manually programmed behavior

in a hierarchical and incremental manner. We used the double T-maze task (see

Section 4.2) with simple manually programmed behavior primitives (“Follow Wall”,

“Turn Left”, and “Turn Right”). The controller for the complete task is composed

of an evolved behavior arbitrator that activates one of the three manually pro-

grammed behavior primitives. Two manually programmed primitives take more

than one control cycle to complete, namely turning 90� left or right. For such

primitives, we used locking behaviors (see Chapter 3).

4.3.1 Experiments and Results

The input layer of the ANN-based behavior arbitrator was composed of six neu-

rons: one for each of the four infrared proximity sensors, and one for each of the

two light sensors. The highest value of the output neurons of the neural network

determines which one of the three possible manually programmed behaviors is

activated: follow wall, turn left or turn right. The complete controller and the

results are shown in Figure 4.5.

53

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

After the evolutionary process was concluded, we conducted a post-evaluation

of the evolved controllers in which the fitness of every controller was sampled 100

times for each of the four possible light configurations. The evolved controllers had

an average solve rate of 50% (±31%). A solve rate of 80% or more was achieved

by three of the ten controllers, with a solve rate of 93% for the highest scoring

controller. The solutions produced in different evolutionary runs were similar. The

controllers learned to navigate the T-maze correctly, but some were not able to

take advantage of the information from the light flashes to consistently make the

correct decisions at the junctions, which caused them to navigate to a wrong maze

branch.

The highest scoring controller was tested on a real e-puck 24 times, six for each

light configuration. The controller was successful in 22 of the 24 samples (a solve

rate of 92%). In both failed samples, the robot turned to the wrong maze branch

in the second intersection. These results are comparable to the results obtained in

simulation and to the real-robot experiments where the behavior arbitrator had

access to evolved behavior primitives (see Section 4.2).

control cycles
locking for 40
control cycles

Alleles:

Solve Rate

Main

I/H/O Neurons:

Follow Wall

Sensors: IR, Light

6/10/3

213

non−locking

Turn Left Turn Right

Control Cycles: 1000

locking for 40

Evolved for 300 gens

manually programmed manually programmed manually programmed

Avg:50%±31% Best:93%

Figure 4.5: Hierarchical “Solve T-Maze” Controller. The controller used in
our experiments is composed of one behavior arbitrator and three manually
programmed behavior primitives. All controllers were manually programmed,
with the exception of the main behavior arbitrator. Both the “Turn Left” and
the “Turn Right” manually programmed behavior primitives lock the network
during execution, in order to ensure that the behavior completes before another
primitive can be executed.

54

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

4.4 Hierarchical Evolution for Integrated Tasks

In the experiments presented in the previous sections, the behavior primitives

were either all evolved, or all manually programmed. Furthermore, in the case

of the experiments in Section 4.2, the task was sequential, which meant that the

robot had to learn a strict sequence of behaviors: “Exit Room”, “Solve Maze” and

“Return to Room”. In this section, we evaluate our approach in a task that is non-

sequential and we combine evolved behavior primitives and manually programmed

primitives. We use the offline behavior technique described Chapter 3, in which

a manually programmed behavior is implemented for the real robot, but not in

simulation. When the controller activates such a manually programmed behavior

in simulation, the normal control cycle is stopped, the end-result of the robot-

environment interaction is applied, and controller is then resumed.

We use a task in which the robot must clean dust spots. The dust spots appear

in two rooms that are connected by a corridor (see Figure 4.6). The rooms are

square-shaped and side lengths vary between 80 cm and 120 cm drawn from a

uniform distribution. A new dust spot is randomly placed in one of the two rooms

every 10 seconds. The placement of a new spot is determined by a Bernoulli

trial with a probability p that the spot is placed in one room and 1� p that it is

placed in the other room. The probability p is randomly sampled from the uniform

distribution at the beginning of each trial. A maximum of five dust spots can be

in the environment at any given time. This means that if the robot keeps cleaning

one room for a long time, all dust spots will eventually be in the other room.

In order to traverse the corridor connecting the two rooms, the robot must first

push a button to open both doors (see Figure 4.6). We manually programmed a

behavior primitive to enable an e-puck to push a button, which opens the doors

to the corridor. Pushing a button to open the doors requires fine sensorimotor

coordination, since the buttons are difficult to detect and hit. The buttons are

only 2.5 cm in diameter, and they must be pushed at an angle under 45�. This is

a difficult interaction to model correctly in simulation, and it can also be a chal-

lenging behavior to evolve and transfer successfully. The manually programmed

55

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

Corridor

Door

Button

Figure 4.6: The environment is composed of two rooms, connected by a cor-
ridor. The corridor is blocked by two doors that the robot can open by pushing
a red button.

push button behavior was therefore only implemented for the real robot, and acti-

vating the manually programmed behavior automatically opens the door instantly

in simulation. On the real robot, the manually programmed behavior uses the

e-puck’s on-board camera to find and move the robot toward the button. When

the manually programmed behavior primitive that opens the door is activated,

the control cycle of the main behavior arbitrator is stopped. The manually pro-

grammed behavior primitive rotates the robot up to a maximum of 360� in order

to try to locate the button, which can be identified by its red color. The central

horizontal line of each image captured by the e-puck’s camera is scanned. If the

button is identified, the robot aligns itself, moves forward, and pushes it. The

main behavior arbitrator is resumed after the manually programmed behavior ter-

minates. When the manually programmed behavior is activated in simulation, the

elapsed time of the current sample is increased by the average amount of time

taken by the manually programmed push button behavior on the real robot.

56

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

4.4.1 Experiments and Results

In the real-robot experiments, virtual dust spots are implemented using a visual

tracking system. The position and orientation of the robot is tracked using an

overhead camera. The robot has a cross-shaped marker on top (see Figure 4.6),

which is extracted from the video feed using the OpenCV library (Bradski, 2000).

This information allows virtual dust spots to be detected by the robot using virtual

sensors. The controller is executed in a workstation, and the resulting movement

commands are sent to the robot every 100 ms. The robot is able to sense the dust

spots up to 30 cm away with eight virtual sensors, positioned on the perimeter

of the robot’s body at equal angular intervals. The robot must activate a virtual

actuator when it is within 5 cm of a dust spot to remove the spot. The robot

is also equipped with two button sensors that are placed at angles of �30� and

30�, providing the controller with information on the direction and distance (up

to 1 m) to the nearest button. The controller we used for these experiments can

be seen in Figure 4.7. We decomposed the task into two main sub-controllers:

“Change Room” and “Clean”. The ”Change Room” sub-controller is a behavior

arbitrator that can choose between the “Open Door” behavior arbitrator and the

“Enter Corridor” behavior primitive.

The robot must push a button to open the doors to the corridor before it

can move from one room to the other. Once the doors have been opened, the

robot has 40 seconds to traverse the corridor that leads to the other room before

the doors close. We divided the “Change Room” sub-controller into a behavior

primitive and a behavior arbitrator: the “Open Door” behavior arbitrator, which

moves the robot toward the current room’s button (“Move to Button” behavior

primitive) and pushes the button (“Push Button” manually programmed behavior

primitive), and the “Enter Corridor” behavior primitive, which navigates to the

corridor and crosses to the other room.

We first evolved the “Move to Button” behavior primitive. The controller was

evaluated by f
two_rooms

(see Equation 4.5) according to a distance gradient to

57

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

I/H/O Neurons:

Alleles:

Solve Rate

6/5/2

Sensors: IR, Button

77

Change Room
Evolved for 100 gens

Control Cycles: 400

Alleles:

I/H/O Neurons:

57

Solve Rate

Open Door

Sensors: Button

2/5/2

Evolved for 100 gens

Control Cycles: 400

Sensors:
Wheels

IR

I/H/O Neurons:

Alleles: 35

4/3/2

Solve Rate
Actuators:

Enter Corridor
Evolved for 100 gens

Control Cycles: 300

Push Button

manually programmedI/H/O Neurons:

Alleles:

Solve Rate

77

Actuators:
IR, Button

6/5/2

Wheels
Sensors:

Move to Button
Evolved for 100 gens

Control Cycles: 1000

Alleles:

Main

I/H/O Neurons: 8/5/2

Sensors:

87

FitnessDust

Evolved for 100 gens

Control Cycles: 4000

Alleles:

I/H/O Neurons: 12/5/2

113

Fitness

Clean

Actuators:
Sensors: IR, Dust

Evolved for 100 gens

Control Cycles: 3000

Wheels,
Dust Cleaner Avg: 25±6 Best: 29

Avg:92%±6% Best:99%

Avg:100%±1% Best:100% Avg:65%±30% Best:98%

Avg:97%±2% Best:100%

Avg:28 ± 8 Best: 29

Figure 4.7: Hierarchical Dust Cleaning Controller. The controller synthesized
for the dust cleaning experiment is composed of three behavior arbitrators and
four behavior primitives.

the button, with a time-dependent bonus upon correctly activating the manually

programmed behavior primitive.

f
two_rooms

=

8
><

>:

1 + 10 · C�c

C

, if achieved objective

D�d

D

, otherwise
(4.5)

where C is the maximum number of control cycles, c is the number of cycles spent,

D is the distance from the robot’s starting point to the button, and d is the closest

point to the button that the robot reached. In the case of the “Move to Button”

behavior primitive, the objective was to get within 5 cm of the button.

The “Open Door” behavior arbitrator has access to the button sensor. In

simulation, the manually programmed “Push Button” behavior opens the doors if

the robot is within 20 cm of the button, otherwise the robot stops moving while

the behavior is activated. Since the push button behavior takes some time to

58

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

execute on the real hardware, controllers that activate this behavior too often or

too far from the button are therefore indirectly penalized because they have less

time to clean. On the real robot, such controllers would make the robot search

for the button at a distance that would make it very difficult for the e-puck’s

camera to detect a small target. The controllers were evaluated by f
two_rooms

(see

Equation 4.5), where the objective was to open the corridor doors. Since the

button was placed to the right-hand side of each door, we reused the “Turn Right”

behavior primitive from Section 4.2 instead of evolving a new primitive for the

“Enter Corridor” sub-controller. This behavior primitive allows the robot to move

to the other room after pushing the button.

For the evolution of the “Change Room” behavior arbitrator, the robot was

positioned and oriented randomly in one of the rooms at the beginning of each

trial, and had to push the button, enter the corridor and move to the other room.

Each controller was also evaluated according to f
two_rooms

, where the objective

was to reach the other room. For the “Change Room” arbitrator, D is the distance

from the robot’s starting point to the end of the corridor, and d is the point closest

to the end of the corridor that the robot reached.

The “Clean” behavior primitive was evolved in a single room without any door

or exit. The output neurons controlled the speed of the robot’s wheels, and the

clean dust spot actuator was triggered if its corresponding output had an activation

value higher than 0.5. If no dust spot is nearby when the robot activates the clean

dust spot actuator, the speed of the robot is set to 0. This penalizes the controller

from always activating the actuator, instead of only activating it near a dust spot.

The robot was randomly oriented and positioned near the center of the room at

the beginning of each sample. The fitness function rewarded the robot based on

how many dust spots it cleaned (a score of 1 for each dust spot) in the allotted

time or until it collided with a wall.

To obtain a controller for the complete task, the “Clean” behavior primitive

and the “Change Room” behavior arbitrator were combined via the evolution of

a new behavior arbitrator (see Figure 4.7). All evolutionary runs converged to a

59

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

behavior where the robot would move between rooms whenever necessary. The

main arbitrator evolved behaviors that activated the change room behavior arbi-

trator if the robot did not sense any dust spot for a certain amount of time. The

controllers were evaluated according to the number of dust spots they cleaned, as

in the evolution of the “Clean” behavior primitive. The controllers achieved an

average fitness of 28± 8 in the ten evolutionary runs, and the highest-performing

controller achieved an average of 29±6. The controllers chose to cross to the other

room an average of 2.86 times per sample.

4.4.2 Real-Robot Experiments

For our real-robot experiments, we built the walls of the two rooms and the corridor

using wooden blocks. Each room had a size of 100 cm ⇥ 100 cm, and the corridor

had a length of 40 cm and a width of 18 cm (see Figure 4.6). Both doors were

opened and closed by motors connected to a Lego Mindstorms NXT brick. A

physical button was placed on the wall to the right of the entrance to the corridor

in each room.

We transferred the highest scoring controller from simulation to the real e-

puck. The performance of the controller on the real robot was sampled five times

in five different configurations, for a total of 25 samples. We used fixed rates at

which the dust spots were placed in each room, in a combination of average cases

and extreme cases to compare performance. In each configuration, the rate of a

dust spot being placed in each room was set to one of the following: 1 : 0, 3 : 1, 1 : 1,

1 : 3, and 0 : 1. In the 3 : 1 scenario, for instance, three dust spots are placed in the

room where the robot starts, and then one dust spot is placed in the other room,

and so on. The dust spots were placed deterministically at these fixed rates in

order to allow for direct comparison of performance in simulation and performance

in real hardware. We sampled the robot’s performance in simulation 100 times per

configuration. Each sample lasted five minutes (3000 control cycles). The results

can be seen in Figure 4.8. In the real-robot experiments, the controller was able to

complete the task with a performance comparable to that obtained in simulation.

60

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

Several outliers can be observed in the 0 : 1 configuration. In this configuration,

the robot starts in a room where no dust spots are ever placed. After some time,

the controller decides to cross to the other room. In most of the samples, the

robot keeps cleaning the room in which all the dust spots appear, but sometimes

the controller might choose to return to the initial room. This happens when

several dust spots are placed in a cluster and the robot does not explore the part

of the room containing the cluster for a certain amount of time. In such cases,

the number of dust spots that the robot can clean are significantly lower than if

the robot remains in the room in which dust spots appear. The robot wrongly

returned to the initial room in one of the real-robot samples. As a result the

robot only cleaned 13 dust spots in the 0 : 1 experimental setup, and received a

low fitness (see outlier for the 0 : 1 setup in Figure 4.8).

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

10

15

20

25

30

1:0 3:1 1:1 1:3 0:1
Experimental Setup

Fi
tn

es
s

Environment
●

●

Real

Simulation

Figure 4.8: Results of the real-robot experiments in the dust cleaning exper-
imental setup. The box plots represent 100 samples in simulation, while the
scatter plots represent the fitness obtained in the real-robot experiments. The
whiskers extend to the most extreme data point within 1.5⇥ the interquartile
range.

61

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

4.4.3 Discussion

In this section, we introduced a non-sequential task that required fine sensorimotor

coordination. A hybrid approach in which evolved behaviors are combined with

manually programmed behaviors can be beneficial when some behaviors are too

difficult to simulate accurately. In the case of pushing the button, we did not im-

plement the manually programmed behavior in simulation. When the controllers

were being evolved, the doors in the environment would open automatically if the

robot activated the push button behavior primitive near the button. On the real

robot, activating that same behavior primitive triggered a manually programmed

behavior, which used the robot’s camera to detect and push a physical button in

the environment.

In the experiment, we reused a previously evolved behavior primitive from a

different experiment. The turn right behavior primitive from Section 4.2 was used

to navigate from one room to the other. In this case, the behavior could be reused

because of the characteristics of both the task and the environment: the button

was positioned to the right of the door, and the robot had to turn right to enter

the corridor after pushing the button. If the position of the button was unknown,

it would have been necessary to evolve a new behavior for the sub-task. While

classic evolutionary approaches force the designer to evolve new controllers for

similar tasks, our approach, allows for the reuse of previously evolved or manually

programmed behaviors.

4.5 Summary

The application of classic evolutionary robotics techniques to the synthesis of con-

trollers for complex tasks has proven problematic: the evolutionary process is often

difficult to bootstrap and vulnerable to deception when the task is difficult. Suc-

cessful transfer of evolved control from simulation to real hardware also remains

a challenging problem. In this chapter, we demonstrated how hierarchical com-

position of robotic controllers can overcome these issues. We recursively divide

62

Chapter 4. Synthesis of Hierarchical Control for Single-robot Systems

the goal task into sub-tasks until an appropriate fitness function has been found

or until a behavior can easily be programmed by hand. In this way, partial solu-

tions can be found incrementally and successful transfer to real robotic hardware

can be guaranteed at each increment. Controllers for complex tasks can thus be

synthesized in a hierarchical fashion while, at the same time, they can benefit

from evolutionary robotics techniques, namely (i) automatically synthesis of con-

trol, and (ii) evolution’s ability to exploit the way in which the world is perceived

through the robot’s (often limited) sensors.

The transfer of behavioral control from simulation to a real robot is usually a

hit or miss because a controller for the goal task is completely evolved in simulation

before any tests are conducted on real hardware. In our approach, the transfer

from simulation to real robotic hardware can be conducted in an incremental man-

ner as sub-controllers are evolved. Crossing the reality gap one sub-controller at

a time allows the designer to address issues related to transferability immediately

and locally in the controller hierarchy. The fact that each sub-controller solves only

part of the task also allows for the use of different types of noise and other sub-task

specific configurations in simulation, as well as the use of different evolutionary

algorithms, such as novelty search (Lehman and Stanley, 2011), fitness-based evo-

lution (Floreano and Mondada, 1996), and particle swarm optimization (Clerc,

2010).

63

Chapter 5

Synthesis of Hierarchical Control for

Swarm Robotic Systems

Artificial evolution has been proposed as a potential solution to the problem of con-

trol synthesis for SRS. Evolved control for robotic swarms has been demonstrated

in a wide variety of tasks, but most studies are carried out only in simulation.

When experiments are validated in real robotic hardware, they are confined to

controlled laboratory conditions (Brambilla et al., 2013). While SRS with evolved

control have the potential to be applied in real-world tasks, state-of-the-art studies

are thus still conducted under simplistic and unrealistic constraints. This disparity

can arguably be attributed both to open issues in the field (such as the reality gap)

and to the lack of focus of the swarm robotics research community in applying the

current state of the art in progressively realistic scenarios.

In this chapter, we apply our hierarchical control synthesis approach to a swarm

of aquatic robots. Our experiments are the first demonstration of a SRS system

with evolved, distributed control performing self-organized behaviors in a real-

world environment. Our experiments rely on a swarm of up to ten small, simple,

and inexpensive aquatic surface robots (Costa et al., 2016). Using our simulation

framework and our real robotic swarm, we first study the fundamental issues

related to evolution of control for swarms of aquatic surface robots. Then, we

65

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

apply our hierarchical control synthesis approach in order to use the SRS for

complex tasks that require a set of different behaviors.

While SRS are typically associated with ground robots (Dorigo et al., 2013;

Brambilla et al., 2013) and, more recently, with aerial robots (Lindsey et al., 2012;

Basiri et al., 2014), we show that SRS also have the potential to be applied to mar-

itime tasks, which are usually expensive to carry out because they rely on manned

vehicles with large operational crews (Lutterbeck, 2006). While significant effort

has been made to adapt unmanned vehicle technology to maritime tasks, such sys-

tems are currently relatively expensive to acquire and operate, and only a single

or a few robots are typically deployed (Yan et al., 2010). The use of SRS at sea

is advantageous because: (i) several maritime tasks, such as environmental moni-

toring, sea-life localization, and sea-border patrolling, require distributed sensing

at a high spatial and temporal resolution, and are therefore challenging to carry

out with one or few robots only; and (ii) robots operating at sea need to display

a high degree of fault-tolerance and robustness (Yan et al., 2010), which can be

provided by SRS approaches (Şahin, 2005).

The outline of this chapter is the following. Firstly, we demonstrate our SRS

performing four canonical tasks in an uncontrolled aquatic environment: (i) hom-

ing, (ii) dispersion, (iii) clustering, and (iv) monitoring. Secondly, using a subset of

the controllers, we setup a set of experiments to assess the scalability and robust-

ness of the evolved control. Thirdly, we apply our hierarchical control synthesis

approach to an environmental monitoring task and an intruder detection task.

Finally, we show that the approach scales to large-scale swarms, with up to 1000

robots.

5.1 Experimental Setup

In this section, we present the methodology for the evolution of control, the evo-

lutionary setups of our experiments, the simulation platform, and the real robot

platform that was used to evaluate the controllers. To synthesize the behavioral

66

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

control, we followed a classic evolutionary robotics approach in which the evo-

lutionary process relies exclusively on simulation for the evaluation of candidate

solutions and the highest performing solutions are then transferred to real robots

after the evolutionary process terminated.

For all tasks, the following general methodology was applied to synthesize

controllers and assess their performance on real robots (see Figure 5.1):

1. The task was defined by specifying the fitness function, which translated the

task objective that needed to be achieved. The robots’ sensor configuration

and the task conditions were also specified.

2. The evolutionary algorithm optimized the neural network-based controllers

for the robots. Each controller was evaluated in 10 independent simulation

trials, and the fitness of the controller was the mean score obtained in these

simulations. In every trial, several parameters were randomly varied: the

number of robots (between five and ten), the starting position and orienta-

tion of the robots, the sensor and actuator noise parameters, and the drift

speed and orientation.

Evaluate controllers in real
environment

Evolution in simulation
environment

Define the simulation
environment

Define the fitness function

Define the robots’ sensors
and task conditions

Select the best controllers
of the 3 best runs

Evaluate the controllers in
the real swarm

Evolutionary run

Post-evaluation

10x

Evaluation

SelectionRecombination

Mutation

Figure 5.1: The control synthesis and performance assessment process.

67

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

3. The same evolutionary setup was repeated for 10 independent evolutionary

runs, each with a different initial random seed.

4. After each run, we post-evaluated the top controller of each generation in

100 simulations.

5. We selected the top three controllers that achieved the highest fitness scores

in post-evaluation.

6. Using the same set of initial conditions for all controllers, we assessed the

real-robot performance of the three controllers, and compared their perfor-

mance to that obtained in simulation.

In the rest of this section, we present: (i) the hardware components and phys-

ical characteristics of the robotic platform, (ii) the sensors and actuators used,

(iii) the simulation platform, and (iv) the evolutionary setup.

5.1.1 Robotic Platform

We designed and produced a total of 10 simple, small (65 cm in length) and

inexpensive (⇡ 300 EUR/unit) robots, using widely available hardware and off-

the-shelf sensors and motors. Each robot model is a differential drive mono-hull

boat (see Figure 5.2). The maximum speed of the robot in straight line is 1.7 m/s

(3.3 kts), and the maximum angular velocity is 90�/s. The on-board control of each

robot is supported by a Raspberry Pi 2 single-board computer (SBC). Robots com-

municate through Wi-Fi by broadcasting UDP datagrams, which are received by

the neighboring robots and the monitoring station. The robots form a distributed

network without any central coordination or single point of failure. Each robot is

equipped with GPS and compass sensors, and broadcasts its position to neighbor-

ing robots every second. A detailed description of the robotic platform is available

in Appendix B.

Each robot is controlled by an artificial neural network-based controller. The

inputs of the neural network are the normalized readings of the sensors, and the

68

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

Figure 5.2: The robot is an autonomous surface vehicle equipped with Wi-Fi
for communication, and a compass and GPS for navigation. It has a length of
60 cm and can move at speeds of up to 1.7 m/s.

outputs of the network control the robot’s actuators. The sensor readings and

actuation values are updated every 100 ms. The neural network controlling each

robot has two actuators, which control respectively the linear speed and the an-

gular velocity. These two values are converted to left and right motor speeds.

We implemented three emulated sensors for the detection of points and objects of

interest in the task environment. The emulated sensor values are obtained by pre-

processing the GPS location of the entities in the environment that the robot is

currently aware of, and the current heading and position of the robot, as given by

the GPS and compass. This pre-processing is conducted onboard each robot, and

the resulting sensory inputs are indistinguishable to the controller from any other

type of sensor. The following emulated sensors were implemented (see Figure 5.3):

Waypoint sensor: This sensor is used to locate waypoints in the environment,

if any. The sensor returns two values: (i) the relative angle from the robot

to the waypoint, and (ii) the distance from the robot to the waypoint.

Robot sensor: This sensor measures the distance to nearby robots. The area

around the robot is divided into four equally-sized slices. The sensor returns

69

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

four values, one per slice, linearly proportional to the distance between the

robot and the closest neighbor in that slice, or the maximum value if there

is none within the sensor range.

Geo-fence sensor: This sensor is used to detect the virtual geo-fence. Similarly

to the robot sensor, the geo-fence sensor returns four values, one for each

slice around the robot, indicating the minimum distance to the fence, or

the maximum sensor value if the fence is outside the sensing range. One

additional value is returned, indicating whether the robot is inside the fence

or not (the geo-fence is a polygon).

w

α D

Geo-fence sensorRobot sensorWaypoint sensor

Figure 5.3: Illustration of the three types of emulated sensors.

5.1.2 Simulation Model

The controllers for the SRS were synthesized offline, in simulation. We modeled

the robots in JBotEvolver, and developed a middle-layer that is shared by both the

hardware platform (Raspberry Pi) on-board control software and the simulation

in JBotEvolver, enabling the same code-base and controllers to be executed on

both the real robots and on robots in simulation.

We used a two-dimensional simulation environment, and the robots were ab-

stracted as circular objects with a certain heading and position. The robot’s

dynamics were modeled based on data taken from a single robot in a fresh water

70

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

environment with no currents. We measured the robot’s movement in a variety

of scenarios, applying multiple combinations of motor speeds, which allowed us

to characterize the motion dynamics and main friction components. The general

principle behind the simulation was to model the motion of the robots based on real

measurements taken in the water, but without including physics simulation and

fluid dynamics, which would be complex and computationally expensive. Main-

taining a low computational complexity is essential for making the evolutionary

robotics process feasible, as a large number of simulations have to be conducted

for each evolutionary run.

To compensate for the differences between the motion model and the real

dynamics of the robots, as well as for other potential sources of stochasticity

(GPS/compass errors or drifts, varying motor performance due to battery level,

etc), we introduced a conservative amount of actuator noise during evolution. As

previous works have shown (Miglino et al., 1996; Jakobi, 1997), the use of noise

in simulation promotes the evolution of general and adaptive solutions, therefore

increasing the performance of transferred solutions. The introduction of noise is

a computationally-effective way of promoting the evolution of robust controllers,

since it becomes more difficult to exploit particular features of the simulator.

Random noise and random offsets were added to the sensors, actuators, and even

the environment in the form of drift. The amount of noise was chosen based on

the values observed in the real hardware (Miglino et al., 1996).

During evolution we also introduced a drift with a random magnitude in the

range [0,1]m/s, and a random direction drawn from uniform distributions at the

beginning of each simulation sample. The drift constantly affected the position of

the robots, and was included to account for the unpredictable drift caused by wind

and currents in real aquatic environments. A description of all different types of

noise used in simulation can be found in Appendix C.

71

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

5.1.3 Evolutionary Setup

Our initial set of experiments focuses on four tasks, which have been previously

studied both in simulation and on real robots (but only in strictly controlled lab-

oratory conditions) (Bayındır, 2016): homing in group while avoiding collisions,

dispersion, clustering, and monitoring of a pre-defined area. All of the chosen

collective tasks can be classified as swarm robotics tasks, according to the classifi-

cation proposed by Brambilla et al. (2013): (i) robots are autonomous; (ii) robots

are situated in the environment; (iii) robots’ sensing and communication capabili-

ties are local; (iv) robots do not have access to centralized control and/or to global

knowledge; and (v) robots cooperate to solve a given task.

In this section, we describe the four tasks we focused on, and the evolutionary

setup that was used to synthesize control for each task, including the fitness func-

tions and relevant parameters. We used NEAT (Stanley and Miikkulainen, 2002)

to evolve the neural network controllers for all tasks in this chapter. A detailed

listing of the different parameters used for each evolutionary setup can be found

in Appendix C.

5.1.3.1 Homing

Navigation and obstacle avoidance is an essential feature for autonomous robots

operating in the real world. This type of tasks was among the first to be studied

in the field of evolutionary robotics (Floreano and Mondada, 1996). A variation of

the task, known as homing, involves one or more robots moving towards a point of

interest in the environment, typically with obstacles in the way (Christensen and

Dorigo, 2006a).

In the homing task used in our experiments, the swarm of robots had to navi-

gate to a given waypoint while avoiding collisions among the robots, regardless of

the size of the swarm. To evolve solutions for this task, we rewarded controllers

for minimizing the average distance of the swarm to a waypoint, according to the

following equation:

72

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

f
homing

=

1

T

TX

t=1

1

R

RX

r=1

startingDist

r

� dist

r,t

startingDist

r

!
⇥ S , (5.1)

where T is the maximum number of time steps, R is the number of robots,

startingDist
r

is the initial distance from robot r to the waypoint, and dist

rt

is the distance of robot r to the waypoint at time t.

Collisions between robots are undesirable in any task, as they can damage

the real robots. To avoid collisions, we introduced a safety coefficient (S) when

assessing the fitness in all task setups, which penalized solutions where robots get

too close to one another (less than 3 m). The safety coefficient S is in the range

[0.1,1], and is inversely proportional to the minimum distance between any two

robots in the current simulation trial (minDist). The safety coefficient is defined

according to the following equation:

S = 0.1 +
max (0,min(3,minDist))

3
⇥ 0.9 , (5.2)

5.1.3.2 Dispersion

In a dispersion task, each individual robot in the swarm has to maintain a pre-

defined distance (target distance) from its nearest neighbor. Robots should cover

a large area without risking losing contact with the rest of the swarm, which

can be an issue in unbounded environments. Examples in the literature include

solutions that rely on manually programmed behaviors (Batalin and Sukhatme,

2002), potential fields (Reif and Wang, 1999), and automatically synthesized state-

machines (Francesca et al., 2014).

For this task, we chose a target distance of 20 m (half of the robots’ commu-

nication range). During evolution, controllers were rewarded for minimizing the

difference between the current distance to the nearest neighbor and the target

distance, according to the following equation:

73

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

f
dispersion

=

1

T

TX

t=1

1

R

RX

r=1

1� |minDist

r,t

� targetDist |
!

⇥ S , (5.3)

where T is the maximum number of time steps, R is the number of robots,

minDist

rt is the distance of robot r to the nearest neighbor at time t, and targetDist

is the distance at which the robots should disperse.

5.1.3.3 Clustering

Clustering, also known as aggregation, is a canonical task in swarm

robotics (Brambilla et al., 2013). Clustering is a challenging task because it com-

bines several aspects of multirobot tasks (Silva et al., 2015b), including distributed

individual search, coordinated movement, and cooperation. Furthermore, cluster-

ing plays an important role in robotics because it is a precursor of other collective

behaviors such as group transport of heavy objects (Groß and Dorigo, 2009).

In our instance of the clustering task, the robots started randomly spread in a

square-shaped area with a side-length of 100 m, and had the objective of finding

one another so as to form a single cluster. However, since the communication

range was limited and the environment was unbounded, certain initial conditions

could lead to more than one cluster. During evolution, controllers were scored

based on the number of clusters that they formed. Two robots belonged to the

same cluster if the distance between them was inferior to 7 m. The fitness function

was defined based on a weighted sum of the number of clusters throughout time:

f
clustering

=

P
T

t=1 t⇥ R�ct
R�1P

T

t=1 t
⇥ S , (5.4)

where T is the total number of time steps in each trial, R is the number of robots,

and c
t

is the number of clusters formed by the robots at step t.

74

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

5.1.3.4 Area Monitoring

Swarms of robots are ideal for tasks where large areas need to be covered for

monitoring or surveillance purposes. This task category has been explored in the

past with several different control techniques, such as pheromone traces (Wagner

et al., 1999), odor sources (Marques et al., 2006) and evolved artificial neural

networks (Haasdijk et al., 2011).

In our area monitoring task, a geo-fence is defined to delimit an area of interest,

and the robots should coordinate to continuously cover as much of the area as

possible. During evolution, we tested the controllers in a variety of randomly

generated geo-fences with different shapes, in order to obtain general behaviors.

For the purpose of this task, we considered that each robot covers a circular area

with a radius of 5 m (V) around it. The challenge in this task is to find a general

movement pattern that takes into account many different shapes of the monitoring

area and varying number of robots.

In order to assess the performance of the controllers, we divided the monitoring

area into a grid with a fixed cell size of 1 m2. Each robot could visit cells within

the coverage radius V , setting its value to 1. The value of previously visited cells

decayed linearly over a time frame of 100 s, down to 0. Controllers were scored

based on how much of the grid was covered over time, according to the following

equation:

f
monitor

=

1

T

TX

t=1

1

C

CX

c=1

val(c
t

)

!
⇥ S ,

val(c
t

) =

8
>>>>><

>>>>>:

0 , t = 1

max (0, val(c
t�1)��) , minDist

c,t

> V

1 , minDist

c,t

 V

(5.5)

75

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

where T is the maximum number of time steps, R is the number of robots, C is

the number of cells, minDist

c,t

is the minimum distance of any robot to cell c at

time t, and � is the decay for any cell (0.001 per time step).

5.1.4 Evolutionary Results

The results of the evolutionary algorithm for all tasks can be found in Figure 5.4.

Solutions for homing, dispersion and monitoring were found within 100 genera-

tions, while clustering required up to 400 generations for good solutions to evolve.

This can be explained by the challenge in forming a single cluster, depending

on the initial positions of the robots: since the environment is unbounded, some

robots might find themselves outside of each other’s communication range, making

the task more difficult.

0.0

0.2

0.4

0.6

0 25 50 75 100
Generation

Po
st
−e

va
lu

at
io

n
fit

ne
ss

0.45

0.55

0.65

0.75

0.85

0 25 50 75 100
Generation

Po
st
−e

va
lu

at
io

n
fit

ne
ss

Dispersion

0.4

0.5

0.6

0.7

0.8

0 25 50 75 100
Generation

Po
st
−e

va
lu

at
io

n
fit

ne
ss

Monitoring

Best 3 runs Average of all runs

Homing

0.0

0.2

0.4

0.6

0.8

0 100 200 300 400
Generation

Po
st
−e

va
lu

at
io

n
fit

ne
ss

Clustering

Figure 5.4: Fitness plot for the four different tasks. The plot shows the highest
fitness scores found so far at each generation. The red lines depict the three
highest-scoring evolutionary runs, while the blue line depicts the average of the
ten runs, with the respective standard deviation shown in gray.

76

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

For the most part, the definition and configuration of the evolutionary process

was straightforward. We relied on the NEAT algorithm, which does not require

the specification of the neural network topology for the controllers. Fine-tuning

the parameters of NEAT was also not necessary, as the default parameters yielded

good results. The only challenge in configuring the evolutionary algorithm was

the definition of the fitness functions. Defining a fitness function for a given task

was typically done within two or three iterations, usually due to unforeseen local

optima that only manifested themselves throughout evolution. The fact that we

used common swarm robotics tasks also facilitated the definition of the fitness

functions, as we could rely on fitness functions proposed in previous studies.

5.2 Transferring Controllers to Real Robots

In this section, we assess the evolved controllers on real robots and compare their

performance on real robots to the performance in simulation. The experiments

reported in this section were conducted over the course of four days, at Parque das

Nações, Lisbon, Portugal, in a semi-enclosed area in the margin of the Tagus river,

see Figure 5.5. The wind speed ranged from 15 km/h to 40 km/h. The average

drift speed of the robots was 0.2 m/s, twice as high as we had used in simulation

(see Section 5.1.2).

For each tasks, the top three controllers were tested (referred to as Controllers

1, 2 and 3 in this section). Each controller was evaluated in three independent

experiments (referred to as samples A, B and C in this section). For every sam-

ple, the initial positions of the robots were randomized: a set of positions was

generated inside a user-defined region, and each robot navigated to the respective

position. When all robots were in place, we started the experiment by activating

the controller in all robots simultaneously. When evaluating the three different

controllers for a given task, the same set of initial positions was used, ensuring

that all controllers were tested under similar initial conditions. Each sample ended

after a fixed amount of time.

77

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

5.2.1 Homing

We setup a scenario where the swarm had to navigate sequentially to four way-

points to assess the performance of the evolved homing controllers. Each waypoint

was placed at a distance of 40 m from the previous one, and the active waypoint

was changed periodically every 60 s. Each controller was tested once in this sce-

nario, for a total of 4 minutes. All three controllers tested in the real robots were

able to navigate successfully to the waypoint while avoiding collisions with the

neighboring robots. Once the swarm arrived at one of the waypoints, the robots

would start moving around the waypoint at slow speeds in concentric circles (see

Fig 5.6, bottom).

Figure 5.6 (top) shows the average distance to the active waypoint, compared

to the same controller in the simulation environment. The controllers display a

similar behavior and level of performance in reality and in simulation, arriving at

the intermediate waypoints at approximately the same time, and keeping the same

average distance to them (around 10 m). Controller 3 was the exception, reaching

the waypoints faster than the other controllers, and performing better on the real

robots than in simulation.

Base
Station

330 m

190 m

Figure 5.5: Aerial photograph of the location of our experiments at Parque das
Nações, Lisbon, Portugal. The waterbody used has an area of 330 m ⇥ 190 m,
and is connected to the Tagus river.

78

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

10

20

30

40 Controller 1

10

20

30

40

Di
st

an
ce

 to
 a

ct
ive

 w
ay

po
in

t (
m

)

Real

Simulated

Controller 2

10

20

30

40

0 60 120 180 240
Time (s)

Controller 3

A B C B

t = 60 s 10 mt = 120 s t = 180 s

S

A

BC

S

A

BC

S

A

BD

S

A

BC

t = 240 s

Figure 5.6: Real-world homing experiments with eight robots. The robots
started around S. The active waypoint was then changed at 60 second intervals,
in the order A!B!C!B, for a total of four minutes per experiment. Top:
comparison between the real and simulated robots, showing the average distance
to the active waypoint, for similar conditions. The top of the figure shows
the current active waypoint. Bottom: trajectory traces of the real robots for
Controller 3. The waypoints are marked with yellow circles.

5.2.2 Dispersion

In the real-robot dispersion tests, eight robots started in a cluster, and had to

disperse to a distance of 20 m from their nearest neighbor. The robots were initially

placed randomly in a square-shaped area with a side-length of 28 m, at a minimum

distance of 5 m from the nearest neighbor. Each experiment lasted 90 seconds.

79

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

The results in Figure 5.7 show some differences in the performance of con-

trollers on the real robots and in simulation. While performance was relatively

homogeneous across all controllers in the simulation environment, with an error

close to 1 m to the target distance, no controller in the reality was able to achieve

the same level of performance on real robots. Controller 3 achieved an average

error of 2 m in reality, but the other two controllers performed considerably worse,

despite all of them displaying similar performance in simulation. Upon inspec-

tion of the behaviors, we observed that the robots in simulation relied on moving

in circles at very low speeds to maintain their positions after dispersion. The

same movement pattern was observed on the real robots. However, the circles

performed by the real robots were larger, meaning that they therefore tended to

move away from their position, which is explained by the differences between the

motion model in simulation and the motion of the real robots.

5.2.3 Clustering

The clustering controllers were tested by randomly placing the real robots in an

area of 100x100 m, up to a maximum of 40 m from the nearest robot. Each ex-

periment lasted 180 seconds. Results for the clustering experiments greatly varied

depending on the initial conditions, but this variation was also observed in the

simulation environment (see Figure 5.8, top). If one or more robots were initially

positioned far away from the remaining robots (and therefore not within commu-

nication range), the swarm would sometimes aggregate in more than one cluster,

see example in Figure 5.8 (bottom, Controller 2).

The results show that the controllers were generally able to cross the reality

gap successfully. In the case of Controller 1, it had a better performance in the

real-robot experiments than in simulation, by successfully aggregating in a single

cluster in two of the three samples. Controller 2, on the other hand, performed

worse than in simulation, and Controller 3 displayed a similar level of performance.

80

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

Controller 1 Controller 2 Controller 3

●
●

●

●

●

●

● ● ●

0

1

2

3

4

5

A B C A B C A B C
Sample

D
is

ta
nc

e
er

ro
r (

m
)

Environment

●

●

Real

Simulation

10 mController 1 (sample A) Controller 2 (sample A) Controller 3 (sample C)

Figure 5.7: Real-world dispersion experiments with eight robots, one for each
controller tested, over a period of 90 seconds. Top: average error to target
distance (20 m) of the nearest robot in the last 10 s of each dispersion experiment.
Bottom: trajectory traces of the real robots. The black squares mark the starting
positions, and the red circles mark the final positions.

5.2.4 Area Monitoring

We assessed each of the three highest-performing area monitoring controllers in

real robots in three areas: square, L-shaped, and rectangular. Each of the areas

covered a total of 10,000 m2. It should be noted that the evolutionary process

did not optimize the controllers for areas with these specific shapes, but rather for

randomly generated shapes in order to promote the evolution of general behaviors.

Only the highest-performing controller was transferred, since we did not observe

any significant behavioral or performance differences in the other best controllers.

Each experiment lasted for a total of five minutes.

The controllers performed significantly better in reality than in simulation

(see Figure 5.9, top). These results are explained by speed differences between

81

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

Controller 1 Controller 2 Controller 3

●

●

●

● ●

●

●

●

●

1

2

3

4

A B C A B C A B C
Sample

M
in

. n
um

be
r o

f c
lu

st
er

s

Environment

●

●

Real

Simulation

Controller 1 (sample C) Controller 2 (sample B) Controller 3 (sample B) 10 m

Figure 5.8: Real-world clustering experiments with eight robots, over a period
of 180 seconds. Top: minimum number of clusters obtained in each sample.
Bottom: trajectory traces of the real robots. The final clusters are highlighted
in blue.

the simulated robots and some of the real robots. The speed differences directly

influence the coverage measure, since a faster robot will be able to cover a larger

area in the same amount of time. In terms of behavior (Figure 5.9, bottom), it

is possible to see that the robots were able to effectively cover the square and

rectangular areas, staying within the boundaries and moving away from the other

nearby robots. The L-shaped area was also covered reasonably well, with the

robots passing over all regions, but the intensity of the coverage was not uniform

across the whole area. Although some robots would eventually move outside of the

pre-defined boundaries (both in simulation and on the real robots) either because

of wind/currents, GPS inaccuracies, or too many robots nearby, they would quickly

return to the area inside the boundaries and resume monitoring.

82

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

Controller 1

●
●

●

0.3

0.4

0.5

0.6

Square Rectangle L−shape
Shape

C
ov

er
ag

e Environment

●

●

Real

Simulation

57.73 m

115.47 m

100 m

60 m

166.70 m

Figure 5.9: Real-world monitoring experiments with eight robots for Controller
1, over a period of five minutes. Top: coverage of the three different monitoring
areas. Bottom: coverage maps in the experiments with the real swarm. The
coverage of the area is presented in blue, and has a decay of 100 s. Trajectories
for the full duration of the task are presented in red, and all the areas visited
by the robots are filled in gray.

5.3 Scalability and Robustness in Real Robotic

Hardware

Desirable characteristics of swarm behaviors include scalability and robust-

ness (Şahin, 2005). The swarm should be able to perform well independently

of the number of robots (until issues such as congestion and overcrowding become

83

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

a limiting factor), and failures in individual units should not compromise the per-

formance of the rest of the swarm. To evaluate if our swarm of real robots with

evolved control would display these properties, we ran an additional series of ex-

periments: (i) scalability experiments for the dispersion and clustering tasks with

four and six robots, (ii) robustness experiments for the dispersion task where a

second group of robots is added to the swarm after a period of time, and (iii) ro-

bustness experiments for the monitoring task where robots are physically removed

during task execution (simulating faults), and then reintroduced after a period of

time. Robustness experiments introduce changes in the number of robots during

task execution, while scalability experiments maintain the number of robots fixed.

All experiments were conducted in the real environment with the controllers that

showed the highest performance in real hardware in the previous experiments.

5.3.1 Scalability

The dispersion and clustering controllers were tested with four and six robots (in

addition to the first experiments with eight robots) to determine if the evolved

controllers were able to perform well independently of the number of robots in the

swarm. Figure 5.10 summarizes the results for these experiments.

In the dispersion experiments, while the controllers were able to perform the

task successfully with swarms of different sizes, the results show a slight perfor-

mance decrease in the experiments with six robots. It should be noted, however,

� �Real environment Simulated environment

4 6 8

�
�

�

�

�

�

� � �

0

1

2

3

4

5

A B C A B C A B C
Sample

Di
st

an
ce

 e
rro

r (
m

)

Number of robots (Dispersion, controller 3)
4 6 8

� � � �

�

� �

�

�1

2

3

A B C A B C A B C
Sample

M
in

. n
um

be
r o

f c
lu

st
er

s

Number of robots (Clustering, controller 1)

Figure 5.10: Scalability experiments with dispersion (Controller 3, left) and
clustering (Controller 1, right) controllers. In each task, the same controller was
used in a swarm of four, six, and eight robots, with three samples for each setup.

84

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

that the error obtained is still relatively low, when compared to the target distance

of 20 m.

In the clustering experiments, the swarm was able to aggregate into a single

cluster in all three samples with four robots, and in two out of three samples with

six and eight robots. As more robots are used, the probability that more than one

cluster will be formed tends to increase since there are more possibilities of choice

as to where a particular robot might choose to go. Since the communication range

is limited and a robot can only sense the closest neighbor in each emulated sensor

slice, groups of robots might be unable to see each other, resulting in two or more

isolated clusters.

5.3.2 Robustness

We setup a dispersion task that starts with a group of four robots (G
a

). In the

beginning of the experiment, G
a

start dispersing. After 60 s, four additional robots

(G
b

) start moving towards the center of the swarm. When all robots of G
b

are at

the center (t = 130 s), their presence disturbs the dispersion of G
a

, forcing G
a

to

separate even further. After the robots in G
b

are in the center for some time, they

start the dispersion behavior along with the robots in G
a

(at t = 180 s).

Figure 5.11 shows the results for the adaptability experiments. When G
b

moves

to the center of G
a

, the robots in G
a

are forced to move away from one another

since they try to stay at a fixed distance from the closest robot. When G
b

starts

dispersing, robots from G
a

move further away to accommodate the movement

pattern of G
b

. When the whole swarm is dispersing, the distance error decreases

with time as the robots continue to adjust their positions. This experiment shows

that the controllers are able to adapt to conditions that they were not exposed to

during evolution, particularly the addition of new robots during task execution,

and still carry out the task successfully.

In a different scenario, we physically removed and added units during the exe-

cution of the monitoring task. The area to monitor was a square with 100⇥100 m.

85

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

10 mt ∈ [0,60] s t ∈ [60,180] s t ∈ [180,240] s

0.0

2.5

5.0

7.5

10.0

12.5

0 30 60 90 120 150 180 210 240
Time (s)

Di
st

an
ce

 e
rro

r (
m

)

Figure 5.11: Robustness experiments with Controller 3 of the dispersion be-
havior. The red area represents the period where the robots of G

b

are disturbing
the dispersion of G

a

, and the black vertical line indicates the point where the
robots in G

b

start dispersing, and where the distance error starts being measured
for all eight robots.

The monitoring controller was executed for a total of 15 minutes, starting with

eight robots. At the 5-minute mark, we removed four of the robots, and at the 10-

minute mark, two robots were added. Figure 5.12 shows the coverage of the mon-

itoring area at any given time during the experiment. The performance decrease

after the 5-minute (300 s) mark, and the consequent increase at the 10 minute

(600 s) mark show that the performance of the evolved controllers tends to scale

linearly with the number of robots executing the task (see black line in Fig 5.12).

These results indicate that the evolved controller is robust to variations in the

composition of the swarm during task execution.

86

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

0.0

0.2

0.4

0.6

0 100 200 300 400 500 600 700 800 900
Time (s)

Co
ve

ra
ge

Total coverage Mean coverage per robot

Figure 5.12: Robustness experiments with Controller 1 of the monitoring be-
havior. The time regions highlighted in red correspond to the periods when
robots where either entering or leaving the monitoring area.

5.4 Sequential Environmental Monitoring Task

In this section, we conduct the first experiment where the hierarchical control

synthesis approach is applied to the aquatic SRS. As a first step, we manually

program a simple behavior arbitrator that activates the previously evolved behav-

ior primitives in order to produce a sophisticated global behavior. The arbitrator

for this task does not use the robots’ sensory inputs in order to decide which

behavior primitive should be active at any given time, and instead relies on a

predefined time-based mechanism to select the appropriate behavior. Since all

robots start the task simultaneously and the top-level behavior arbitrator relies

on time to switch the active behavior primitive, synchronization among the swarm

is implicitly guaranteed.

We integrated the behaviors described in the previous sections to accomplish

a mission of sampling the water temperature over a given area of interest. The

robots all started near a base station, outside the area of interest, and the mission

was decomposed in five sequential sub-tasks: (i) collectively navigate to the center

of the area of interest (homing); (ii) disperse; (iii) monitor the area of interest;

(iv) aggregate, using the clustering behavior; and finally (v) return to the starting

point (homing). The robots start collecting temperature data after reaching the

87

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

center of the monitoring area, before sub-task (ii). The behavior arbitrator triggers

the appropriate behavior primitive for the current sub-task sequentially to produce

the control for complete mission, with each primitive executing for a predefined

amount of time.

The complete controller was tested in the real robotic swarm which had to

monitor an area with a size of 100⇥100 m, and the task lasted for a total of

11 minutes. The trajectories of the real robots executing the sequential controller

mission and the spatial interpolation of the temperature data collected can be

seen in Figure 5.13. Measurements taken by the robots’ temperature sensors were

Homing Dispersion Area monitoring Clustering Homing
2 min 1 min 3 min 3 min 2 min

100m

Base station Base station

10
0

m

t = 120 s
Homing

t = 180 s
Dispersion

t = 360 s
Area monitoring

Temperature (ºC)

 ≥ 21.3

 ≥ 21.6

 ≥ 21.9

 ≥ 22.3

 ≥ 22.6

 ≥ 22.9

 ≥ 23.2

Error (Std Dev)

 ≥ 0.04

 ≥ 0.14

 ≥ 0.24

 ≥ 0.33

 ≥ 0.43

 ≥ 0.53

 ≥ 0.63

Figure 5.13: Results for the sequential controller mission. Top: robot trajec-
tories for each sub-task. Middle and bottom: temperatures in the monitoring
area. Data collection started after the robots arrived at the waypoint (t = 100 s).
The middle row shows the predicted temperatures, while the bottom row shows
the estimated error in the predictions.

88

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

spatially interpolated using Kriging (Stein, 2012). The uncertainty of the data

deceases as the robots cover the area, resulting in a more accurate temperature

profile. At the end of the monitoring period (t = 360 s), the estimated standard

deviation of the error was < 0.14 for the whole area except in the corners where

it was slightly higher.

5.5 Hierarchical Control for SRS

To test our hierarchical control synthesis approach (Duarte et al., 2015) in the

aquatic environment, we chose a maritime intruder detection task where the swarm

must remain within a previously designated monitoring area and pursue intruders

that try to cross it (see Figure 5.14). The robots are initially located on a base

station, to which they must eventually return in order to recharge their batteries.

Pursuing Robots Intruder

Figure 5.14: A photo of a group of robots in the area where the experiments
were performed.

5.5.1 Experimental Setup

The role of the intruder is carried out by a robot running a path-following con-

troller. The robots are aware of the intruder’s position up to the range of an

emulated intruder sensor. When a robot detects an intruder using its emulated

sensors, it shares the intruder’s position with neighboring robots. Neighboring

robots, in turn, use the received positions to compute the reading for their col-

lective sensors (Rodrigues et al., 2015a). Collective sensors are based on the in-

tegration of mutually shared information obtained from onboard sensors between

89

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

neighboring robots. The shared information is then used to compute readings

for collective sensors, which can give the individual robot information that would

not be available through its onboard sensors, effectively extending their sensing

capabilities. The readings for the collective sensors are calculated by taking into

account the robot’s own location and orientation, as well as the sending robot’s

location and orientation. For the robotic controller, the collective sensor is indis-

tinguishable from regular physical or emulated sensors, since the communication

and integration of received positions is part of the low-level firmware and not of

the controller itself. We used a range of 40 m (equivalent to the communication

range of the robots) for the emulated robot sensors, the collective intruder sensors,

and the emulated geo-fence sensors, and a range of 20 m for the emulated intruder

sensors.

To evolve the pursue intruder behavior primitive, we used an emulated intruder

sensor with a range of 20 m, and a collective intruder sensor with a range of 40 m.

During evolution, robots were randomly spread in a given area, and one intruder

traversed the area with a randomly generated trajectory. When a robot detected

an intruder, the robot should attempt to remain within range of it. In simulation,

we rewarded controllers according to the following equation:

f
intruder

=

1

T

TX

t=1

1

R

RX

r=1

found(r
t

)

!
⇥ S , (5.6)

found(r
t

) =

8
><

>:

1 , within range

0 , else
(5.7)

where T is the maximum number of time steps, R is the number of robots, and

found(r
t

) indicates whether or not robot r is detecting the intruder at timestep t.

The fitness trajectory for the pursue intruder controller can be seen in Figure 5.15.

90

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

0.2

0.4

0.6

0 25 50 75 100
Generation

Po
st
−e

va
lu

at
io

n
fit

ne
ss

Best runs

Mean

Pursue Intruder

Figure 5.15: Fitness plot for the pursue intruder task. The plot shows the
highest fitness cores found so far at each generation. The red lines depict the
three highest-scoring evolutionary runs, while the blue line depicts the average
of the ten runs, with the respective standard deviation shown in gray.

5.5.2 Top-Level Behavior Arbitrator

In this section, we detail the task setup for the complete intruder detection task and

conduct a series of experiments to: (i) study how changes to the high-level behavior

arbitrator impact the overall swarm behavior, (ii) study how the the swarm size

and environment’s size affect the performance of system, and (iii) validate the the

transferability of the controllers by testing them on a real robotic swarm. Finally,

we test our approach in a large-scale version of the task with swarm sizes of up to

1000 robots.

5.5.2.1 Task Setup

The intruder detection task is carried out in a rectangular monitoring area. A

base station, where the robots start the task, is located 20 m from the monitoring

area (see Figure 5.16). In each trial, an intruder makes a total of four crossings of

the area, and the robots should detect and remain within range of their onboard

intruder sensors (20 m). The task terminates after the intruder’s fourth crossing.

The robots have a limited battery time of 8 minutes, and need to return to the

91

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

Base
station 1 2 3 4

20m

M
onitoring area

Intruder
path

Figure 5.16: Representation of the experimental environment. The robots are
deployed from a base station, to which they must regularly return in order to
recharge their batteries. An intruder makes a total of four crosses (1-4, in red)
through the monitoring area (dashed lines), and the experiment ends after the
last cross.

base station in order to recharge the battery when it reaches 10%. The battery

level of each robot is set between 50% and 100% in the beginning of the task.

5.5.2.2 Testing Different Arbitrators

After the we evolved the pursue intruder behavior primitive, we combined it with

the two previously evolved homing (for going to the monitoring area and recharg-

ing) and area monitoring behavior primitives using a simple pre-programmed ar-

bitrator (see Figure 5.17). The arbitrator determines which behavior should be

active at any given time, depending on the current state of the robot, and the

robot’s sensory inputs. We designed a configurable arbitrator as a FSM, where

each state corresponds to the activation of one of the arbitrator’s sub-controllers.

In this case, since the hierarchical controller only has a depth of two levels, the

complete controller can be represented as a single FSM (see Figure 5.18).

To study how changes to the high-level behavior arbitrator impact the overall

swarm behavior, we assessed the performance of four increasingly complex config-

urations of the FSM in simulation:

92

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

Top Level
Behavior Arbitrator

Go To Area
Behavior Primitive

Recharge
Behavior Primitive

Area Monitoring
Behavior Primitive

Pursue Intruder
Behavior Primitive

Figure 5.17: Conceptual representation of the hierarchical controller used in
the intruder detection task.

Go to
area

Recharge

Area
monitoring

Pursue
intruder

Within 10 m
of waypoint

Battery
recharged

Robots
closer to
intruderLow battery

< N

≥ N

Intruder
detected

Low battery

No intruder
for 30 sec

Intruder
detected

Figure 5.18: An FSM representing the manually programmed top-level ar-
bitrator. The differently colored states and transitions represent incremental
extensions to the arbitrator. Monitor: the controller will monitor the area and
manage the battery level (black states and transitions). Pursue All: the con-
troller will actively pursue a detected intruder (red extension). Pursue N : we
limit the number of robots that can actively pursue the intruder (blue exten-
sion). In this last case, the dashed red transition from the “Pursue Intruder”
state to the “Area Monitoring” state is no longer used.

Monitor: Monitor and recharge behavior with no intruder pursuit.

Pursue All: Pursue intruder with no restrictions.

Pursue 1: Pursue intruder only if there is no one else pursuing (N=1).

Pursue 3: Pursue intruder if there are less than 3 robots closer to the intruder

(N=3).

We evaluated the arbitrators in six experimental setups with different number

of robots and monitoring area sizes, maintaining the number of robots proportional

to the area, see Table 5.1. To analyze the collective behaviors obtained with the

different FSMs, we relied on three metrics: (i) detection time: the proportion

93

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

of time that the intruder is detected when inside the area, (ii) near robots : the

average number of robots within range of the intruder, and (iii) coverage: the area

coverage, using a radius of 20 m for each robot and a linear decay of 100 seconds.

Results are shown in Figure 5.19.

As the results in Figure 5.19 show, the Monitor arbitrator performs worse

than the remaining arbitrators regarding the detection time and near robots met-

rics (Mann-Whitney U test, p < 0.05), since the robots do not actively pursue the

intruder. The arbitrator with no restrictions in the number of robots pursuing

(Pursue All) achieves the highest number of near robots. Adding restrictions to

the number of pursuing robots (Pursue 1 and Pursue 3) significantly decreases

the number of near robots (p < 0.001, Mann-Whitney), confirming that the value

of N has a significant impact in the behavior of the swarm. Regarding the de-

tection time, all the arbitrators that use the pursue behavior show no statistically

significant differences (p = 0.09, Kruskal-Wallis), indicating that as long as a sin-

gle robot actively pursues an intruder, the performance of the swarm remained

identical.

The coverage metric reveals that there is a trade-off between the number of

pursuing robots and the coverage of the space: by allowing more robots to pursue

the intruder, the overall coverage of the monitoring area decreases (the coverage

differences between Pursue 1, Pursue 3, and Pursue All are statistically significant,

p < 0.01, Mann-Whitney). This trade-off is explained by the higher concentration

of robots near the intruder, negatively affecting the coverage of the remaining area.

The lower coverage of the space did not decrease the performance of the swarm

in our setups, since there was only one intruder. A higher coverage, however, is

Table 5.1: Parameters of each experimental setup.

Experimental setups S1 S2 S3 S4 S5 S6

Monitoring area side-length (m) 100 141 200 245 283 316
Number of robots 5 10 20 30 40 50
Experiment duration (minutes) 8 11 15 19 22 24

94

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

�

�

0.00

0.25

0.50

0.75

1.00

Monitor
Pursue 1

Pursue 3
Pursue All

De
te

ct
io

n
tim

e

��������
��

��

0

1

2

3

Monitor
Pursue 1

Pursue 3
Pursue All

Arbitrator
Ne

ar
 ro

bo
ts

�

�

0.5

0.6

0.7

0.8

Monitor
Pursue 1

Pursue 3
Pursue All

Co
ve

ra
ge

Figure 5.19: The plots show three different metrics (near robots, detection

time, and coverage) for four variations of the behavior arbitrator. Each boxplot
corresponds to 60 data points (10 samples per monitoring area size).

advantageous for scenarios where multiple intruders might cross the monitoring

area simultaneously.

These results show how different swarm behaviors can be achieved by mak-

ing simple modifications to the behavior arbitrator, reusing the same behavior

primitives. For the remaining experiments in this paper, we chose the Pursue 3

behavior arbitrator for its higher behavioral complexity, and because of its po-

tential fault-tolerant characteristics in the case of a failure in one of the pursuing

robots.

5.5.3 Arbitrator Scalability

We assessed the scalability of the Pursue 3 behavior arbitrator using different

combinations of swarm size and monitoring area size. We extracted the detection

time metric for a total of 36 setups, each tested in 100 simulations. Figure 5.20

shows the results of these experiments. The results show that the chosen controller

was scalable both across the swarm size, as well as the monitoring area size. There

is always a performance increase as the swarm size increases, or as the monitoring

area size decreases. In Section 5.3.2, we have shown that the area monitoring and

the homing behaviors were scalable with respect to the swarm size. These results

95

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

suggest that the composition of different scalable swarm behaviors resulted in a

scalable composed behavior.

5.5.4 Transferring Control to Real Robots

The the real robot experiments, we used experimental setup S1, a square-shaped

monitoring area with a size of 100 m by 100 m (see Figure 5.16) and a swarm

composed of five robots. We conducted three repetitions of the task with the

Pursue 3 controller. In order to compare the performance with the same controller

in simulation, we ran 100 simulation samples using the same experimental setup.

The results are shown in Figure 5.21.

In the experiments with the real robots, the swarm was able to find the intruder

in all crossings, as shown in Figure 5.21 (top). The plot shows that up to four

robots followed the intruder simultaneously, and once an intruder was detected, it

was always followed continuously until it left the monitoring area. In five of the 12

crossings, the intruder was seen almost as soon as it entered the monitoring area,

and then followed during the entirety of its crossing (crossings A-3, B-1, B-3, C-1

and C-2). Figure 5.22 shows an example of the swarm’s behavior in the real robot

experiments. The performance of the controller in the real environment was very

similar to the performance in simulation, see Figure 5.21 (bottom, Detection time):

0.66 0.85 0.94 0.98 0.99 0.99

0.54 0.78 0.91 0.95 0.98 0.98

0.35 0.54 0.77 0.85 0.9 0.92

0.2 0.35 0.54 0.64 0.69 0.73

0.15 0.28 0.47 0.57 0.65 0.7

0.14 0.24 0.45 0.56 0.63 0.67

100

141

200

245

283

316

5 10 20 30 40 50
Robots

Si
de

0.00

0.25

0.50

0.75

1.00

Detection
time

Figure 5.20: Proportion of time the intruder was detected when inside the
arena, in different task setups with varying number of robots and arena size.
Each setup was repeated in 100 simulations.

96

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

on average, the intruder was followed during 68% of the time in the real scenario,

and 66% in simulation. The average number of pursuing robots is also close to

what was observed in simulation. The coverage was slightly higher in reality

than in simulation, which is consistent with the results reported in Section 5.2

for the evolved monitoring controller. Overall, these results show that the hybrid

controller successfully crossed the reality gap, achieving a similar behavior and a

similar performance on the real robots as in simulation.

5.5.5 Scaling to Large-scale Swarm Robotic Systems

We conducted scalability tests with the final controller in a large-scale intruder

detection task using a monitoring area with a size of 20 km by 0.5 km. Such a

patrol zone would allow the coverage of the south coast of the Italian island of

Sample A Sample B Sample C

0

1

2

3

4

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Time (s)

N
ea

r r
ob

ot
s

1 2 3 4 1 2 3 4 1 2 3 4

Simulation

� Sample A (real)

Sample B (real)

Sample C (real)

�

0.2

0.4

0.6

0.8

1.0
Detection time

��

�

0.60

0.65

0.70

0.75

0.80
Coverage

�

0.5

1.0

1.5

2.0
Near robots

Figure 5.21: Top: number of robots pursuing the intruder over time for the
three real-robot experiments (crosses 1-4 for each experiment). The period in
which the intruder is traversing the monitoring area is shown in gray, and the
number of robots pursuing at any given instant is shown in blue. Bottom:
comparison of the results in simulation and in the real environment, using the
metrics presented before.

97

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

t = 50 s

t = 100 s

t = 150 s t = 200 s

t = 250 s t = 300 s

F

B

R

P

A
M

B

R
P

Figure 5.22: Traces of the first 300 seconds from sample C of the real-robot
experiments, taken at 50 second intervals. The swarm is shown in blue, and the
intruder is shown in red. The labels identify specific events that highlight the
behavioral capabilities of the swarm. A: swarm going to the monitoring area.
M: swarm monitoring the area. P: robots pursuing an intruder. F: temporary
motor failure in one of the robots. B: robots abandoning the pursuit when
the intruder leaves the monitoring area. R: robot going to the base station to
recharge.

98

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

Lampedusa (see Figure 5.24), a major hub for illegal migration from Tunisia and

Libya to Italy (Coppens, 2013). In the beginning of the experiment, a robot

is deployed from each of the two base stations to a random position inside the

monitoring area every ten seconds. Each base station deploys robots to one half of

the monitoring area. One hour into the experiments, intruders begin crossing the

monitoring area at random locations every 30 minutes (a total of 46 crossings).

The simulation is run for a total of 24 simulated hours.

In order to conduct the scalability experiments, we improved some characteris-

tics of the robots in simulation, which would be advantageous in such a large-scale

mission. We changed the robots’ battery life to five hours, the communication

range increased from 40 m to 100 m and the sensor ranges were increased to 100 m

for the robot, geo-fence, and collective intruder sensors, and to 50 m for the in-

truder sensors. We ran experiments in ten different scenarios with a number of

robots varying from 100 to 1,000 at increments of 100 robots.

The performance observed for the different swarm sizes can be seen in Fig-

ure 5.24. By increasing the number of robots, the number of detected intruders

increases until it reaches a maximum of 100% detection rate with 900 robots, which

corresponds to a density of 90 robots/km2. Another indicator of performance is

the amount of time that the intruders are being pursued by either (i) one robot, or

(ii) two or more robots. We can observe an improvement in the proportion of time

Figure 5.23: Map of the island of Lampedusa in the Mediterranean Sea, with
a 20 km by 0.5 km monitoring area. Robots are deployed from two base stations
to a random location inside the monitoring area.

99

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

that two or more robots pursue an intruder throughout the range of experimental

setups.

In the scenario with 1,000 robots, the hybrid controllers successfully completed

the task by detecting all 46 intruders. In total, intruders were present in the

monitoring area for 279 minutes, of which they were detected by a single robot

for 32 minutes, and by two or more robots for 213 minutes (11% and 76% of the

total time, respectively). The system reached an equilibrium in which a mean

of 60-80% of the robots were patrolling, 10-20% were returning to the base or

recharging, 10-20% were going from the base to the monitoring area, and 1% were

pursuing an intruder (see Figure 5.25).

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
�

�������������������������

������������������
����������������������������

�������������������������������������

Figure 5.24: The figure shows both the percentage of detected intruders as
points, and the percentage of time that the intruders were pursued by (i) one
robot, and (ii) two or more robots, as histograms for the different simulated
scenarios.

100

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

5.6 Discussion

In this chapter, we explored how hybrid hierarchical control can be applied to

SRS. Hybrid controllers combine multiple behavioral blocks generated with differ-

ent control synthesis approaches, thus leveraging the benefits of each and enabling

complex tasks to be solved. We applied the approach to two tasks: (i) an environ-

mental monitoring task where the swarm had to collect water temperature data

from a predefined area, and (ii) an intruder detection task with realistic constrains,

where the swarm had monitor an area, follow any intruders that crossed it, and

regularly return to a base station in order to recharge their batteries.

For the intruder detection task, we reused two evolved behavior primitives

(homing and area monitoring) from the experiments conducted in Section 5.2,

and evolved an additional behavior primitive for intruder pursuit. These behav-

iors were then combined with a behavior arbitrator consisting of a manually pro-

grammed FSM. We first tested multiple variants of the behavior arbitrator, and

��

����

����

����

����

�����

�� �� �� ��� ��� ��� ���

�
��

��
���
���
��
��
�

������������

�������
��������

����������
����������������

Figure 5.25: Plot of the states of the robots’ manually programmed behavior
arbitrators in the scenario with 1000 deployed robots over a period of 24 hours
of simulation.

101

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

showed how simple modifications to the arbitrator resulted in different swarm be-

haviors, using the same behavior primitives. We then tested the scalability of the

composed controller, showing that it scales predictably with the number of robots

and the size of the monitoring area. We tested the controller in real robots, using a

swarm of five aquatic surface robots and one intruder. The controllers successfully

crossed the reality gap by achieving a similar performance on the real robots as

in simulation. Finally, we tested the controllers in a large-scale simulation-based

study with swarm sizes of up to 1000 robots.

The composition of different evolved sub-controllers using a FSM-based be-

havior arbitrator allowed us to leverage evolution’s automatic synthesis of self-

organized behavior, while at the same time provided high-level control of the

swarm behavior through simple manually programmed rules. Our results show

that hybrid control introduces a series of advantages for the synthesis of control

for robotic swarms: (i) multiple evolved behaviors can be combined to produce

control for complex swarm robotics tasks, (ii) previously evolved control can be

reused in different applications, simplifying the synthesis of control for new tasks,

(iii) the flexibility of manually programmed behavior arbitrators can enable realis-

tic task-specific constraints to be addressed quickly, without the need to re-evolve

control, and (iv) the reality gap can be effectively overcome in complex tasks by

relying on general and robust behavior primitives.

A number of previous works have shown that evolutionary computation is a

powerful tool for the automatic synthesis of control for SRS (Trianni and Nolfi,

2011). Our experiments confirm not only confirmed this hypothesis, but also

demonstrated for the first time that evolved swarm behavior can be applied out-

side of controlled laboratory conditions. However, once we started considering

tasks that require more complex behaviors (as the temperature monitoring task

in Section 5.4 and the intruder detection task in Section 5.5), the use of standard

evolutionary techniques became problematic in the sense that defining an effective

fitness function for the complete version of this task was too cumbersome. We

therefore applied our hierarchical control synthesis approach in order to synthe-

size control for these tasks. We were able to reuse previously evolved behaviors,

102

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

which proved to be modular and straightforward to integrate with one another. In

summary, our experiments showed how evolutionary techniques can be combined

with a human expertise to design and synthesize complex behaviors that enable

SRS to carry out tasks under realistic constraints.

5.6.1 Transferring Control to Real Hardware

One of the challenges of synthesizing control for robots in uncontrolled scenarios

is dealing with the unpredictable environmental conditions or unexpected circum-

stances. In the case of our experiments, many variables have to be taken into

account, such as wind, currents, waves, the movement dynamics of the robots,

GPS and compass inaccuracy, and the effect of all these in the sensory readings

and actuation of the robots. Some of these elements can be extremely difficult, or

even impossible, to model accurately. For instance, waves can impact the commu-

nication range of the robots, while water currents or waves can have strong effects

on the movement dynamics of the robot.

To make the evolutionary process computationally viable, the complexity of

the simulations must remain relatively low. It is, therefore, important to rely on a

simplified physics engine. We implemented a preliminary version of the dynamics

by taking measurements of the robot moving with different combinations of left and

right motor speeds. Afterwards, we collected GPS data of a controller executing

on real hardware, and tried to match simulation to reality by adjusting the motion

model. Nevertheless, this model was still a simplification of reality, as it did not

explicit take into account a number of physical properties such as hull balance and

waves generated, which can impact motion patterns. To minimize the impact of

the model simplification on the transfer of behavior, we introduced noise into the

simulation model, particularly in the sensors, actuators, and in the environment,

as advocated by Miglino et al. (1996) and Jakobi (1997).

The results from our experiments showed that the evolved controllers were gen-

erally able to cross the reality gap, while maintaining the desirable characteristics

103

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

of SRS, such as robustness and scalability (Şahin, 2005). In a number of experi-

ments, a speed difference between some of the real robots and the simulated robots

(up to 20%, in some cases) contributed to differences in terms of performance. In

the case of the area monitoring controllers, for instance, the real swarm obtained

a consistently higher performance due to its ability to more quickly cover a larger

area. While the behaviors of the real robots were generally similar to those ob-

served in simulation, some motion patterns did not transfer well. With some of

the simulated dispersion controllers, for instance, the robots moved in small circles

to maintain their current position. In reality, however, these circles were larger,

which resulted in a lower performance. This difference highlights the limitations

of the simplified physics model we adopted in the simulation environment. We

are considering two different approaches to address these issues in future work:

(i) further improve the simulated movement dynamics, thereby decreasing the

mismatch between simulation and reality, and (ii) select for controllers that rely

on motion patterns that transfer well from simulation to reality, as proposed in

previous works (Koos et al., 2013; Lehman et al., 2013; Cully et al., 2015).

5.6.2 Robustness to Hardware Faults

The use of robots in real-world conditions will often imply hardware malfunctions.

Prolonged used and environmental factors can lead to faults in hardware, espe-

cially when considering swarms of robots, where each robot must be relatively

inexpensive and, therefore, equipped with lower-quality components. In our ex-

periments, the main source of faults were the robots’ motors, which sporadically

and temporarily stopped, causing the robot to stop completely or start moving in

circles. This fault would solve itself when the motor stopped receiving power and

started again, which often happened naturally as a result of the normal controller

operation. Other problems that we observed were the decrease of motor power

with lower battery levels, and the often erroneous GPS readings.

The aforementioned faults occurred often during the execution of all experi-

ments reported in this chapter. Even though these faults were not contemplated

104

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

in simulation, and therefore were not taken into account during the evolutionary

process, they did not compromise the overall performance of the swarm. The

swarm generally exhibited the same group-level behavior when temporary individ-

ual faults occurred. In future work, we will study the fault-tolerance properties of

the system more systematically by injecting different types of faults (Christensen

et al., 2008), and by measuring the impact of these faults in the performance of

the swarm.

An additional source of uncertainty, related to the hardware, was the slight

heterogeneity among the robots of the swarm. Different robots often had different

battery levels, and even slightly different motors, which caused individual robots

to perform differently. We measured this heterogeneity in the monitoring task,

where all robots supposedly have very similar behaviors. In the real swarm, the

difference between the slowest and the fastest robot was up to 0.6 m/s at certain

times. For the same task, in simulation, the difference between the slowest and

the fastest robot was just 0.1 m/s. This suggests that the real swarm had to deal

with a much higher degree of heterogeneity than what was contemplated during

the evolutionary process.

5.7 Summary

In this chapter, we reported experiments with a swarm of small, simple, and in-

expensive aquatic surface robots, which relied on evolved, distributed control and

local communication. Using simulation, we evolved behaviors for four common

collective tasks: homing, clustering, dispersion, and area monitoring. The evolved

controllers were then systematically evaluated in the real robots in a large and un-

controlled aquatic environment. Our results showed that the controllers displayed

similar behaviors and levels of performance in the real swarm as those observed

in simulation. Finally, we successfully applied our hierarchical control synthesis

approach for an environmental monitoring task and for a maritime intruder detec-

tion task with realistic task constrains. The robots consistently displayed the key

105

Chapter 5. Synthesis of Hierarchical Control for Swarm Robotic Systems

desirable properties of swarm robotic systems, namely robustness and scalability,

in the different experiments.

106

Chapter 6

Conclusions and Future Work

The application of classic evolutionary robotics techniques for the synthesis of con-

trol for complex tasks has proven problematic: the evolutionary process is often

difficult to bootstrap and vulnerable to deception as task complexity increases.

Furthermore, the reality gap has proven a major obstacle when transferring con-

trol from simulation to reality. These issues have, so far, effectively prevented

the application of ER-based control synthesis techniques for real-world robotic

systems. In this thesis, we addressed these issues by proposing and studying the

hierarchical control synthesis approach.

In our approach, a task is decomposed into several sub-tasks, and robotic

control is then synthesized for each sub-task. The different sub-controllers are

then composed hierarchically. Actuation nodes (behavior primitives) are at the

lower levels of such a controller, while decision nodes (behavior arbitrators) are

higher up the hierarchy and select which behavior primitive should be active at

any given time. A controller can be hybrid, which means it can be composed of

control nodes synthesized with different techniques, such as evolution and manual

programming.

We first validated our hierarchical control synthesis approach in a series of

experiments with an e-puck robot (Mondada et al., 2009): (i) a rescue task with

107

Chapter 6. Conclusions and Future Work

a purely evolved hierarchical controller, (ii) a navigation task with a hybrid hi-

erarchical controller (evolved arbitrator and manually programmed primitives),

and (iii) an integrated task that required fine sensorimotor coordination with

a hybrid hierarchical controller (evolved arbitrators and evolved/manually pro-

grammed primitives). In these experiments, our approach allowed for the synthe-

sis of ER-based control for tasks that were beyond the state of the art in the field,

both in simulation and in real robotic hardware.

We then applied our approach to SRS. First, we presented a series of validation

experiments based on four canonical swarm robotics tasks (homing, clustering, dis-

persion and area monitoring) where we compared the performance of controllers in

simulation and in the real world, and validated that our robotic platform displayed

key swarm robotics characteristics, such as scalability and robustness. Finally,

we applied our hierarchical control methodology to an environmental monitoring

task, and to a maritime intruder detection task, in which a swarm of robots must

monitor a pre-defined patrol zone and detect and follow a robot that acts as an

intruder. The experiments conducted in Chapter 5 are the first demonstrations of

evolution-based control in a swarm of robots outside strictly controlled laboratory

conditions.

The performance of evolved control is typically lower when transferred to a real

robot, since the evolutionary process takes place offline. Using our hierarchical

control synthesis approach, real-robot performance can be assessed incrementally

as sub-controllers are evolved, which allows transferability issues to be addressed

immediately and locally in the controller hierarchy. Since each sub-controller solves

only part of the task, it becomes feasible to introduce different types of noise in

simulation and, therefore, increase the robustness of the solutions. Furthermore,

different control synthesis methods, such as evolution or manually programmed

control, can be leveraged depending on the requirements of the sub-task.

In summary, our contribution is threefold: (i) we presented the hierarchical con-

trol synthesis approach, which allows different control synthesis techniques to be

108

Chapter 6. Conclusions and Future Work

combined in a single controller and enables the application of evolutionary method-

ologies for complex tasks, (ii) we validated our approach in real robotic hardware

and in tasks that are beyond the state of the art in terms of task complexity,

and (iii) we demonstrated for the first time a robotic swarm with evolved con-

trol performing task outside of strictly controlled laboratory conditions, showing

that SRS, ER and hierarchical control systems are viable approaches for complex

real-world tasks.

6.1 Future Work

Below, we discuss potential avenues of research with respect to the application of

ER methodologies to complex real-world tasks.

6.1.1 Automatic Behavior Composition

One of the limitations of the approach proposed in this thesis is the manual process

of decomposing a task into sub-task, and then defining the structure of hierarchi-

cal controller and the individual experimental setups. While the different nodes of

the controller can take advantage of evolution’s automatic control synthesis, the

complete control synthesis process is dependent on expert knowledge about the

task. One way to overcome this limitation is to explore automatic behavior com-

position, in which the controller can be synthesized hierarchically automatically,

without the intervention of the experimenter. In this scenario, the experimenter

would only need to define a high-level fitness function for the complete task.

Automatic behavior composition could potentially be achieved by generating

a repertoire of many different behaviors (Cully et al., 2015), using techniques

such as novelty search (Lehman and Stanley, 2011). The repertoire would de-

pend on the robotic platform and on the available sensors and actuators, but

once generated, the repertoire could be used for any number of tasks. In order

to automatically generate hierarchical control, an algorithm would test different

109

Chapter 6. Conclusions and Future Work

combinations of behaviors. One possible approach would be to develop a varia-

tion of the NEAT (Stanley and Miikkulainen, 2002) evolutionary algorithm, where

complete behavioral nodes would be added, instead of simple neurons. Another

approach could be to adapt the technique proposed by Silva et al. (2014a), where a

neural controller can have both simple neurons, and more complex macro-neurons,

which are also subject to variation during the evolutionary process.

6.1.2 Synchronization and Consensus Achievement

SRS typically do not need explicit inter-robot synchronization methods in state-

of-the-art tasks, since such tasks are usually simple and all robots are executing

identical behaviors. Once we consider hierarchical control synthesis as an enabler

for complex tasks, different robots may be executing completely different sub-

controllers simultaneously. In the case of the intruder detection task presented in

Chapter 5, for instance, each robot could be executing different behaviors (such as

recharging, following an intruder or monitoring) independently. Some tasks might,

however, require the swarm as whole, or a sub-set of the swarm, to collectively

decide to switch sub-tasks. In such situations, the robots would need to achieve

a consensus on which sub-task to perform, and when to start performing it. An

example would be the environmental monitoring mission from Section 5.4, where

the robots were implicitly synchronized due to the behavior arbitrators’ time-based

behavior switching mechanism.

Synchronization in the context of SRS has been studied in the past. The

use of pulse-coupled oscillators, a synchronization mechanism found in fire-

flies (Smith, 1935) and other natural systems (Winfree, 2001), has been used to

detect faults (Christensen et al., 2009), perform task allocation (Castillo-Cagigal

et al., 2014), and evolve synchronized behaviors (Trianni and Nolfi, 2009). This

type of synchronization mechanism could potentially be adapted to our approach

by means of parallel execution with the robots’ hierarchical controllers. Differ-

ent pulse-coupled oscillators could be bound to different sub-controllers, and each

robot might promote the execution of a particular sub-controller by activating the

110

Chapter 6. Conclusions and Future Work

sub-controller’s oscillator. If the robots observed consensus achievement, that is,

the synchronization of a single oscillator across its neighbors, they would change

to the appropriate behavior.

6.1.3 Towards Real-world Applications

The experiments reported in Chapter 5 focused mostly on the spatial organization

of the robots of the swarm. The robots only used their position and the position

of the neighboring robots for the behavioral decision process. The integration of

data from onboard sensors such as cameras, radars, LIDARs or sonars, may be an

essential input for the controllers in other tasks. The challenge of integrating these

sensors in the control process is twofold: (i) the data from many of these sensors

is not trivial to decompose into meaningful information that can be fed to neural

controllers, and (ii) these sensors need to be accurately modeled in simulation in

order to evolve the controllers.

Another significant challenge in robotics systems operating in real conditions

is endowing controllers with the capability to cope with unforeseen circumstances,

including both faults within the swarm, as well as the interference of external

entities and environmental conditions. Our experiments confirmed that swarm

behaviors inherently have some degree of tolerance for individual faults. In real-

world applications, however, it is necessary to guarantee that faulty individuals

will not compromise the whole swarm. A number of approaches have been pro-

posed for fault detection and fault tolerance in swarm robotic systems (Christensen

et al., 2008; Tarapore et al., 2015), and it has also been shown how evolutionary

computation can be used to foster fault tolerance at the individual level through

online learning and adaptation (Cully et al., 2015). Regarding events caused by

external factors, such as the approximation of other vessels, the robots should

have the capacity to deal with such events in a way that guarantees the safety of

all entities and conforms with the existing regulations. Combining such fail-safe

behaviors with the mission controllers may require the combination of evolved and

manually programmed behaviors, such as the one shown in Section 5.5.

111

Appendices

113

Appendix A

Other Contributions

In this Appendix, we provide an overview of other contributions in the course

of the doctoral research presented in this thesis, namely the participation in the

CORATAM and HANCAD projects, the participation in the COHiTEC technol-

ogy transfer program, media coverage, and developed software tools.

A.1 The CORATAM and HANCAD projects

Maritime tasks, such as surveillance and patrolling, aquaculture inspection, and

environmental monitoring, typically require large operational crews and expensive

equipment. Only recently have unmanned vehicles started to be used for such

missions. These vehicles, however, tend to be expensive and have limited cover-

age, which prevents large-scale deployment. Swarms of small, inexpensive aquatic

robots have the potential to take on such maritime tasks in an autonomous way.

Robotic swarms with decentralized control based on principles of self-organization

display several characteristics which are ideal for maritime tasks, such as dis-

tributed sensing, scalability, and robustness to faults (Bonabeau et al., 1999). In

the CORATAM (Control of Aquatic Drones for Maritime Tasks) and HANCAD

(Heterogeneous Ad-hoc Network for the Coordination of Aquatic Drones) projects,

we explored communication mechanisms and the automatic synthesis of control

115

Appendix A. Other Contributions

systems such swarms of aquatic surface robots. In order to conduct our experi-

ments, we designed and built a swarm robotics platform (see Appendix B). We

built 10 units of the final prototype and used those for extensive experiments con-

ducted at Parque das Nações, Lisbon, and at the REX–Robotics Exercise held at

the Lisbon Naval Base, Alfeite. The experiments carried out in the scope of the

CORATAM and HANCAD projects are detailed in Chapter 5. A video of our

projects was produced and submitted to the prestigious AAAI video competition,

where it received the “Best Robot Video” award:

• A. L. Christensen, M. Duarte, V. Costa, T. Rodrigues, J. Gomes, F. Silva, S.

M. Oliveira, “A Sea of Robots”, 30th Conference on Artificial Intelligence

(AAAI-16), 2016, Phoenix, Arizona, USA. Winner of the “Best Robot

Video Award”

A.2 COHiTEC

During the CORATAM and HANCAD projects, six of the BioMachines Lab mem-

bers participated in the COHiTEC program as team OceanSwarm. The purpose of

the program is to help academic researchers move their technology from the labo-

ratory to the industry. The approach presented in this thesis was a key component

of the technology that we used as a basis for our participation in the program.

After four intensive months of market research, business models, financials, intel-

lectual property, SWOT analysis and many other business tools and methods, we

developed and pitched our business proposal in Pavilhão do Conhecimento, Lis-

bon, to potential investors, partners, and the media. We are currently continuing

the process that we started in COHiTEC in order bring our technology to the

market.

116

Appendix A. Other Contributions

A.3 Media Coverage

The CORATAM and HANCAD projects, as well as our participation in CO-

HiTEC, recently helped us gain media exposure in several outlets:

• Successo.pt, Sic Notícias, national TV segment, “Sucesso.pt da Cohitec”, 21-

09-2015, available at http://goo.gl/shqD8r (0:10 to 15:15)

• Exame Informática TV, national TV segment, Sic Notícias, “Exame Infor-

mática n.o 467”, 20-09-2015, available at http://goo.gl/m0DSYi (0:20 to

2:40)

• Telejornal Açores, RTP Açores, regional TV segment, “Mini Fórum

CYTED”, 16-06-2015, available at http://goo.gl/qmJ1p7 (13:00 to 16:00)

• Telejornal Açores, RTP Açores, regional TV segment, “Utilização de drones”,

20-06-2015, available at http://goo.gl/RhtdM9 (3:30 to 5:00)

• Exame Informática, national print article, “Heróis do Mar e do Enxame”,

05-09-2015, available at http://goo.gl/chQXAy

• Exame Informática, online article, “Cohitec: detetar um enfarte numa hora

e o HIV em três dias”, 15-07-2015, available at http://goo.gl/Cg3c48

• Observador, online article, “Inovações que detetam o HIV em três dias e

drones que procuram peixe sozinhos. Em português”, 14-07-2015, available

at http://goo.gl/E95prh

• Açoreano Oriental, regional print article, “Investigadores desenvolvem drone

para realizar tarefas no mar”, 22-06-2015, available at http://goo.gl/

RCAL5K

• Fórum Estudante, national print article, “Drones no ISCTE-IUL”, 06-2015 ,

available at http://goo.gl/296t9p

117

http://goo.gl/shqD8r
http://goo.gl/m0DSYi
http://goo.gl/qmJ1p7
http://goo.gl/RhtdM9
http://goo.gl/chQXAy
http://goo.gl/Cg3c48
http://goo.gl/E95prh
http://goo.gl/RCAL5K
http://goo.gl/RCAL5K
http://goo.gl/296t9p

Appendix A. Other Contributions

A.4 Software Tools

To carry out the experiments reported in this thesis, several software tools had

to be developed or extended. In this section, we provide an overview of the con-

tributions in terms of the main software tools developed, which are available un-

der the GNU GPL license and can be found online at https://github.com/

BioMachinesLab.

A.4.1 JBotEvolver

JBotEvolver (Duarte et al., 2014c) is a simulation platform for research and ed-

ucation in evolutionary robotics. JBotEvolver is a Java-based open-source, cross-

platform framework, and has been used in a number of previous ER studies of

our research group, from offline evolution to online evolution and learning, and

from single to multirobot systems (swarms of up to 1,000 robots have been simu-

lated in real-time), and in a number of undergraduate and graduate courses at the

University Institute of Lisbon. JBotEvolver has been used as the main simulator

in over 30 publications since 2011 (see https://github.com/BioMachinesLab/

jbotevolver for an updated list of publications).

JBotEvolver’s main features are its ease of installation and use, and its versa-

tility in terms of customization and extension. A fundamental design philosophy

behind JBotEvolver is to provide a basis for ER experiments without the need for

detailed framework-specific knowledge. Following this philosophy, JBotEvolver

enables the configuration of experiments programmatically or via a plaintext file

that specifies which features will be included in the simulation. The correspond-

ing classes are then seamlessly loaded in execution time via Java’s Reflection API.

In this way, JBotEvolver can also make use of external, user-defined classes that

extend the base implementation. Additionally, JBotEvolver is self-contained, but

can also be used as an external library in other applications.

118

https://github.com/BioMachinesLab
https://github.com/BioMachinesLab
https://github.com/BioMachinesLab/jbotevolver
https://github.com/BioMachinesLab/jbotevolver

Appendix A. Other Contributions

During the course of the work conducted for this thesis, JBotEvolver was sig-

nificantly improved and extended. Major contributions include an integration

with the distributed computing system Conillon (see the following section), a

general-purpose GUI, lowering the barrier to entry for new users, the implemen-

tation of reflection-based dynamic class loading, and the integration of the NEAT

(NeuroEvolution of Augmenting Topologies) evolutionary algorithm (Stanley and

Miikkulainen, 2002). We use JBotEvolver for all simulation-based experiments

conducted in this thesis.

A.4.2 Conillon

Conillon is a Java-based distributed computing system developed at the University

Institute of Lisbon (Silva et al., 2011). Conillon enables arbitrary tasks to be com-

puted in a distributed fashion, allowing for the parallelization of computationally-

intensive processes. It is based based in a Client-Server-Worker model, where a

centralized server distributes tasks, submitted by clients, to worker nodes. These

nodes can be added to the network in an ad-hoc manner either through: (i) a stan-

dalone application, (ii) a Java applet running in a browser, or (iii) as a screensaver

on PCs. Conillon’s dynamic request of Java classes allows tasks with different

codebases to be submitted simultaneously. As with JBotEvolver, Conillon was

improved and extended during the work conducted for this thesis. Major con-

tributions include the development of an administrative interface, performance

improvements, and several bug fixes.

A.4.3 Evolution Automator

Evolution Automator is a tool that automates certain aspects of the evolutionary

process, using JBotEvolver as a library. In the simplest use case, the tool allows

the user to setup multiple experiments with different parameters, and execute

those experiments at a controlled pace (only a few at a time). This is particularly

relevant when several users are running experiments using Conillon in order to

119

Appendix A. Other Contributions

distribute the computing capacity. The user can define a single configuration

file that sets up all different experiments, including the option to conduct post-

evaluations after all evolutionary runs of a particular experiment have terminated.

While Evolution Automator can be used to conduct regular experiments and

has been adopted for that use in our research lab, its original purpose was to au-

tomate the evolution of hierarchical controllers. In this scenario, the user defines

a configuration file with the various sub-controllers, including information on how

they are connected and the evolutionary setup for each node (environment, con-

troller, evolutionary algorithm, and evaluation function). The simulator then syn-

thesizes and composes the hierarchical controller by picking the best controller for

every hierarchical node, based on the post-evaluation results from multiple runs.

The user can then test each node on the real robot and, if a controller proves to

be difficult to transfer, the user can change the configuration for that particular

node and restart the evolutionary process from that node and up. By reducing

the manual labor and eliminating the sequential workflow necessary to synthesize

control hierarchically, the time necessary to synthesize hierarchical controllers was

reduced by an order of magnitude.

A.4.4 Common Interface, Raspberry Controller,

and Robot Control Console

In the context of the CORATAM and HANCAD projects, we developed the control

software for our aquatic robotic platform. The control software has been devel-

oped in order to allow any robot that can run the Java runtime environment to

be controlled, and has been successfully tested with our aquatic robots and the

Thymio II (Riedo et al., 2013). The software to control the robots is has three

components:

120

Appendix A. Other Contributions

Common Interface We developed the Common Interface in order to minimize

the differences between the implementation of the robots’ control systems in sim-

ulation and in reality, allowing us to run the same codebase both in JBotEvolver

and onboard the real robots. The Common Interface implements communication,

sensing and actuating components only once, therefore maintaining coherence be-

tween the simulated and real environment.

Raspberry Controller The Raspberry Controller is used in order to access the

hardware layers of the real robots. The Common Interface can access data from

the robot’s hardware through the Raspberry Controller, such as retrieving data

from a GPS, a compass, or a temperature sensor, sending data packets through,

for instance, the Wi-Fi module (to other robots or a base station), or actuating

the robot’s motors.

Robot Control Console The Robot Control Console is a GUI that allows a

user to: configure geo-entities, such as waypoints and geofences; deploy controllers

and entities to groups of robots; access telemetry data from the robots, such as

speed, location, orientation and other diagnostics information; see the robots’

locations in real-time during field tests; and remotely update and restart a robot’s

onboard control software.

121

Appendix B

Aquatic Robotic Platform

During the CORATAM and HANCAD projects, we produced 10 operational

aquatic robots, including mechanical, electronic, and software components (see

Figure B.1). Prior to producing the final prototype, we did nine iterations of

the design until a final model was reached. The robot developed for our ex-

periments is a differential drive monohull boat. Each robot is relatively small

(65 cm) and inexpensive (300 EUR). All our components are available as open-

source software, and schematics, 3D models, and source code are available at

http://biomachineslab.com. In this section, we describe the different compo-

nents of the final robot design. A paper detailing the design and development

process of our platform was accepted for publication at the international confer-

ence OCEANS:

• V. Costa, M. Duarte, T. Rodrigues, S. M. Oliveira and A. L. Chris-

tensen, “Design and Development of an Inexpensive Aquatic Swarm

Robotics System”, in Proceedings of the MTS-IEEE OCEANS, 2016, in

press.

123

http://biomachineslab.com

Appendix B. Aquatic Robotic Platform

Figure B.1: A swarm of 10 robots performing a homing task during REX’15
at the Lisbon Naval Base, Alfeite.

B.1 Hardware Design and Specifications

In order to design the hull and the majority of the support components we used the

Rhinoceros 5 CAD software. The hulls were then milled in an Ouplan 3020 Com-

puterized Numeric Cut (CNC) machine, and several support components where

3D printed with a BQ Prusa i3 Hephestos. The use of digital manufacturing and

rapid prototyping techniques allowed us to quickly optimize the designs. For the

hull production we used Extruded Polystyrene (XPS) material since it is buoy-

ant, easily machinable, and inexpensive. In total, we produced 19 differentrobots

hulls, nine of them prototypes. The final batch of operationalrobots were coated in

Epoxy resin and fiber glass in order to waterproof the hull and make it resistant to

impacts. Eachrobot has 12 different 3D printed components, which were produced

in Polylactic Acid (PLA), which is an inexpensive biodegradable thermoplastic.

We used widely available hardware, and off-the-shelf sensors and motors in

order to keep costs low, see Table B.1 and Figure B.2. The physical and movement

properties of the robot are presented in Table B.2. The Raspberry Pi 2 general-

purpose computing platform was used for the control unit of each robot, and

communication is achieved using Wi-Fi. A Kalman filter was applied to the GPS

and compass readings of the real robots before they are used to compute sensory

readings for the controller.

124

Appendix B. Aquatic Robotic Platform

GPS antenna

SBEC

Raspberry Pi 2

Control battery

Compass

Motor

Wi-Fi antenna

Wi-Fi adapter
GPS Motor battery

PropellerShaft
Temperature sensor

ESC (under box)

Figure B.2: Top and side view of the final robot prototype with a description
of the components.

Robots can communicate with neighboring robots and with a base station

using Wi-Fi. In order to assess the range of the chosen Wi-Fi adapter, we con-

ducted empirical tests with the robots floating on the water surface, and achieved

communication up to 40 m. When the swarm of robots is deployed, inter-robot

communication is achieved by broadcasting messages. Each robot transmits a

125

Appendix B. Aquatic Robotic Platform

short status message, indicating its identification, position, and orientation. The

status message is broadcast every second allowing neighboring robots to sense one

another.

Table B.1: Components list.

Component Make & Model

Motors (A) NTM Prop Drive Series 28-30 A 750 kv / 140w
Motors (B) Emax 2215/25 950 kv 2-3S
Shaft 4 mm drive shaft
Shaft sleeve 255 mm boat shaft sleeve
Propellers 3-blade 28 mm
ESC HobbyKing 50 A Boat ESC
Control battery Zippy 40C Series 5000 mA 3 S LiPo
Motor battery Zippy 30C Series 8000 mA 3 S LiPo
GPS Adafruit Ultimate GPS Breakout
Compass STMicroelectronics LSM303D
Water temperature sensor DS18B20
Onboard computer Raspberry Pi 2
Wi-Fi adapter TP-Link TL-WN722N
Hull material Extruded Polystyrene (XPS), fiberglass, and epoxy
Structural components 3D printed Polylactic Acid (PLA)
Electronics enclosure 2.5 L watertight plastic box
Compass enclosure 0.4 L watertight plastic box

Table B.2: Measured movement dynamics and physical properties.

Parameter Value Parameter Value

Size 65 ⇥ 40 ⇥ 15 cm Weight 3 Kg
Minimum speed 0.3 m/s Maximum speed 1.7m/s
Maximum turning radius 90 �/s Maximum acceleration 1.7m/s2

Time from full speed to stop 5 s Autonomy 2-3 h

B.2 Onboard Software

The on-board Raspberry Pi runs the Raspbian Linux operating system, which

is based on the Linux Debian distribution for ARM hard-float architecture. In

terms of software, we use several different software components, some of them ex-

isting open-source components and others developed by us. To interact with the

motor controllers, we use the Servoblaster module, which generates the control

126

Appendix B. Aquatic Robotic Platform

signal through the Raspberry Pi’s GPIO. To interact with sensors and with the

general input-outputs from the hardware, we use the WiringPi C library and the

Pi4J library, which enables access to low-level functions. Our on-board Raspberry

Controller software was developed in Java and interacts with the aforementioned

libraries and modules. The software has the task of handling all aspects of ther-

obot, ranging from low- and high-level control, sensor interfacing, communication

and logging.

B.3 Remote Monitoring

In order to monitor the swarm, we developed the Robot Control Console appli-

cation (see Figure B.3). This application monitored the messages that were sent

by the robots in the swarm and displayed the locations in a map. To increase the

range at which the inter-robot communication could be eavesdropped, an Ubiquiti

Figure B.3: Robot Control Console

127

Appendix B. Aquatic Robotic Platform

BULLET-M2-HP was used at the base station, effectively increasing the monitor-

ing range up to 300 m. The application has several features to facilitate simple

and flexible swarm control:

• Configuration of entities (waypoints, geofences and obstacles)

• Deployment of controllers and entities for groups ofrobots

• Automatic logging of sent commands and received broadcast communication

messages

• Telemetry information (speed, location, orientation, diagnostics)

• Offline maps for field tests

• Synchronization between multiple instances of therobot Control Console run-

ning on different computers

• Remote update of arobot’s onboard software

128

Appendix C

Experimental Parameters for

Aquatic Tasks

Table C.1 lists the parameters used in our experiments, both in the simulation

environment and in the real experiments. The noise that was applied in simula-

tion during evolution is described below. All random numbers were drawn from

uniform distributions. Regarding the movement model of the simulated robot,

the values were taken by systematically performing tests with the real robot at

different speeds and headings. The simulated dynamics were implemented taking

into account the measurements obtained from these tests, and match the physical

properties described in Table B.2.

GPS noise: upper limit for noise added to the robots’ GPS unit at every simu-

lation timestep. The value was taken from the technical specification of the

GPS used in our robots.

Compass noise: upper limit for noise added to the robot’s compass at every sim-

ulation timestep, chosen from empirical tests with the LSM303D compass.

Motor delay: fixed delay between executing a motor speed command and ob-

serving a reaction in the movement of the robot.

129

Appendix C. Experimental Parameters for Aquatic Tasks

Heading offset: upper limit for noise added to the heading of the robot. The

value is set individually for each robot at the beginning of a sample.

Speed offset: upper limit for noise added to the speed of the robot. The value

is set individually for each robot at the beginning of a sample.

Motor output noise: upper limit for noise added to the output of the controllers

at every simulation step.

Drift speed: upper limit for the translation component added to all robots. The

value is chosen at the beginning of each sample, and applied at every simu-

lation timestep.

130

Appendix C. Experimental Parameters for Aquatic Tasks

Table C.1: Parameters used in the experiments.

Parameter Value Parameter Value

NEAT
Population size 150 Target species count 5
Recurrency allowed true Mutation prob. 25%
Prob. add node 3% Prob. mutate bias 30%
Prob. add link 5% Crossover prob. 20%

Simulation noise
GPS noise 1.8 m Compass noise 10�

Motor delay 500 ms Heading offset 5%
Speed offset 10% Motor output noise 5%
Drift speed [0,0.1]m/s

Homing task
Trial length (real) 240 s Trial length (evolution) 100 s
Generations 100 Waypoint distance (real) 40m
Waypoint distance (evolution) [0,50] m Robot sensor range 20m
Waypoint sensor range 10 m

Dispersion task
Trial length (real) 90 s Trial length (evolution) 100 s
Generations 100 Target distance 20 m
Deploy area, 8 robots (real) 28m ⇥ 28 m Deploy area, 6 robots (real) 24 m ⇥ 24 m
Deploy area, 4 robots (real) 20m ⇥ 20 m Robot sensor range 40m

Clustering task
Trial length (real) 180 s Trial length (evolution) 200 s
Generations 400 Robot starting distance [20,40] m
Clustering threshold 7 m Robot sensor range 40 m
Deploy area (real) 100 m ⇥ 100 m

Sequential area monitoring task
Trial length (real) 300 s Trial length (evolution) 200 s
Generations 100 Robot sensor range 40 m
Monitoring area (real) 1 ha Monitoring area (evolution) [0.5,1.7] ha
Geo-fence sensor range 40 m

Hierarchical intruder detection task
Trial length (real) 500 s Monitoring area (real) 100 m ⇥ 100 m
Generations (intruder task) 100 Robot sensor range 40 m
Intruder sensor range 20 m Geo-fence sensor range 40 m

Hierarchical intruder detection task (Lampedusa scalability)
Trial length (real) 24 h Communication range 100 m
Intruder sensor range 50 m Robot sensor range 100 m
Geo-fence sensor range 100 m

131

Bibliography

A. Abreu and L. Correia. Fuzzy behaviors and behavior arbitration in autonomous

vehicles. In Proceedings of the Portuguese Conference on Artificial Intelligence

(EPIA), pages 237–251. Springer, Berlin, Germany, 1999.

A. Abreu and L. Correia. A multi-layer behavior-based architecture for decision

control in autonomous robots. In Proceedings of the 4th European Workshop on

Advanced Mobile Robots (EUROBOT). IEEE Computer Press, 2001.

C. Ampatzis, E. Tuci, V. Trianni, and M. Dorigo. Evolution of signaling in a

multi-robot system: Categorization and communication. Adaptive Behavior, 16

(1):5–26, 2008.

E. Bahgeçi et al. Evolving aggregation behaviors for swarm robotic systems: A

systematic case study. In Proceedings of the 2005 IEEE Swarm Intelligence

Symposium, pages 333–340. IEEE Press, Piscataway, NJ, 2005.

G. Baldassarre, S. Nolfi, and D. Parisi. Evolving mobile robots able to display

collective behaviors. Artificial Life, 9(3):255–267, 2003.

G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and S. Nolfi. Self-

organized coordinated motion in groups of physically connected robots. IEEE

Transactions on Systems, Man, and Cybernetics, 37(1):224–239, 2007.

M. Basiri, F. Schill, D. Floreano, and P. U. Lima. Audio-based localization for

swarms of micro air vehicles. In Proceedings of the 2014 IEEE International

Conference on Robotics and Automation (ICRA), pages 4729–4734. IEEE Press,

Piscataway, NJ, 2014.

133

References

M. A. Batalin and G. S. Sukhatme. Spreading out: A local approach to multi-

robot coverage. In Proceedings of the 5th International Symposium on Distributed

Autonomous Robotic Systems (DARS), pages 373–382. Springer, Japan, 2002.

L. Bayındır. A review of swarm robotics tasks. Neurocomputing, 172(8):292–321,

2016.

L. Bayındır and E. Şahin. A review of studies in swarm robotics. Turkish Journal

of Electrical Engineering & Computer Sciences, 15(2):115–147, 2007.

J. A. Becerra, F. Bellas, J. S. Reyes, and R. J. Duro. Complex behaviours

through modulation in autonomous robot control. In Proceedings of the In-

ternational Work-Conference on Artificial Neural Networks (IWANN), pages

717–724. Springer, Berlin, Germany, 2005.

S. A. Bedini. The role of automata in the history of technology. Technology and

Culture, 5(1):24–42, 1964.

R. D. Beer and J. C. Gallagher. Evolving dynamical neural networks for adaptive

behavior. Adaptive Behavior, 1(1):91–122, 1992.

G. Bekey and J. Yuh. The status of robotics. IEEE Robotics & Automation

Magazine, 15(1):80–86, 2008.

R. Bianco and S. Nolfi. Toward open-ended evolutionary robotics: evolving el-

ementary robotic units able to self-assemble and self-reproduce. Connection

Science, 16(4):227–248, Dec 2004.

J. Blynel and D. Floreano. Exploring the T-Maze: Evolving learning-like robot

behaviors using CTRNNs. In Applications of Evolutionary Computing, pages

593–604. Springer, Berlin, Germany, 2003.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: from natural to

artificial systems. Number 1. Oxford University Press, 1999.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 25(11),

2000.

134

References

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a review

from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

N. Bredeche, J. M. Montanier, W. Liu, and A. Winfield. Environment-driven dis-

tributed evolutionary adaptation in a population of autonomous robotic agents.

Mathematical and Computer Modelling of Dynamical Systems, 18(1):101–129,

Feb 2012.

R. Brooks. A robust layered control system for a mobile robot. IEEE Journal on

Robotics and Automation, 2(1):14–23, 1986.

S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and

E. Bonabeau. Self-organization in biological systems. Princeton University Press,

Princeton, NJ, 2003.

M. Castillo-Cagigal, A. Brutschy, A. Gutiérrez, and M. Birattari. Temporal task

allocation in periodic environments. In Swarm Intelligence, volume 8667 of

Lecture Notes in Computer Science, pages 182–193. Springer, 2014.

S. Celis, G. S. Hornby, and J. Bongard. Avoiding local optima with user demon-

strations and low-level control. In Proceedings of the IEEE Congress on Evo-

lutionary Computation (CEC), pages 3403–3410. IEEE Press, Piscataway, NJ,

2013.

A. L. Christensen and M. Dorigo. Evolving an integrated phototaxis and hole

avoidance behavior for a swarm-bot. In Proceedings of the International Confer-

ence on the Simulation & Synthesis of Living Systems (ALIFE), pages 248–254.

MIT Press, Cambridge, MA, 2006a.

A. L. Christensen and M. Dorigo. Incremental evolution of robot controllers for

a highly integrated task. In Proceedings of the 9th International Conference

on Simulation of Adaptive Behavior (SAB), pages 473–484. Springer, Berlin,

Germany, 2006b.

135

References

A. L. Christensen, R. O’Grady, M. Birattari, and M. Dorigo. Fault detection in

autonomous robots based on fault injection and learning. Autonomous Robots,

24(1):49–67, 2008.

A. L. Christensen, R. O. Grady, and M. Dorigo. From fireflies to fault-tolerant

swarms of robots. IEEE Transactions on Evolutionary Computation, 13(4):

754–766, 2009.

A. L. Christensen, S. Oliveira, O. Postolache, M. J. de Oliveira, S. Sargento,

P. Santana, L. Nunes, F. Velez, P. Sebastiao, V. Costa, M. Duarte, J. Gomes,

T. Rodrigues, and F. Silva. Design of communication and control for swarms

of aquatic surface drones. In Proceedings of the International Conference on

Agents and Artificial Intelligence, pages 548–555. SCITEPRESS, Lisbon, Por-

tugal, 2015.

M. Clerc. Particle swarm optimization, volume 93. John Wiley & Sons, 2010.

J. Clune, K. Stanley, R. Pennock, and C. Ofria. On the performance of indirect

encoding across the continuum of regularity. IEEE Transactions on Evolutionary

Computation, 15(3):346–367, Jun 2011.

J. Coppens. The Lampedusa disaster: How to prevent further loss of life at sea?

TransNav, the International Journal on Marine Navigation and Safety of Sea

Transportation, 7(4):589–598, 2013.

L. Correia. Towards engineered evolutionary robotics, 1998.

V. Costa, M. Duarte, T. Rodrigues, S. M. Oliveira, and A. L. Christensen. Design

and development of an inexpensive aquatic swarm robotics system. In Proceed-

ings of IEEE/MTS OCEANS. IEEE Press, Piscataway, NJ, 2016. in press.

E. Şahin. Swarm robotics: From sources of inspiration to domains of application.

In Swarm Robotics, volume 3342 of Lecture Notes in Computer Science, pages

10–20. Springer, Berlin, Germany, 2005.

A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like

animals. Nature, 521(7553):503–507, 2015.

136

References

C. Darwin. On the origin of species. New York. Appleton and Co., 1859.

S. Doncieux and J.-B. Mouret. Beyond black-box optimization: a review of selec-

tive pressures for evolutionary robotics. Evolutionary Intelligence, 7(2):71–93,

2014.

M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi,

J.-L. Deneubourg, F. Mondada, D. Floreano, et al. Evolving self-organizing

behaviors for a swarm-bot. Autonomous Robots, 17(2-3):223–245, 2004.

M. Dorigo, E. Tuci, R. Groß, V. Trianni, T. H. Labella, S. Nouyan, C. Ampatzis,

J.-L. Deneubourg, G. Baldassarre, S. Nolfi, et al. The swarm-bots project.

In Swarm Robotics, volume 3342 of Lecture Notes in Computer Science, pages

31–44. Springer, 2005.

M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura,

M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, et al. Swarmanoid: a

novel concept for the study of heterogeneous robotic swarms. IEEE Robotics &

Automation Magazine, 20(4):60–71, 2013.

M. Duarte. Hierarchical evolution of robotic controllers for complex tasks. Master’s

thesis, University Institute of Lisbon (ISCTE-IUL), 2012.

M. Duarte, S. Oliveira, and A. L. Christensen. Towards artificial evolution of

complex behavior observed in insect colonies. In Proceedings of the Portuguese

Conference on Artificial Intelligence (EPIA), pages 153–167. Springer, Berlin,

Germany, 2011.

M. Duarte, S. Oliveira, and A. L. Christensen. Hierarchical evolution of robotic

controllers for complex tasks. In IEEE International Conference on Development

and Learning and Epigenetic Robotics (ICDL EpiRob), pages 1–6. IEEE Press,

Piscataway, NJ, 2012a.

137

References

M. Duarte, S. Oliveira, and A. L. Christensen. Automatic synthesis of controllers

for real robots based on preprogrammed behaviors. In Proceedings of the In-

ternational Conference on Adaptive Behaviour (SAB), pages 249–258. Springer,

Berlin, Germany, 2012b.

M. Duarte, S. M. Oliveira, and A. L. Christensen. Structured composition of

evolved robotic controllers. In N. Siebel, editor, Proceedings of the 5th Interna-

tional Workshop on Evolutionary and Reinforcement Learning for Autonomous

Robot Systems, pages 19–25, 2012c.

M. Duarte, S. M. Oliveira, and A. L. Christensen. Hybrid control for large swarms

of aquatic drones. In Proceedings of the 14th International Conference on the

Synthesis & Simulation of Living Systems (ALIFE), pages 785–792. MIT Press,

Cambridge, MA, 2014a.

M. Duarte, S. M. Oliveira, and A. L. Christensen. Evolution of hierarchical con-

trollers for multirobot systems. In Proceedings of the 14th International Confer-

ence on the Synthesis & Simulation of Living Systems (ALIFE), pages 657–664.

MIT Press, Cambridge, MA, 2014b.

M. Duarte, F. Silva, T. Rodrigues, S. M. Oliveira, and A. L. Christensen. JBotE-

volver: A versatile simulation platform for evolutionary robotics. In Proceedings

of the 14th International Conference on the Synthesis & Simulation of Living

Systems (ALIFE), pages 210–211. MIT Press, Cambridge, MA, 2014c.

M. Duarte, S. M. Oliveira, and A. L. Christensen. Evolution of hybrid robotic

controllers for complex tasks. Journal of Intelligent and Robotic Systems, 78

(3–4):463–484, 2015.

M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira, and A. L.

Christensen. Evolution of collective behaviors for a real swarm of aquatic surface

robots. PLoS ONE, 11(3):e0151834, 2016a. doi: 10.1371/journal.pone.0151834.

M. Duarte, J. Gomes, V. Costa, S. M. Oliveira, and A. L. Christensen. Hy-

brid control for a real swarm robotic system in an intruder detection task. In

138

References

Proceedings of the 18th European Conference on the Applications of Evolution-

ary Computation (EvoStar), pages 213–230. Springer International Publishing,

2016b.

M. Duarte, J. Gomes, V. Costa, T. Rodrigues, F. Silva, V. Lobo, M. Marques,

S. M. Oliveira, and A. L. Christensen. Application of swarm robotic systems

to marine environmental monitoring. In Proceedings of IEEE/MTS OCEANS.

IEEE Press, Piscataway, NJ, 2016c. in press.

M. J. Er, B. H. Kee, and C. C. Tan. Design and development of an intelligent

controller for a pole-balancing robot. Microprocessors and Microsystems, 26

(9-10):433–448, 2002.

D. Floreano. Evolutionary robotics in behavior engineering and artificial life.

In Evolutionary robotics. From intelligent robots to artificial life. AAI Books,

Ontario, Canada, 1998.

D. Floreano and L. Keller. Evolution of adaptive behaviour in robots by means of

Darwinian selection. PLoS Biology, 8(1):1–8, 2010.

D. Floreano and F. Mondada. Automatic creation of an autonomous agent: Ge-

netic evolution of a neural-network driven robot. In Proceedings of the 3rd Inter-

national Conference on Simulation of Adaptive Behavior (SAB), pages 421–430.

MIT Press, Cambridge, MA, 1994.

D. Floreano and F. Mondada. Evolution of homing navigation in a real mobile

robot. IEEE Transactions on Systems, Man, and Cybernetics, 26(3):396–407,

1996.

D. Floreano, J.-C. Zufferey, and J.-D. Nicoud. From wheels to wings with evolu-

tionary spiking circuits. Artificial Life, 11(1-2):121–138, Jan 2005.

G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G. Podevijn,

A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, V. Trianni, and M. Birattari.

An experiment in automatic design of robot swarms. In Proceedings of the 9th

139

References

International Conference on Swarm Intelligence, pages 25–37. Springer, Berlin,

Germany, 2014.

J. Gomes, P. Urbano, and A. L. Christensen. Evolution of swarm robotics systems

with novelty search. Swarm Intelligence, 7(2-3):115–144, 2013.

J. Gomes, P. Urbano, and A. L. Christensen. PMCNS: Using a Progressively

Stricter Fitness Criterion to Guide Novelty Search. International Journal of

Natural Computing Research, 4:1–19, 2014.

F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior.

Adaptive Behavior, 5(3-4):317–342, 1997.

R. Groß and M. Dorigo. Evolution of solitary and group transport behaviors for

autonomous robots capable of self-assembling. Adaptive Behavior, 16(5):285–

305, 2008.

R. Groß and M. Dorigo. Towards group transport by swarms of robots. Interna-

tional Journal of Bio-Inspired Computing, 1(1–2):1–13, 2009.

R. Groß, M. Bonani, F. Mondada, and M. Dorigo. Autonomous self-assembly in

swarm-bots. IEEE Transactions on Robotics, 22(6):1115–1130, 2006.

A. Gutiérrez, A. Campo, M. Dorigo, D. Amor, L. Magdalena, and F. Monasterio-

Huelin. An open localization and local communication embodied sensor. Sen-

sors, 8(11):7545–7563, 2008.

E. Haasdijk, A. Eiben, and G. Karafotias. On-line evolution of robot controllers

by an encapsulated evolution strategy. In Proceedings of the IEEE Congress

on Evolutionary Computation (CEC), pages 1–7. IEEE Press, Piscataway, NJ,

2010.

E. Haasdijk, A. Atta-ul Qayyum, and A. E. Eiben. Racing to improve on-line, on-

board evolutionary robotics. In Proceedings of the 13th Genetic and Evolutionary

Computation Conference (GECCO), pages 187–194. ACM Press, New York, NY,

2011.

140

References

J. Halloy, F. Mondada, S. Kernbach, and T. Schmickl. Towards bio-hybrid systems

made of social animals and robots. In Proceedings of the 2nd International Con-

ference on Biomimetic and Biohybrid Systems (LM), pages 384–386. Springer,

Berlin, Germany, 2013.

H. Hamann, T. Schmickl, and K. Crailsheim. A hormone-based controller for

evaluation-minimal evolution in decentrally controlled systems. Artificial Life,

18(2):165–198, 2012.

L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 12(10):993–1001, 1990.

I. Harvey, P. Husbands, and D. Cliff. Seeing the light: artificial evolution, real

vision. In Proceedings of the International Conference on Simulation of Adaptive

Behavior (SAB), pages 392–401. MIT Press, Cambridge, MA, 1994.

I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolutionary

robotics: the sussex approach. Robotics and Autonomous Systems, 20(2–4):

205–224, 1997.

S. Hauert, J.-C. Zufferey, and D. Floreano. Evolved swarming without positioning

information: an application in aerial communication relay. Autonomous Robots,

26(1):21–32, 2009.

M. Hehn and R. D’Andrea. A flying inverted pendulum. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), pages 763–770.

IEEE Press, Piscataway, NJ, 2011.

J. Hiller and H. Lipson. Automatic design and manufacture of soft robots. IEEE

Transactions on Robotics, 28(2):457–466, 2012.

G. S. Hornby, S. Takamura, T. Yamamoto, and M. Fujita. Autonomous evolution

of dynamic gaits with two quadruped robots. IEEE Transactions on Robotics,

21(3):402–410, 2005.

141

References

P. Husbands. Evolving robot behaviours with diffusing gas networks. In Proceed-

igs of the European Workshop Evolutionary Robotics (EvoRobot), pages 71–86.

Springer, Berlin, Germany, 1998.

A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen. From swimming to

walking with a salamander robot driven by a spinal cord model. Science, 315

(5817):1416–1420, 2007.

N. Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis.

Adaptive Behavior, 6(2):325–368, 1997.

C. Jones and M. Mataríc. Behavior-based coordination in multi-robot systems.

In S. Ge and F. Lewis, editors, Autonomous Mobile Robots: Sensing, Control,

Decision Making and Applications, pages 549–569. CRC Press, Boca Raton, FL,

2006.

S. Kernbach, E. Meister, F. Schlachter, K. Jebens, M. Szymanski, J. Liedke,

D. Laneri, L. Winkler, T. Schmickl, R. Thenius, et al. Symbiotic robot or-

ganisms: Replicator and symbrion projects. In Proceedings of the 8th workshop

on performance metrics for intelligent systems, pages 62–69. ACM, 2008.

S. Koos, J.-B. Mouret, and S. Doncieux. The transferability approach: Crossing

the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary

Computation, 17(1):122–145, 2013.

T. Larsen and S. T. Hansen. Evolving composite robot behaviour - a modular

architecture. In Proceedings of the International Workshop on Robot Motion

and Control (RoMoCo), pages 271–276. IEEE Press, Piscataway, NJ, 2005.

W.-P. Lee. Evolving complex robot behaviors. Information Sciences, 121(1-2):

1–25, 1999.

J. Lehman and K. Stanley. Abandoning objectives: Evolution through the search

for novelty alone. Evolutionary Computation, 19(2):189–223, 2011.

J. Lehman, S. Risi, D. D’Ambrosio, and K. O. Stanley. Encouraging reactivity to

create robust machines. Adaptive Behavior, 21(6):484–500, 2013.

142

References

Q. Lindsey, D. Mellinger, and V. Kumar. Construction with quadrotor teams.

Autonomous Robots, 33(3):323–336, 2012.

H. Lipson and J. Pollack. Automatic design and manufacture of robotic lifeforms.

Nature, 406(6799):974–978, 2000.

D. Lutterbeck. Policing migration in the mediterranean. Mediterranean Politics,

11(1):59–82, 2006.

L. Marques, U. Nunes, and A. T. de Almeida. Particle swarm-based olfactory

guided search. Autonomous Robots, 20(3):277–287, 2006.

J.-A. Meyer, P. Husbands, and I. Harvey. Evolutionary robotics: A survey of appli-

cations and problems. In Proceedings of the European Workshop on Evolutionary

Robotics (EvoRobot), pages 1–21. Springer, Berlin, Germany, 1998.

J.-A. Meyer, S. Doncieux, D. Filliat, and A. Guillot. Evolutionary approaches

to neural control of rolling, walking, swimming and flying animats or robots.

In Biologically Inspired Robot Behavior Engineering, volume 109 of Studies in

Fuzziness and Soft Computing, pages 1–43. Springer, Berlin, Germany, 2003.

O. Miglino, H. H. Lund, and S. Nolfi. Evolving mobile robots in simulated and

real environments. Artificial Life, 2(4):417–434, 1996.

R. Moioli, P. Vargas, F. Von Zuben, and P. Husbands. Towards the evolution of an

artificial homeostatic system. In Proceedings of IEEE Congress on Evolutionary

Computation (CEC), pages 4023–4030. IEEE Press, Piscataway, NJ, 2008.

F. Mondada, E. Franzi, and A. Guignard. The development of khepera. In Ex-

periments with the Mini-Robot Khepera, Proceedings of the First International

Khepera Workshop, pages 7–14, 1999.

F. Mondada, G. C. Pettinaro, A. Guignard, I. W. Kwee, D. Floreano, J.-L.

Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo. Swarm-bot: A new

distributed robotic concept. Autonomous Robots, 17(2-3):193–221, 2004.

143

References

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,

J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a robot designed for

education in engineering. In Proceedings of the Conference on Autonomous Robot

Systems and Competitions (ROBOTICA), pages 59–65. Instituto Politecnico de

Castelo Branco, Castelo Branco, Portugal, 2009.

J. M. Moore, A. J. Clark, and P. K. McKinley. Evolution of station keeping as a

response to flows in an aquatic robot. In Proceedings of the 15th Genetic and

Evolutionary Computation Conference (GECCO), pages 239–246. ACM Press,

New York, NY, 2013.

J.-B. Mouret and S. Doncieux. Incremental evolution of animats’ behaviors as a

multi-objective optimization. In Proceedings of the 10th International Conference

on Simulation of Adaptive Behaviour (SAB), pages 210–219. Springer, Berlin,

Germany, 2008.

H. Nakamura, A. Ishiguro, and Y. Uchilkawa. Evolutionary construction of behav-

ior arbitration mechanisms based on dynamically-rearranging neural networks.

In Proceedings of Congress on Evolutionary Computation (CEC), pages 158–165.

IEEE Press, Piscataway, NJ, 2000.

A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness functions in evolutionary

robotics: A survey and analysis. Robotics and Autonomous Systems, 57(4):

345–370, 2009.

S. Nolfi. Evolutionary robotics: Exploiting the full power of self-organization.

Connection Science, 10(3–4):167–184, 1998.

S. Nolfi and D. Floreano. Evolutionary robotics: The biology, intelligence, and

technology of self-organizing machines. MIT Press, Cambridge, MA, 2000.

S. Nolfi and D. Parisi. Evolving non-trivial behaviors on real robots: an au-

tonomous robot that picks up objects. In Proceedings of the Congress of the

Italian Association for Artificial Intelligence (AI*IA), pages 187–198. Springer,

Berlin, Germany, 1995.

144

References

N. Noskov, E. Haasdijk, B. Weel, and A. E. Eiben. MONEE: Using parental

investment to combine open-ended and task-driven evolution. In Proceedings of

the 16th European Conference on the Applications of Evolutionary Computation

(EvoStar), pages 569–578. Springer, Berlin, Germany, 2013.

R. O’Grady, A. L. Christensen, and M. Dorigo. SWARMORPH: multirobot mor-

phogenesis using directional self-assembly. IEEE Transactions on Robotics, 25

(3):738–743, 2009.

A. M. Okamura, N. Smaby, and M. R. Cutkosky. An overview of dexterous ma-

nipulation. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), volume 1, pages 255–262. IEEE Press, Piscataway,

NJ, 2000.

R. O’Grady, R. Groß, F. Mondada, M. Bonani, and M. Dorigo. Self-assembly

on demand in a group of physical autonomous mobile robots navigating rough

terrain. In Advances in Artificial Life, pages 272–281. Springer, 2005.

G. Pini and E. Tuci. On the design of neuro-controllers for individual and social

learning behaviour in autonomous robots: an evolutionary approach. Connec-

tion Science, 20(2-3):211–230, 2008.

T. Praczyk. Using augmenting modular neural networks to evolve neuro-controllers

for a team of underwater vehicles. Soft Computing, 18(12):2445–2460, 2014.

J. H. Reif and H. Wang. Social potential fields: A distributed behavioral control for

autonomous robots. Robotics and Autonomous Systems, 27(3):171–194, 1999.

C. W. Reynolds. Evolution of corridor following behavior in a noisy world. In

Proceedings of the International Conference on Simulation of Adaptive Behavior

(SAB), pages 402–410. MIT Press, Cambridge, MA, 1994.

F. Riedo, M. Chevalier, S. Magnenat, and F. Mondada. Thymio ii, a robot that

grows wiser with children. In IEEE Workshop on Advanced Robotics and its

Social Impacts (ARSO), pages 187–193. IEEE Press, Piscataway, NJ, 2013.

145

References

T. Rodrigues, M. Duarte, S. M. Oliveira, and A. L. Christensen. What you choose

to see is what you get: an experiment with learnt sensory modulation in a

robotic foraging task. In Proceedings of the 16th European Conference on the

Applications of Evolutionary Computation (EvoStar), pages 789–801. Springer,

Berlin, Germany, 2014.

T. Rodrigues, M. Duarte, M. Figueiró, V. Costa, S. M. Oliveira, and A. L. Chris-

tensen. Overcoming limited onboard sensing in swarm robotics through local

communication. In Transactions on Computational Collective Intelligence XX,

volume 9420 of Lecture Notes in Computer Science. 2015a. In press.

T. Rodrigues, M. Duarte, S. M. Oliveira, and A. L. Christensen. Beyond onboard

sensors in robotic swarms: Local collective sensing through situated communi-

cation. In Proceedings of the International Conference on Agents and Artificial

Intelligence (ICAART), pages 111–118. SCITEPRESS, Lisbon, Portugal, 2015b.

P. Romano, L. Nunes, A. L. Christensen, M. Duarte, and S. M. Oliveira. Genome

variations: Effects on the robustness of neuroevolved swarm controllers. In

Proceedings of the Iberian Conference on Robotics (ROBOT), pages 309–319.

Springer, Berlin, Germany, 2015.

C. Rossi, F. Russo, and F. Russo. Ancient Engineers& Inventions, volume 8 of

History of Mechanism and Machine Science. Springer Netherlands, 2009.

T. Schmickl, R. Thenius, C. Moslinger, J. Timmis, A. Tyrrell, M. Read, J. Hilder,

J. Halloy, A. Campo, C. Stefanini, L. Manfredi, S. Orofino, S. Kernbach, T. Dip-

per, and D. Sutantyo. CoCoRo –The Self-Aware Underwater Swarm. In Proceed-

ings of the 5th IEEE Conference on Self-Adaptive and Self-Organizing Systems

Workshops (SASOW), pages 120–126. IEEE Press, Piscataway, NJ, 2011.

F. Silva, L. Correia, and A. L. Christensen. Speeding up online evolution of robotic

controllers with macro-neurons. In Proceedings of the 16th European Conference

on the Applications of Evolutionary Computation (EvoStar), pages 765–776.

Springer, Berlin, Germany, 2014a.

146

References

F. Silva, M. Duarte, S. M. Oliveira, L. Correia, and A. L. Christensen. The case for

engineering the evolution of robot controllers. In Proceedings of the International

Conference on the Simulation & Synthesis of Living Systems (ALIFE), pages

703–710. MIT Press, Cambridge, MA, 2014b.

F. Silva, M. Duarte, L. Correia, S. M. Oliveira, and A. L. Christensen. Open issues

in evolutionary robotics. Evolutionary Computation, 2015a. In press.

F. Silva, P. Urbano, L. Correia, and A. L. Christensen. odNEAT: An algorithm for

decentralised online evolution of robotic controllers. Evolutionary Computation,

23(3):421–449, 2015b.

H. Silva, S. M. Oliveira, and A. L. Christensen. Conillon: A lightweight distributed

computing platform for desktop grids. In Proceedings of the 6th Iberian Confer-

ence on Information Systems and Technologies (CISTI), pages 1–6. IEEE Press,

Piscataway, NJ, 2011.

H. A. Simon. The architecture of complexity. Springer, 1991.

H. M. Smith. Synchronous flashing of fireflies. Science, 82(2120):151–152, 1935.

O. Soysal, E. Bahçeci, and E. Sahin. Aggregation in swarm robotic systems:

Evolution and probabilistic control. Turkish Journal of Electrical Engineering

& Computer Sciences, 15(2):199–225, 2007.

V. Sperati, V. Trianni, and S. Nolfi. Evolving coordinated group behaviours

through maximisation of mean mutual information. Swarm Intelligence, 2(2-

4):73–95, 2008.

V. Sperati, V. Trianni, and S. Nolfi. Self-organised path formation in a swarm of

robots. Swarm Intelligence, 5(2):97–119, 2011.

K. Stanley and R. Miikkulainen. Evolving neural networks through augmenting

topologies. Evolutionary Computation, 10(2):99–127, 2002.

K. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial

Life, 9(2):93–130, Mar 2003.

147

References

K. O. Stanley. Why evolutionary robotics will matter. In New Horizons in Evolu-

tionary Robotics, volume 341 of Studies in Computational Intelligence, chapter 3,

pages 37–41. Springer, Berlin, Germany, 2011.

K. O. Stanley and R. P. Miikkulainen. Efficient evolution of neural networks

through complexification. Computer Science Department, University of Texas at

Austin, 2004.

K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based encoding for

evolving large-scale neural networks. Artificial Life, 15(2):185–212, 2009.

M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer

Science & Business Media, 2012.

D. Tarapore, P. U. Lima, J. Carneiro, and A. L. Christensen. To err is robotic, to

tolerate immunological: fault detection in multirobot systems. Bioinspiration

& Biomimetics, 10(1):016014, 2015.

E. C. Tolman and C. H. Honzik. Introduction and removal of reward, and maze

performance in rats. University of California Publications in Psychology, 4(16–

17):257–275, 1930.

A. B. L. Torta, M. A. Kramer, C. Thorn, D. J. Gibson, Y. Kubota, A. M. Graybiel,

and N. J. Kopell. Dynamic cross-frequency couplings of local field potential

oscillations in rat striatum and hippocampus during performance of a T-maze

task. Proceedings of the National Academy of Sciences, 105(51):20517–20522,

2008.

V. Trianni and S. Nolfi. Self-Organising Sync in a Robotic Swarm. A Dynamical

System View. IEEE Transactions on Evolutionary Computation, 14(4):722–741,

2009.

V. Trianni and S. Nolfi. Engineering the evolution of self-organizing behaviors in

swarm robotics: A case study. Artificial Life, 17(3):183–202, 2011.

148

References

V. Trianni, R. Groß, T. H. Labella, E. Şahin, and M. Dorigo. Evolving aggregation

behaviors in a swarm of robots. In Proceedings of the 7th European Conference

on Artificial Life (ECAL), pages 865–874. Springer, Berlin, Germany, 2003.

V. Trianni, S. Nolfi, and M. Dorigo. Cooperative hole avoidance in a swarm-bot.

Robotics and Autonomous Systems, 54(2):97–103, 2006.

E. Tuci, V. Trianni, and M. Dorigo. ‘Feeling’ the flow of time through sensorimotor

co-ordination. Connection Science, 16(4):301–324, 2004.

E. Tunstel. Mobile robot autonomy via hierarchical fuzzy behavior control. In

Proceedings of the International Symposium on Robotics and Manufacturing

(WAC), pages 837–842, New York, 1996. ASME Press.

F. Velez, A. Nadziejko, A. L. Christensen, S. M. Oliveira, T. Rodrigues, V. Costa,

M. Duarte, F. Silva, and J. Gomes. Wireless sensor and networking technologies

for swarms of aquatic surface drones. In Proceedings of the IEEE 82nd Vehicular

Technology Conference (VTC Fall), pages 1–2, 2015.

I. Wagner, M. Lindenbaum, A. M. Bruckstein, et al. Distributed covering by

ant-robots using evaporating traces. IEEE Transactions on Robotics and Au-

tomation, 15(5):918–933, 1999.

R. A. Watson, S. G. Ficici, and J. B. Pollack. Embodied evolution: Distributing

an evolutionary algorithm in a population of robots. Robotics and Autonomous

Systems, 39(1):1–18, 2002.

L. D. Whitley. Fundamental principles of deception in genetic search. In Proceed-

ings of the 1st Workshop on Foundations of Genetic Algorithms (FOGA), pages

221–241. Morgan Kaufmann, San Mateo, CA, 1991.

A. T. Winfree. The Geometry of Biological Time, volume 12 of Interdisciplinary

Applied Mathematics. Springer Science & Business Media, 2001.

149

References

S. Wischmann, K. Stamm, and F. Wörgötter. Embodied evolution and learning:

The neglected timing of maturation. In Proceedings of the 9th European Con-

ference on Artificial Life (ECAL), pages 284–293. Springer, Berlin, Germany,

2007.

R.-j. Yan, S. Pang, H.-b. Sun, and Y.-j. Pang. Development and missions of

unmanned surface vehicle. Journal of Marine Science and Application, 9(4):

451–457, 2010.

J. C. Zagal and J. Ruiz-Del-Solar. Combining simulation and reality in evolution-

ary robotics. Journal of Intelligent & Robotic Systems, 50(1):19–39, 2007.

150

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	Acronyms
	1 Introduction
	1.1 Problem Statement
	1.2 Thesis Structure and Contribution of Research
	1.3 Other Scientific Contributions
	1.4 Summary

	2 State of the Art
	2.1 Crossing the Reality Gap
	2.2 Task Complexity in ER
	2.3 Swarm Robotics

	3 Methodology
	3.1 Overview and Definitions
	3.2 Task Decomposition
	3.3 High-level Composition of Control
	3.4 Hybridity and Manually Programmed Control
	3.5 Studied Hierarchical Controllers
	3.6 Discussion

	4 Synthesis of Hierarchical Control for Single-robot Systems
	4.1 Experimental Setup
	4.2 Evolving and Transferring Controllers for Complex Tasks
	4.3 Hybrid Controllers
	4.4 Hierarchical Evolution for Integrated Tasks
	4.5 Summary

	5 Synthesis of Hierarchical Control for Swarm Robotic Systems
	5.1 Experimental Setup
	5.2 Transferring Controllers to Real Robots
	5.3 Scalability and Robustness in Real Robotic Hardware
	5.4 Sequential Environmental Monitoring Task
	5.5 Hierarchical Control for SRS
	5.6 Discussion
	5.7 Summary

	6 Conclusions and Future Work
	6.1 Future Work

	Appendices
	A Other Contributions
	A.1 The CORATAM and HANCAD projects
	A.2 COHiTEC
	A.3 Media Coverage
	A.4 Software Tools

	B Aquatic Robotic Platform
	B.1 Hardware Design and Specifications
	B.2 Onboard Software
	B.3 Remote Monitoring

	C Experimental Parameters for Aquatic Tasks
	Bibliography

