
University Institute of Lisbon

Department of Information Science and Technology

Design and development of a
hybrid-based mobile app for

ISCTE-IUL

Fábio Paulino

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Computer Science

Supervisor

Dr. António Luís Lopes
ISCTE-IUL

September 2015

Resumo

O aumento do poder da computação móvel e a quantidade de dispositivos
móveis em todo o mundo levou a um considerável aumento de aplicações. Muitas
destas aplicações móveis foram criadas para ajudar os seus utilizadores no seu dia-
a-dia. Algumas universidades viram este aumento como uma oportunidade para
facilitarem a vida dos seus alunos ao criarem aplicações para simplificar o acesso
aos diversos serviços.

No ISCTE-IUL, a descentralização dos diversos serviços e a falta de compatibi-
lidade com dispositivos móveis dificultam o acesso destes serviços aos seus alunos,
os quais necessitam de aceder aos mesmos através dos seus portáteis ou computa-
dores da instituição.

A proposta apresentada nesta dissertação passa pela criação de uma aplicação
móvel utilizando tecnologias híbridas de forma a disponibilizar um meio mais fácil
de interação entre os alunos e os serviços do ISCTE-IUL.

Os resultados obtidos com os alunos da instituição mostram que esta aplicação
é viável e que é desejável pela comunidade estudantil.

Palavras-chave: Aplicação Móvel, ISCTE-IUL, Aplicação Híbrida, API

i

Abstract

The increase in mobile computing power and the number of mobile devices
available worldwide has led to a considerable increase in applications. Many of
these mobile applications are designed to help its users in their daily basis. Some
universities saw this increase as an opportunity to help their students in their
academic life by creating a mobile application that grants easier access to several
services of the institution.

In ISCTE-IUL, the decentralization of several services and the lack of compa-
tibility with mobile devices hinder their access to their students which then they
require laptops or computers of the institution to access them.

The proposal presented in this dissertation is the creation of a mobile appli-
cation using hybrid technologies in order to provide an easy mean of interaction
between students and services of ISCTE-IUL.

The results obtained with the students of the institution show that this appli-
cation is viable and that it is desired by the student community.

Keywords: Mobile Application, ISCTE-IUL, Hybrid Application, API

ii

Contents

Resumo i

Abstract ii

List of Figures vi

Abbreviations viii

1 Introduction 1
1.1 Motivation . 1
1.2 Relevance . 2
1.3 Objectives . 2

2 State of the art 3
2.1 Mobile Computation . 3
2.2 Application development for mobile devices 5

2.2.1 Native Applications . 6
2.2.2 Web-based Applications . 7
2.2.3 Hybrid Applications . 8

2.3 The University Case . 9
2.3.1 Examples of universities mobile applications 9
2.3.2 Features grid and comparison 10

2.4 Conclusion . 11

3 Application Concept 12
3.1 Current Situation . 12
3.2 Students Opinion . 13
3.3 Application Requirements . 16

3.3.1 Functional Requirements . 16
3.4 Framework . 16

3.4.1 Xamarin . 17
3.4.2 Titanium . 17
3.4.3 PhoneGap . 18
3.4.4 Comparison Grid . 18
3.4.5 Ionic . 20
3.4.6 Decision . 20

iii

Contents

3.5 Facing Requirements . 21
3.6 Conceptualization . 21

3.6.1 ISCTE-IUL APIs . 22
3.6.2 Third-Party APIs . 23
3.6.3 Use Case Diagram . 23
3.6.4 UML Diagram . 26

3.6.4.1 Curricula . 28
3.6.4.2 Canteen . 29
3.6.4.3 Others . 29

3.6.5 Restful API . 30
3.6.5.1 Security . 31

4 Application Development 32
4.1 Database . 32

4.1.1 Populating Database . 32
4.1.2 Limitations . 33
4.1.3 Generating PHP classes . 33
4.1.4 Script . 35

4.2 Restful API . 37
4.2.1 Slim Framework . 38
4.2.2 PHP . 38
4.2.3 Where to Start . 38
4.2.4 Database Connection . 40
4.2.5 Security . 41

4.2.5.1 Token . 41
4.2.6 Code . 43
4.2.7 Available Requests . 46

4.3 Mobile Application . 47
4.3.1 Ionic . 48
4.3.2 AngularJS . 48
4.3.3 Development . 48
4.3.4 Layouts . 58
4.3.5 Limitations and Problems 61

5 Results 63
5.1 Students Tests . 63

5.1.1 Suggested Functionalities . 68
5.2 Real Devices . 69

6 Conclusion 70
6.1 Future work . 70

7 Appendix A 72

iv

Contents

Bibliography 75

v

List of Figures

2.1 Chart with numbers of equipments with mobile services 3
2.2 Chart with number of application in app stores in each OS 4
2.3 Chart with percentage of the activity most pratice on mobile devices 5
2.4 Table with different programming languages for each operating system 7

3.1 Chart with ages of the students . 13
3.2 Chart with genre of the students 13
3.3 Chart with the students enrolled degrees 14
3.4 Chart with students that have a smartphone 14
3.5 Chart with devices used to access university resources 14
3.6 Chart with the distribution on operative systems 15
3.7 Chart about the usefulness of a mobile application on ISCTE-IUL . 15
3.8 Chart with the preferred features by the ISCTE-IUL students . . . 15
3.9 Use Case Diagram of the application 24
3.10 Class diagram of the application . 27
3.11 Original case study Class diagram 28
3.12 Curricula Class Diagram of the application 28
3.13 Canteen Class Diagram of the application 29
3.14 Miscellaneous Class Diagram of the application 30

4.1 Unauthorized request to the API 42
4.2 Login Attempt and token provided from API 42
4.3 Unauthorized request to the API 42
4.4 Struture of the project . 49
4.5 Struture of the www folder . 51
4.6 Map search with no filter applied 53
4.7 Map search with ’C4’ filter applied 53
4.8 Toast in case of an error . 56
4.9 Icon used in the app . 59
4.10 Splash screen used in the app . 59
4.11 Old side menu . 59
4.12 New side menu . 59
4.13 Old canteen state . 60
4.14 New canteen state . 60
4.15 Old curriculars state . 61
4.16 New curriculars state . 61

vi

List of Figures

5.1 Page where students tested the app 64
5.2 Chart with genre of the testers . 64
5.3 Chart with ages of the testers . 64
5.4 Chart with the testers enrolled courses 65
5.5 Chart with testers that have a smartphone 65
5.6 Chart with the internet usage of the testers 65
5.7 Chart with distribution on operative systems 66
5.8 Testers opinion regarding usability of the app 66
5.9 Testers opinion regarding utility of the app 66
5.10 Testers opinion regarding the general appreciation of the app 67
5.11 Testers evaluation regarding features of the app 67
5.12 Testers opinion regarding usefulness of the app 68
5.13 Testers opinion regarding if they would use the app 68

vii

Abbreviations

ISCTE-IUL ISCTE - Instituto Universitário Lisboa

API Interface de Programação de Aplicações

Oxford University of Oxford

Harvard Harvard University

UIS University of Illinois Springfield

UA Universidade de Aveiro

UCP Universidade Católica

Lusófona Universidade Lusófona

IST Instituto Superior Técnico

OS Operative System

MVC Model-View-Controller

SOAP Simple Object Access Protocol

WSDL Web Service Definition Language

PHP PHP: Hypertext Preprocessor

POI Point Of Interest

LDAP Lightweight Directory Access Protocol

UML Unified Modeling Language

SQL Structured Query Language

DTO Data Transfer Object

PDO PHP Data Objects

CLI Command-Line Interface

viii

Chapter 1

Introduction

At ISCTE - Instituto Universitário de Lisboa, several services are decentralized

and lacks compatibility with mobile devices making it hard to reach using mobile

technologies.

The solution proposed in this dissertation involves the creation of a mobile ap-

plication for ISCTE-IUL students, which provides relevant information and com-

patibility with most of mobile devices. That information was selected through

analysis with future users and the technology available in the institution. This

prototype and analysis will help understand the feasibility and the possibility of

the application being added to the campus technology.

1.1 Motivation

Several services of ISCTE-IUL are spread across different domains which makes

the life harder for students in this institution. They have to surf through several

websites to find the information they require. Furthermore, another big issue is

the lack of compatibility with mobile devices which complicates the life of the

students by making them go through a time consuming process that sometimes

even the access to the necessary information gets blocked. In several universities in

Portugal and worldwide it is possible to find this kind of mobile application helping

1

Chapter 1. Introduction

their students in their daily basis but unfortunately, ISCTE-IUL still doesn’t offer

this advantage to its students.

1.2 Relevance

Mobile devices have become trivial to everyone in the daily basis, including college

students. The high growth has been forcing several websites to adapt to these tech-

nologies by using responsive design, which allows the adaptation of their website

to every mobile devices allowing an easier access to their users. At ISCTE-IUL,

only a very small set of services are responsive. This problem leads to many stu-

dents, which don’t have a laptop or don’t feel the need of bringing one to the

university, having problems accessing the different services and requires them to

find an available computer in the campus, which is not always possible.

1.3 Objectives

The goal of this dissertation is the analysis, design and implementation of a proto-

type which meets the opinion of ISCTE-IUL students and the possibility of those

being implemented using the existing services. The prototype integrates several

services of ISCTE-IUL in a mobile app accessible to every student in a responsive

way for easier visualization and meeting the students expectations.

2

Chapter 2

State of the art

2.1 Mobile Computation

Nowadays, the use of mobile devices is common in our society and it has been

growing at an impressive rate, as figure 2.1 depicts. Using PORDATA data[38] we

can see that there are over 19 million devices with mobile services in Portugal and

most of them are used in a daily basis.

Figure 2.1: Chart with numbers of equipments with mobile services, Source:
PORDATA

3

Chapter 2. State of the art

Due to this growth, not only in Portugal but over the globe, several new

applications emerged for this type of devices. Currently there are over 3 million

applications available across four operating systems for mobile devices (see Image

2.2), with most of them for Android and Apple (data gathered on September 2013

by Pure Oxygem Labs [27]).

Figure 2.2: Chart with number of application in app stores in each OS, Source:
Pure Oxygem Labs

Everyday, more and more people use their mobile devices for something com-

mon as calling or view e-mails, surf on the internet or even shopping. The next

figure (see figure 2.3) depicts which online activities people use on their mobile

devices, where we conclude that accessing email, texting, searching and social net-

works have the most attention. This data was obtained through 470 voluntary

consumers on 2014 Mobile Behavior Report from Salesforce marketing cloud[29].

4

Chapter 2. State of the art

Figure 2.3: Chart with percentage of the activity most pratice on mobile
devices, Source: Salesforce

2.2 Application development for mobile devices

Mobile applications provide more portability and availability, which constitute

their main difference to normal desktop-based applications. This type of applica-

tions can be easily accessible through application stores, making its distribution a

lot easier compared to desktop applications.

5

Chapter 2. State of the art

Despite its evolution, mobile devices still possess some limitations that affect

application development for their platforms as described in Baymard Institute

article[4].

Among those limitations, we highlight issues like: the compatibility between

different versions of the operating system; different screen sizes (size and resolu-

tion) across the devices; the computation power and available storage space. In

addition to these, a special care is needed in the development process of this type

of applications. The lack of context due to the screen size, for example, when

answering forms where the user cannot see the whole form content and needs to

scroll up and down to view its content. The internet speed can also impact the

performance and usability of a application that requires internet access and for

example the different interfaces between devices like iPhone and Android, when

iPhone uses virtual back button on applications and Android devices use physical

buttons.

In mobile devices development there are three types of application that can be

developed:

• Native Applications

• Web-based Applications

• Hybrid Applications

2.2.1 Native Applications

Native applications are developed for a specific operating system like iOS, Android,

Windows Phone or BlackBerry. In the following table (see figure 2.4), obtained

in a ACM Queue volume[5], it is possible to verify that each operating system

possesses a specific programming language, which means that a application that

requires to be accessed in multiple operating systems will need more time, work

and cost to be available for a larger set of mobile devices users.

6

Chapter 2. State of the art

Figure 2.4: Table with different programming languages for each operating
system, Source: ACM Queue[5]

In spite of their disadvantages, native applications bring a superior user experi-

ence unlike other types of applications, due to its responsiveness and accessibility

to native operations like notifications, calls and messages. Moreover, native appli-

cations can be easily accessed by their users if available at App Store in each OS

like Google Play and Apple App Store.

Some applications like Facebook, LinkedIn[9] are using this aproach, although

initially they have invested in the hybrid approach[41]. This change [6] was based

on the fact that it was hard to manage the resources of applications of this scale,

for example Facebook that possesses several images and videos on their application.

2.2.2 Web-based Applications

Web-based applications have been developed using web technology like HTML5,

Javascript and CSS languages. These applications are accessed through browsers

on mobile devices. Over the years, the potential for this type of application has

grown exponentially, much due to the evolution of render engines used in browsers

(like Webkit) and responsive design, which allows the adaptation of the application

to every screen.

7

Chapter 2. State of the art

This type of applications are easy to be accessed, have a lower cost of devel-

opment in comparison to native applications and the only thing needed to access

this type of application is a URL. The interface of these applications is similar

to a mobile app. In spite of their advantages, they have some limitations, such

as offline (un)availability and lack of access to native functionalities like camera,

contacts and offline storage. Besides these limitations, it also lacks the distribution

model of App Stores and has to be saved as a bookmark on the browser [20].

2.2.3 Hybrid Applications

Hybrid application development combines the best of native and web-based appli-

cations. This type of application has two approaches[42]:

Web Technology which uses HTML5, CSS and Javascript programming lan-

guages that runs inside a WebView (allowing a application to render a web

page).[2] To have access to native APIs the application uses Javascript in

theWebView. This aproach allows programmers with web knowledge to have

an easier start on the mobile market. One example of this aproach is the

PhoneGap[37] framework, which uses web technologies like HTML5, CSS

and Javascript to create applications for Android, BlackBerry, Firefox OS,

iOS, Symbian, Ubuntu Touch, webOS, Windows Phone and Windows 8.

Native Technology applications are developed using one programming language

like C# and Javascript and then are converted to native code for several op-

erating systems.[2] This approach lacks a bit of freedom in their development.

One example of a framework of this kind is Xamarin[45], that converts C#

code into iOS, Android, Mac and Windows native code.

This type of application provides several advantages like programming in more

well-known and largely-used languages while being able to deploy applications to

several different platforms, while preserving the responsive design methodology of

web technologies. This advantage, common to web-based applications, can also

8

Chapter 2. State of the art

take advantage of a native application’s features, like access to native APIs, larger

availability due to distribution model of App Stores and offline availability. There

are also some limitations since not all native APIs can be accessed and the time

and cost to make the interface and user experience of the application feel similar

to one of a native app can vary. Some well-known examples of such applications

are Instagram, Twitter and Yelp which use this aproach[19] through WebView,

which allows for example Instagram to access photos on the device as well as its

camera API.

2.3 The University Case

Mobile applications in universities is not something new these days and some

universities already have their own mobile applications. These applications allow

their students to access information that they require in their academic course

and information that they can use daily about their universities. This medium is

increasingly viable due to the number of mobile devices that their students possess,

making it a source not only of useful information for their students but also a great

opportunity for universities to explore their potential for sharing events and news

to their students.

2.3.1 Examples of universities mobile applications

Some universities already have mobile aplications available to their students, such

as the University of Oxford[32], Harvard University[44], Massachusetts Institute of

Technology[33], University of Illinois Springfield[31], University of Massachusetts

Boston[30], Universidade de Aveiro[7] and Universidade Católica[39]. These uni-

versities chose to use the hybrid approach, allowing it to be accessed by a large

number of their students, with less development cost unlike native applications.

There are some universities like Lusófona[28] and Instituto Superior Técnico[8]

that chose to use native applications but for now they only offer an application

for Android devices.

9

Chapter 2. State of the art

2.3.2 Features grid and comparison

After performing an analysis on national and international mobile applications

(see Table 2.1), it is possible to see that the applications that have been developed

using the hybrid model (like Oxford, Harvard, UIS, UA, UCP) have the same or

more features than Lusófona and IST native applications. No single application

has implemented every feature on the list, although some features like library,

canteen, community (chat, forum) and student schedule were the most used in

this universities.

Features \ Universities Oxford Harvard UIS UA UCP Lusófona IST

Library x x x x

Canteen x x x x

Course Catalog x x

Community (Chat, Forum) x x x x x

Contacts x x x

Sports Teams x

Parking Lot x x x

Events x x x

Students (Tuitions, Grades) x x x

Student Schedule x x x x

Transports Schedule x

Emergency Information x x x

Map x x x

Weather x

Multimedia x

News x x x

Academic Services x x

Shuttle x x

Table 2.1: Features of mobile applications in some national and international
universities

10

Chapter 2. State of the art

2.4 Conclusion

With the growth of mobile devices and their use, several applications were created

to help the consumers in their daily activities. Several universities took this oppor-

tunity to integrate their services in this type of applications, making it available

to their students.

Analyzing the mobile development, three types of applications have been found.

Native applications, which run inside the mobile devices, allowing a total access

to the device but they require more time and cost in their development since each

operating system possesses its own programming language. Web-based applica-

tions, that although being easy to develop using web technologies like HTML5,

CSS and Javascript lack availability and access to native APIs. And at last, hy-

brid applications, which can be developed by using web technologies or one single

programming language and then can be converted to several OSs, allowing a faster

development and access to some native APIs.

On the university context, these applications offered several features for their

students, creating them an easier access to services of their university. Not all the

applications use the same technology, but the hybrid approach clearly surpasses

the native approach. In spite of their differences, these applications brought a

similar context to the user.

11

Chapter 3

Application Concept

Based upon analysis in chapter 2, it was decided to use a hybrid approach in the

implementation of this application.

This chapter details the current situation at ISCTE-IUL regarding information

systems, the students opinions on this matter and performs an analysis of several

frameworks available for hybrid applications. Furthermore, based on the require-

ments that were defined, on the opinions of the students and on the frameworks

that were analysed an application conceptualization was developed and can also

be found later in this chapter.

3.1 Current Situation

Presently, at ISCTE-IUL, some of the digital services available to the students are

dispersed through different systems. This makes it difficult for the students to

find the information they need without using multiple websites, which takes more

time than it should.

Moreover, these websites do not have a responsive interface, which means that

their use is limited in mobile devices with small screens. This problem forces the

12

Chapter 3. Application Concept

students to access their university services with laptops or institutionally-provided

desktops to access the information.

This type of applications is available throughout Portugal in some high educa-

tion institutions but ISCTE-IUL hasn’t developed a mobile application for their

students yet.

3.2 Students Opinion

In October 2014, a questionnaire was made to students at ISCTE-IUL and 246 of

them answered the questions. The majority of the students were male (64%) with

ages between 21 and 25 years old. (see Image 3.1 and 3.2)

Figure 3.1: Chart with ages of the
students

Figure 3.2: Chart with genre of
the students

The majority of the students were from the engineering or computer-related

degrees but there is a large distribution of answering students across the other

institution’s degrees (see Image 3.3).

13

Chapter 3. Application Concept

Figure 3.3: Chart with the students enrolled degrees

From all questioned students, around 229 (93%) have a smartphone (see Image

3.4), but 72% access the university services with laptop instead of their smart-

phones (see Image 3.5).

Figure 3.4: Chart with students
that have a smartphone

Figure 3.5: Chart with devices
used to access university resources

Most of the questioned students have at least one smartphone with Android

(68%) followed up by iOS (20%) (see Image 3.6). About a mobile application, 231

students (94%) said that they would consider a mobile application of ISCTE-IUL

helpful for their academic degree. (see Image 3.7).

14

Chapter 3. Application Concept

Figure 3.6: Chart with the distri-
bution on operative systems

Figure 3.7: Chart about the use-
fulness of a mobile application on

ISCTE-IUL

Questioned about the features they would like to see in the mobile application,

with a scale from 1 to 5, the most voted were the ticket service of the secretariat

(4.39), access to the student’s private information (4.31) and canteen (4.08). From

all the features, the least desired was the Online Shop (2.98) (see Image 3.8).

Figure 3.8: Chart with the preferred features by the ISCTE-IUL students

15

Chapter 3. Application Concept

3.3 Application Requirements

3.3.1 Functional Requirements

After gathering the opinion of the students and analyzing the available services at

ISCTE-IUL, it was possible to define the requirements of the application that are

useful to the students and also possible to develop.

Canteen students can see the menu of the next 5 days.

Students Informations public information about the students where it is pos-

sible to see their chairs and teachers.

Teachers Informations teacher information regarding email address, locker, of-

fice, all chairs lectured and curriculum vitae.

Secretariat Tickets students can see tickets information, called numbers and

desks.

Map possibility to select a classroom or points of interest at iscte-iul and show

them in google maps API.

Transports see next strikes and transports near ISCTE-IUL.

Furthermore, some information used on people daily basis were added.

Weather possibility to see the weather at the university’s location.

News about the university and national news.

3.4 Framework

In chapter 2, it was possible to determine that a hybrid application fits best in this

project, making it easy to develop without the need to use multiple languages for

16

Chapter 3. Application Concept

the different OSs, reducing its cost and time. However, there are several different

ways and frameworks to build a mobile application. This section analyzes some

of these different alternatives and presents the chosen approach.

3.4.1 Xamarin

Xamarin is a cross-platform framework that allows you to make apps for iOS,

Android, Windows and Mac. It uses C# as their language and converts the code

for each specific platform, letting it use hardware acceleration and UI conventions.

It is pointed that 60-100% of the code can be reused[45]. Although it supports

MVC patterns and recent wearables like Android Wear, a subscription is required

to use the framework and deploy the developed applications.

Some examples of companies that uses this framework areMicrosoft, Foursquare

and Bosch.[46]

3.4.2 Titanium

Titanium is an open-source product of Appcelerator, which uses Javascript as their

language and does not allow HTML5 for things like animations. It uses Native

APIs and adapts to each OS UI conventions.

Titanium allows to build apps for Android, BlackBerry and iPhone. Although

it is possible to reutilize about 100% of the code for the different platforms, this

is a rare situation and it is pointed on the Appcelerator website in the majority of

the case the code reutilization is only about 60-90%, with special attention being

needed for each platform.[36]

Applications have a user experience similar to native and it’s free to try but

unfortunately it is required to pay for deployment and not recommended for large

scale applications. A few examples of companies who use this framework and tools

are Cisco, VMWARE and Mistubishi Electric.

17

Chapter 3. Application Concept

3.4.3 PhoneGap

PhoneGap is a cross-platform which uses web technology to develop a mobile

application. This application is rendered through a Web View on the mobile

device. This framework is open-source and uses HTML5, Javascript and CSS3

and allows to build apps for iOS, Android, Windows Phone 8, Blackberry, Firefox

OS and Ubuntu.

The code is highly reusable for the different platforms and their APIs are simple

to use. Unfortunately, this type of applications tend to have worse performance

and their UI will depend on the Web View rendering system.[37]

3.4.4 Comparison Grid

These three frameworks are the biggest in today’s market, and provide the best

option for hybrid application development. Each framework has its own features,

which are described in the table below made by Cygnet Infotech[37] (see Table

3.1).

18

Chapter 3. Application Concept

Features \ Framework PhoneGap Titanium Xamarim

Platform Support iOS, Android,

Windows

Phone 7 & 8,

BlackBerry

Android, iOS

& Blackberry

iOS, Android

& Windows

Language HTML5,

CSS3,

JavaScript

JavaScript C#

Open-source Yes Yes No

UI Web UI Native Native

Access to device API Limited Full Full

Web Standart Support Yes No No

DOM Support Yes No Yes

Native Performance No Yes Yes

Used By IBM, Sony,

Mozilla, Intel

Cisco,

VMWARE,

Safeguard

Proprities,

Mitsubishi

Electric

GitHub,

Microsoft,

Foursquare,

Expensify,

Dow Jones

Table 3.1: Features for the different Framework discussed, Source: Cygnet
Infotech

PhoneGap allows the developers to have a larger potential user base by allowing

the deploy to be made in several different OSs, whereas Titanium and Xamarin

only allow Android, iOS and Blackberry. Out of the three, only PhoneGap uses

HTML5 and CSS3 which allows to make animations using its Web View rendering

system. Xamarim is not open-source, but both Titanium and Xamarim require a

payment fee to develop and/or deploy the application.

19

Chapter 3. Application Concept

All of them have access to the mobile device API, but PhoneGap has a limited

access due to the application running in a WebView, making it also the only one

that doesn’t have a native performance and is limited by its rendering system.

3.4.5 Ionic

After Adobe acquired PhoneGap, the open source core system was donated to

Apache Software Foundation with the name Cordova. This core system is used by

Ionic team, Drifty, and is the core for the Ionic Framework.

Ionic provides a HTML5 SDK that optimizes the native feeling of their appli-

cations and it’s focused on the front end of the application. It utilizes AngularJS

and besides allowing CSS customizations, it also offers UI components with native

app feel. Although it is in its early steps, the framework has been proved powerful

and its stable version has been released in May, 2015. Since it has a MIT license,

any developer can use, build, modify and publish free of any cost. Drifty has been

providing additional services to maintain the framework, like Analytics, Push and

Deploy.

3.4.6 Decision

In spite of having great features and characteristics, Xamarin and Titanium have

an associated cost that needed to be cut down. Furthermore, the knowledge

acquired from other projects on Web Techologies made Cordova the framework to

go for this application, since it is possible to develop all the features required in

this framework. As a result of further investigation, it was determined that Ionic

features enhance Cordova making it the ideal framework to use in this project.

20

Chapter 3. Application Concept

3.5 Facing Requirements

One of the main issues with this type of applications, is the need to be always

online due to frequent change of information.

This dependency makes it critical to have a high server uptime and more

control over APIs. To make this more stable, it was required to make the APIs

information stored in a RESTFUL API created for the application, which can

be used for other applications inside the university. This way it is possible to

increase the availability of the application even if there are any problems with the

server providing the information. This information is stored in a database inside

the institution making it faster to access due to its location to provide a lower

response time. This decision impacts the user experience by providing a faster

response to the user.

The amount of different devices available in the market is also an issue, since

there are several combinations of specifications and different OS. This issue reflects

in compatibility and also performance.

Unfortunately some of the most required features of ISCTE-IUL students based

on their opinion earlier in this chapter could not be developed in this application

since there is no API to allow access to private information like schedules, exams

and tuitions.

3.6 Conceptualization

This section contains the conceptualization of the application using the chosen

framework and it covers the APIs used as well the database created for this ap-

plication.

21

Chapter 3. Application Concept

3.6.1 ISCTE-IUL APIs

For the prototype of this project, ISCTE-IUL allowed the use of one of their

development servers to access some of the students public information. This in-

formation is passed through a Web Service that connects the Fenix platform and

Blackboard. This information was crucial to the creation of this project.

With this API, it was possible to gather information about:

Students Personal information about the email, username. Crossing data allows

to see the student degree, and curricula that the student is currently enrolled

in.

Teachers Personal information similar to students. Crossing data allows to see

curricula which the teacher lectures.

Curricula Information about the name of the course in English and Portuguese

as well the code to identify the course. Crossing data allows to see which

degree the curricula belongs to, which students are enrolled and who are the

professors lecturing the curricula.

Courses Information about the name of the degree in Portuguese and English

and the identifying code.

To access this web service a script has been made to load the information on

a scheduled job. The script was developed using PHP to request the API the

information using SOAP (Simple Object Access Protocol) envelope with a WSDL

(Web Service Definition Language) description.

Unfortunately the web service does not have the functionality of only providing

the updated information, which requires the script to clear the database and insert

the entire data set again.

Another API used is Ciencia-IUL, which provides more detailed informations

about the teachers of the institution, where students can see their office, postbox,

22

Chapter 3. Application Concept

email, Curriculum Vitae and the areas in which they do research or are qualified to

supervise grad students. The documentation of this API can be accessed through

Ciencia-IUL[21] website.

Finally, the MyTicket [22] API was also provided by ISCTE-IUL allowing the

application to view all the queue lines for the services in the institution.

3.6.2 Third-Party APIs

Besides the APIs inside ISCTE-IUL, some third-party APIs have been used to

provide relevant information to the user about public transportation strikes and

weather.

The strikes APIs is provided by Ha Greve[23]. The creators of this website

gather information around the internet from official companies websites and news

stations to inform their users of the upcoming strikes. Their API is currently

in its second version allowing access to companies, all strikes or only the upcom-

ing strikes. The API response is in JSON, allowing an easy interpretation by

Javascript converting the results in arrays.

The other API is provided by OpenWeatherMap[35]. OpenWeatherMap

provides a API with weather data using broadcast services, airport weather station

and other official weather stations. This API can be used for free and allows to

request information about the current and forecast of the weather for a single or

multiple location. In the application developed in this project the location is set

to Lisbon, where ISCTE-IUL is located. Similarly to the strike API, the response

is in JSON.

3.6.3 Use Case Diagram

After reviewing the requirements, the available APIs and their respectively infor-

mation it was possible to determine two actors in the application:

23

Chapter 3. Application Concept

• Student

• Administrator

The students in the application will be allowed to view information regarding

themselves, their teachers and public information provided by the application.

Administrator is an actor that it is needed to update some of the information

that is not possible to be obtained through APIs. This moderator however can

be removed if the ISCTE-IUL infrastructure creates an API for this purpose (see

Image 3.2).

Figure 3.9: Use Case Diagram of the application

24

Chapter 3. Application Concept

In the table below (see Table 3.2) it is possible to find a more detailed descrip-

tion about each use case.

Name Description

Log In The user authenticates to the server and if suc-

cessful he becomes the actor student.

View public transportation strikes User can view if there are any strikes in the

upcoming days

View Canteen Allows the user to view all the meals for the

upcoming days

View Weather Allows the user to view the weather for Lisbon

in the following days

View Map Allows the user to view all the POI around

ISCTE-IUL and their location

View Events Allows the user to see all the events informa-

tions for the following days

View ticket queue Allows the user to check the queue line for the

institution services

View enrolled curricula Allows the student to see all the disciplines that

he is enrolled

View teachers Allows the student to see all the teachers that

lecture the disciplines that he is enrolled

Manage News Allows the administrator to create, edit and re-

move news.

Manage Events Allows the administrator to create, edit and re-

move events.

Manage Meals Allows the administrator to create, edit and re-

move meals.

Table 3.2: Detailed description of the use cases

25

Chapter 3. Application Concept

3.6.4 UML Diagram

As described earlier in this chapter it was required a database to maintain the

information so that the application only sends requests to a single service, reducing

its response time as well as granting application availability if one of the services

inside ISCTE-IUL or third-party APIs goes to maintenance or is even down.

This database needed to contain all the information related to ISCTE-IUL,

as well as some services information. This being said, all the information related

with the students, curricula, teachers, canteen, map, news, events and even public

transportation strikes has been stored in the database. Since weather is a real-time

information, it does still pass through the API, but it isn’t stored in the database

(see Image 3.10).

26

Chapter 3. Application Concept

Figure 3.10: Class diagram of the application

A more detailed explanation of the choice in this diagram is provided in the

following subsections below.

27

Chapter 3. Application Concept

3.6.4.1 Curricula

Initially, the database was planed to save all the information about past years,

similar to a case study found in Pedro Nogueira Ramos book entitled "De-

senhar Bases de Dados com UML"[40] (see Image 3.12). After some thought

it has been defined that the API shouldn’t contain the past information and only

relevant information about the current year, so an adaptation has been made (see

Image 3.12).

Figure 3.11: Original case study Class Diagram

Figure 3.12: Curricula Class Diagram adaptation for the application

In the adaptation of the diagram seen in the book, the Edition table has been

removed, as well as its composition since it isn’t required for the API to work and

would overflow the database.

28

Chapter 3. Application Concept

3.6.4.2 Canteen

In ISCTE-IUL there are several places to eat and even restaurants. This infor-

mation can be made available in the application benefiting the students and also

giving visibility to the restaurants (see Image 3.13).

Figure 3.13: Canteen Class Diagram of the application

In this model it is possible for a restaurant to have dishes of the day and also

meals available all week long, making it possible to see their prices.

3.6.4.3 Others

The rest of the database contains miscellaneous information which are separated

from the other tables (see Image 3.14).

29

Chapter 3. Application Concept

Figure 3.14: Miscellaneous Class Diagram of the application

Events Events contain all the events coming at ISCTE-IUL.

News News contain the news about the institution

Strikes Strikes table contains the public transportation strikes that are schedule

for the next days.

Map & Type_map Table contains the latitude and longitude of several POI

around ISCTE-IUL.

api_auth & auth_token Security tables that will authenticate and verify both

the device and the user.

3.6.5 Restful API

Earlier in this chapter it was possible to detect all the APIs available and the

database needed to provide the information requested by the application. To

improve the stability and availability a RESTful API was developed using Slim

Framework to request information from the database.

30

Chapter 3. Application Concept

Slim is a micro PHP framework that simplifies the creation of powerful web ap-

plications and APIs [25]. Similar to Ionic, it also possesses a MIT license, allowing

to use, build, modify and publish free to any cost.

Due to security reasons, all requests and responses for the third-party infor-

mations like weather and other future APIs used are passed through the RESTful

API.

3.6.5.1 Security

Some information is specific for each student and should only be accessed by

that student. To ensure that the information only goes for that specific student,

every student has to login to access certain parts of the application. They login

using LDAP (Lightweight Directory Access Protocol) system available inside the

institution which authenticates the user. The API after verifying the login sends

a token to the application. This token has an expiration date and after expiring

the user needs to authenticate again.

Besides the user authentication, another authentication is required to access

the API. Each application or system requires a token or a registered IP to have

access to the API. This verification prevents unwanted access or overload to the

API.

31

Chapter 4

Application Development

In this chapter it is possible to read all the described work behind the development

of the application, since the initial learning of the chosen languages to the final

production of the prototype.

4.1 Database

The corresponding database of the Class Diagrams defined in the concept phase

(available in the previous chapter) was implemented in a MySQL server inside a

Raspberry PI 2 for the duration of this project. After the implementation it was

required to populate the database with information.

4.1.1 Populating Database

Thanks to ISCTE-IUL help, the access to an API that connects E-Learning plat-

form and Fenix platform was provided allowing a more authentic prototype using

real students information. The specific API uses SOAP and a WSDL describer.

To populate the database it was required a PHP script, which gathers the

information of the ISCTE API by the following steps:

32

Chapter 4. Application Development

1. Retrieve and insert all teachers and their informations and insert in the

database.

2. Retrieve and insert all degrees.

3. Retrieve and insert all students by degrees.

4. Retrieve and insert all curricula by degree.

5. Insert link (enrollments) between student and curricula.

6. Insert link (professorship) between teacher and curricula.

Furthermore, when each teacher is retrieved from the ISCTE-IUL API, an-

other API is called (Ciencia-IUL) which provides even more information about

the teachers, which for the application were selected the Postbox number, Office

and Curriculum Vitae.

4.1.2 Limitations

Due to the ISCTE-IUL API providing all the information every request and not

only the updated information, it was required to clear the database and populate

again each call to guarantee that all the information is up-to-date.

Another alternative was to make a verification in each row (each teacher, stu-

dent, degree and curricular) and check against information already in the database.

This process would take even larger time to process to an already slow process due

to the number of records in the database, so for that reason was discarded as a

viable alternative.

4.1.3 Generating PHP classes

Similar to how it is done in JAVA, a set of classes can be generated to connect to

a SOAP/WSDL API. This way allows for an easier interaction between PHP and

33

Chapter 4. Application Development

SOAP as complex types used in SOAP/WSDL can make this task more difficult.

For this purpose, a code generator was used, called EasyWSDL2PHP [43]. With

a few modifications for the front-end interface, it was possible to generate a file

named ElearningSystemService.php with all the methods available, its parameters

and classes both for search and response.

Below are the methods and classes to retrieve teachers using ISCTE-IUL API.

class getTeachers{

var $arg0;// teacherSearchDTO

}

class teacherSearchDTO{

var $executionYear;//int

var $username;// string

}

class getTeachersResponse{

var $return;// teacherDTO

}

class teacherDTO{

var $email;// string

var $name;// string

var $number;//int

var $photo;// base64Binary

var $username;// string

}

function getTeachers($getTeachers)

{

$getTeachersResponse = $this ->soapClient ->getTeachers($getTeachers);

return $getTeachersResponse;

}

The first class getTeachers is the object required (parameter) for the get-

Teachers function. This class requires a teacherSearchDTO which allows to be

filtered by username. Although in this generated code, there is no information

as to which variables are required or not, the executionYear is mandatory and

without it the function will not be called. After being called, getTeachersRe-

sponse is returned. This class only cointains a variable called return which is an

34

Chapter 4. Application Development

array of teacherDTO. This Data transfer Object possesses all the information

about the teacher.

4.1.4 Script

As described before, this script required to clear all the tables which information

is provided by ISCTE-IUL API to guarantee its updated information. To do this,

and since all the information for this database will be cleared, the foreign key

verification is temporarily disabled.

SET FOREIGN_KEY_CHECKS = 0;

TRUNCATE curricular;

TRUNCATE degrees;

TRUNCATE degrees_students;

TRUNCATE students;

TRUNCATE teachers;

TRUNCATE enrollments;

TRUNCATE professorship;

SET FOREIGN_KEY_CHECKS = 1;

It was created a DatabaseHelper class that contains all the methods to pop-

ulate the database. This class uses the ElearningSystemService.php generated

class to gather the information. Below is an example of how the class obtains and

inserts the information of the teachers in the database.

class databaseHelper{

private $conn = null;

private $eLearning = null;

function __construct () {

$host = "localhost"; // change this as required

$username = "root"; // change this as required

$password = "PASSWORD"; // change this as required

$db = "thesis"; // your DB

// Create connection

$this ->conn = new mysqli($host , $username , $password , $db);

// Check connection

if ($this ->conn ->connect_error) {

die("Connection failed: " . $this ->conn ->connect_error);

}

35

Chapter 4. Application Development

$this ->eLearning = new ElearningSystemService ();

}

The constructor makes the connection to the database, in this case both are

localized in the Raspberry PI 2 and after initializes a new variable with Elearn-

ingSystemService class.

function insertTeachers (){

$searchTeachers = new teacherSearchDTO ();

$searchTeachers ->executionYear = 2014;

$paramTeachers = new getTeachers ();

$paramTeachers ->arg0 = $searchTeachers;

$teachers = $this ->eLearning ->getTeachers($paramTeachers);

$listTeachersDTO = $teachers ->return;

foreach ($listTeachersDTO as $helper)

{

$helper ->email = mb_convert_encoding($helper ->email , ’iso -8859 -1’, ’utf -8’);

$helper ->name = mb_convert_encoding($helper ->name , ’iso -8859 -1’, ’utf -8’);

$helper ->username = mb_convert_encoding($helper ->username , ’iso -8859 -1’, ’utf -8’);

$helper ->email = $this ->conn ->real_escape_string($helper ->email);

$helper ->name = $this ->conn ->real_escape_string($helper ->name);

$helper ->username = $this ->conn ->real_escape_string($helper ->username);

if(! empty($helper ->photo)){

$imagepath=’/var/www/testing/api/images/’.$helper ->username.’.png’;

file_put_contents($imagepath , $helper ->photo);

}

if($helper ->number > 0){

$ciencia = file_get_contents(’https :// ciencia.iscte -iul.pt/api/author/’.$helper ->number);

$obj = json_decode($ciencia);

if(isset($obj ->error_msg)){

$SQLstring = "INSERT INTO teachers (number , email ,name ,username)

VALUES (’$helper ->number ’, ’$helper ->email ’, ’$helper ->name ’, ’$helper ->username ’)";

}

else{

$office = $this ->conn ->real_escape_string($obj ->author_info ->contacts ->office);

$postbox = $this ->conn ->real_escape_string($obj ->author_info ->contacts ->post_box);

$cv = mb_convert_encoding($obj ->author_info ->cv_research ->cv_summary , ’iso -8859 -1’,

36

Chapter 4. Application Development

’utf -8’);

$cv = $this ->conn ->real_escape_string($cv);

$link = $obj ->ciencia_iul_url;

$SQLstring = "INSERT INTO teachers (number , email ,name ,username ,office ,post_box ,cv_summary ,

link_cienciaviva) VALUES (’$helper ->number ’, ’$helper ->email ’, ’$helper ->name ’,

’$helper ->username ’,’$office ’,’$postbox ’,’$cv ’,’$link ’)";

}

}

else{

$SQLstring = "INSERT INTO teachers (number , email ,name ,username)

VALUES (’$helper ->number ’, ’$helper ->email ’, ’$helper ->name ’, ’$helper ->username ’)";

}

if ($this ->conn ->query($SQLstring) === TRUE) {

// echo "New record created successfully ";

} else {

echo "Error: " . $SQLstring . "
" . $this ->conn ->error."
";

}

}

// echo "

Completed teachers !";

}

}

When called, the insertTeachers function makes a request to the API follow-

ing the steps described above, which returns an array of teacherDTO. With each

iteration of the array, it encodes the charset to utf-8 to avoid special characters

problems and then if the teacher has a picture, place it in a file. Another alterna-

tive for this was to place it inside a blob in the database. Using the Ciencia-IUL

API, it collects even more information of the specific teacher and inserts in the

database.

4.2 Restful API

After the creation of the database and script to populate it, the next step was to

provide a way of communication between the database and application. In the

concept phase it was decided that an API would be required for this project due

37

Chapter 4. Application Development

to the constant change of information and a system authentication to allow the

user access to his information.

For this API, it was also defined that Slim Framework would be used to accel-

erate its development.

4.2.1 Slim Framework

Slim is an MIT -licensed framework which code can be found in their website[25].

The framework is on its second version but the third version is already on the beta

phase featuring Dependency injection, PSR-7 support and more[24].

The programming language of this framework is PHP.

4.2.2 PHP

Although past experience with PHP language some of its features like PHP Data

Objects (PDO) statements haven’t been used before. The same happened with

Slim since it was the first experience with the framework.

4.2.3 Where to Start

After downloading the framework it is possible to find a Slim folder which contains

all the core files to the Slim framework and an index.php file. All the code for

the Restful API can be coded in the index.php file.

The Slim framework is used as a class in the index.php file. To start off

creating the API it is required the following code:

require ’Slim/Slim.php’;

\Slim\Slim:: registerAutoloader ();

$app = new \Slim\Slim ();

38

Chapter 4. Application Development

As described in the index.php file it is need to include the Slim/Slim.php to

load the Slim framework. After that, simply initialize an object with Slim class.

Now it only requires creating routes for the application depending on the HTTP

request method which are GET, POST, PUT, PATCH, DELETE.

Below is a simple example of how to redirect these requests to functions and

return a "Hello World" with the name provided by the request using GET and

POST.

$app ->get(’/helloworld /:name’, ’getHelloWorld ’);

$app ->post(’/helloworld ’, ’postHelloWorld ’);

function postHelloWorld () {

global $app;

$req = $app ->request ();

$name= $req ->params(’name’);

echo "Hello , ".$name;

}

function getHelloWorld($name) {

echo "Hello , ".$name;

}

As seen in the code, two routes were created which can be pointed to one

or multiple functions. One for a GET request, essential trigger if a user visits

HTTP://URL/helloworld and a POST request. In the first line, where the

GET route is created it is possible to see a :name at the end of the first parameter

and can be provided by placing in the end of the URL /John so the URL would be

HTTP://URL/helloworld/John This tells us that a variable is required and

that it will be passed to the getHelloWorld. In the POST request it is necessary

to get all the request of the API and get the required parameters. To finish, after

all the routes are defined it is essential to run the API.

$app ->run();

39

Chapter 4. Application Development

4.2.4 Database Connection

The API need to be connected to the database to provide the information required

to the application. To be able to do this a database connection is required in each

request.

Each method that requires an operation to the database calls the getConnec-

tion method listed below.

try {

$db_username = "USER";

$db_password = "PASSWORD";

$conn = new PDO(’mysql:host=localhost;dbname=DATABASE ’, $db_username ,

$db_password);

$conn -> exec("set names utf8");

$conn ->setAttribute(PDO:: ATTR_ERRMODE , PDO:: ERRMODE_EXCEPTION);

} catch(PDOException $e) {

echo ’ERROR: ’ . $e->getMessage ();

}

return $conn;

This method makes a PDO connection to the database and returns the con-

nection to its caller. PDO is a new way of connecting to the database available

since PHP 5.1 and allows switching database a lot easier and painless since it

works with several database drivers described below[18].

• CUBRID

• FreeTDS / Microsoft SQL Server / Sybase

• Firebird

• IBM DB2

• IBM Informix Dynamic Server

• MySQL 3.x/4.x/5.x

• Oracle Call Interface

40

Chapter 4. Application Development

• ODBC v3 (IBM DB2, unixODBC and win32 ODBC)

• PostgreSQL

• SQLite 3 and SQLite 2

• Microsoft SQL Server / SQL Azure

• 4D

4.2.5 Security

As said before, some redirections are pointed to multiple functions. In this case it

was used for two ways of security verifications.

System Authorization allows the use of the API to only allowed devices, appli-

cations or system. This allows to control who has access to the API avoiding

undesired traffic or misuse. This verification is called in every request to the

API and it verifies a token or IP location to authenticate.

User Authorization allows access to certain information after verification of the

user, in this case a student. This information is specific to that user like the

curricula that a student is enrolled. When this type of requests are called

the API will verify if a token has been provided. If it isn’t it will deny

the request. The application will then ask the user to authenticate using

ISCTE-IUL credentials. After LDAP system confirms the authentication,

the API will insert a token in the database and provide that same token to

the user. In every request made by that user a token has to be provided and

then compared to the database.

4.2.5.1 Token

To authorize the user and grant access to some requests a token needs to be pro-

vided to the API. This token works as a replacement for username and password.

Below is an example of how the token is created and used.

41

Chapter 4. Application Development

Figure 4.1: Unauthorized request to the API

A user without a token tries to access information through a specific student

request to the API. Since the token hasn’t been provided, the API will reject the

request and the application will ask the user to login using ISCTE-IUL credentials.

Figure 4.2: Login Attempt and token provided from API

The user then will try to login using his credentials. This information is re-

ceived by the API which will verify against LDAP. If correctly it will insert the

user in the database to generate a token and an expiration date using a trigger in

the database. Then it will retrieve the token and return it to the user.

Figure 4.3: Unauthorized request to the API

In each request the application inserts the token in a header to authorize the

request. The API will first verify the token and then make the request and return

the information requested.

42

Chapter 4. Application Development

4.2.6 Code

After some experimentations with Slim framework it was possible to create the

Restful API that is used by the application.

Below is an example of the request that returns all the teachers that lecture

classes to a specific student. It is possible to verify all the code written that the

framework will use from the received request to the response. Since it is a function

about a specific user it will also be required a user authentication if a not is not

provided. If it is not provided the user will have to authenticate like described in

the section above.

$app ->get(’/teachersByStudent /: username ’, ’authenticate ’, ’authorizeToken ’,

’getTeachersStudent ’);

This is the route that the request will use if called by URL/teachersByStu-

dent/:username where :username is the student username. The route then

tell us that it will call the authenticate function, authorizeToken function and

getTeachersStudents function.

The authenticate function will verify if the system is allowed to use the

application by verifying its token or IP location.

$headers = apache_request_headers ();

$api_key = $headers[’authorization ’];

The apache_request_headers will obtain all the headers provided with

the requests and it will be used to retrieve the token provided in the header

authorization. After that it will call the isValidApiKey function.

function isValidApiKey($api_key) {

$dbCon = getConnection ();

$stmt = $dbCon ->prepare("SELECT id from ‘api_auth ‘ WHERE api_key =:key");

$stmt ->bindParam("key", $api_key);

$stmt ->execute ();

$num_rows = $stmt ->rowCount ();

$stmt ->closeCursor ();

$dbCon = null;

return $num_rows > 0;

}

43

Chapter 4. Application Development

This function will receive the API key provided and will be checked against

the database information. If it is verified it will return TRUE, if not it will return

FALSE. After this if it is TRUE it will continue to the next function, and if not

it will send a response.

After the authenticate function, it will now call the authorizeToken.

$headers = apache_request_headers ();

$token = $headers[’bearer ’];

$user = $route ->getParam("username");

It works the same way as authenticate function, but now getting the bearer

header. After retrieving the token it will get the username from the URL and

then will call the isValidToken function and pass those two variables.

function isValidToken($user ,$token) {

$dbCon = getConnection ();

$stmt = $dbCon ->prepare("SELECT * from ‘auth_token ‘ WHERE token =: token AND

username =: username AND date_expiration > now()");

$stmt ->bindParam("token", $token);

$stmt ->bindParam("username", $user);

$stmt ->execute ();

$num_rows = $stmt ->rowCount ();

$stmt ->closeCursor ();

$dbCon = null;

return $num_rows > 0;

}

The function is very similar to the isValidApiKey, but will not check if both

the token and username are valid and inside the expiration date. After all the

verifications are checked it will call the getTeachersStudents.

function getTeachersStudent($studentUser) {

$sql = "SELECT * FROM ‘curricular ‘,‘enrollments ‘ WHERE ‘id‘ =

‘enrollments ‘. curricular_id

AND ‘enrollments ‘. students_username =: username";

try {

$dbCon = getConnection ();

$stmt = $dbCon ->prepare($sql);

$stmt ->bindParam("username", $studentUser);

$stmt ->execute ();

$curriculars = $stmt ->fetchAll(PDO:: FETCH_OBJ);

44

Chapter 4. Application Development

After the function header which declares that a $studentUser is used as a pa-

rameter a SQL query is written to a variable, which will be used after connecting

to database to prepare a statement. Prepared Statements prevent SQL Injection

to the database to ensure a more secure use of the data given by the API user.

Then it will bind the parameter $studentUser to the :username in the SQL

query, execute the query and then store all the objects inside the array to the

$curriculars variable, which will have all the curricula for the specific student.

PHP does not require a variable declaration or type specification, so therefore

the $curriculars variable was instantialized with the array.

if(! empty($curriculars)){

$myteachers = array ();

$stringMyteachers = ’’;

foreach($curriculars as $c){

$sql_query = "SELECT * FROM ‘teachers ‘ ,‘professorship ‘

WHERE

‘professorship ‘. teacher_username = ‘teachers ‘. username

AND ‘professorship ‘. curricular_id =: curricularId";

$stmt = $dbCon ->prepare($sql_query);

$stmt ->bindParam("curricularId", $c->id);

$stmt ->execute ();

Then it will verify if any curricular was found, and if so it will iterate every

curricular and make query to select all teachers that lecture that specific curricular,

using prepared statement and binding :curricularId from $sql_query with the

curricular id received in the first query. After that it will execute the statement.

$teachers = $stmt ->fetchAll(PDO:: FETCH_OBJ);

$stringMyteachers=$stringMyteachers.’{" curricular ":

{"name ":"’.$c ->name.’","nameEn ":"’.$c ->nameEn.’",

"teachers ": ’ . json_encode($teachers) . ’}},’;

}

$dbCon = null;

$stringMyteachers = trim($stringMyteachers , ",");

echo ’[’.$stringMyteachers.’]’;

}

} catch(PDOException $e) {

echo ’{" error ":{" text":’. $e->getMessage () .’}}’;

45

Chapter 4. Application Development

}

}

Finally it will fetch all teachers objects that lecture that curricular and concatenate

it to the $stringMyteachers which will be return when all the foreach ends. If

a PDOException is triggered, it will give a error message with the specific error.

4.2.7 Available Requests

To provide the information required to make the application work, several func-

tions had to be created. Below is a list of all requests and responses.

/login Object with information about the logged in student and their specific

token

/students Array with all students and information like email, name and user-

name

/students/:username Object with information regarding a specific student

/teachers Array with all teachers and information like email, name and username

/teachers/:username Object with information regarding a specific teacher

/teachersByCurricular/:curricularID Array with all the teachers informa-

tions that lecture the specific curricular

/teachersByStudent/:username Array with all the teachers informations that

lecture a curricular where a specific student is enrolled

/curricularsByTeacher/:username Array with all curriculars that a specific

teacher lecture

/curriculars/:username Array with all curriculars that a specific student is

enrolled

46

Chapter 4. Application Development

/curricular/:curricularID Object with information regarding a specific curric-

ular

/events Array with all events

/events/:eventID Object with information regarding a specific event

/map/restauration Array with coordenates of the restauration places

/mytickets Returns the response provided by MyTickets API

/weather Returns the response provided by OpenWeatherData API

/strikes Array with all strikes

/strikes/:numberDays Array with the strikes for the following N days

/restaurant Array with all the restaurants

/meals/:restaurantID/:nr Array with the daily meals for a specific restaurant

in the following N days

/map Array with all the Points of Interest (POI) in ISCTE-IUL with Latitude

and Longitude

A more described table can be found in the appendix 7.

4.3 Mobile Application

After the development of the database and the API the only thing missing was

the application itself. In this section, it will be possible to find all the related work

for this application and all the knowledge needed to obtain over the first weeks

with the framework and language.

47

Chapter 4. Application Development

4.3.1 Ionic

As defined in the concept phase, it was decided that Ionic framework would be

the framework used to develop and build the application due to its current sup-

port and features it allows a powerful and fast hybrid application using only web

technologies.

4.3.2 AngularJS

This project was the first time using AngularJS, although its complexity it has

been proved to be an awesome framework.

AngularJS is a javascript framework created and maintained by Google and

the community itself. It’s an Open-Source with MIT license that helps the de-

velopment of Web Apps also known as single-page applications. It provides some

features like Data Binding and use of controllers[13].

Ionic uses AngularJS as its core programming language making essential to

the development of the application[10].

4.3.3 Development

To start off developing on Ionic it is required its major dependency, which is Cor-

dova. Both Ionic and Cordova can be installed using node.js package ecosystem

known as npm which is the "the largest ecosystem of open source libraries in the

world" as stated from node.js website[26].

After concluding the installation of node.js, Cordova and Ionic can easily be

installed using one simple command from the terminal of the OS.

$ npm install -g cordova ionic

And then just create the ionic project using Ionic command-line interface

(CLI).

48

Chapter 4. Application Development

$ ionic start myApp TYPEOFPROJECT

The type of project can be one of the three:

blank Clean project with no template.

tabs Project with a tab template on the bottom of the screen. Creates multiple

templates and its needed modifications to the javascript files.

sidemenu Project with a side template which allows navigation through a menu

on the left. Creates multiple templates and its needed modifications to the

javascript files.

Now to start the app it only need to execute the following command:
$ ionic build

$ ionic run

The project created by Ionic contains several folders, although most of them

are core parts of the Ionic framework.

Figure 4.4: Struture of the project

In this project, the only main folders and file changed without the use of CLI

were:

49

Chapter 4. Application Development

resources Splash image and Icon that the application will use.

www Code of the application, including Javascript and Cascading Style Sheets

(CSS) used.

config.xml File used in the build of the app with the used resources, preferences

and plugins used. Allows the generation of the manifest for the different OS.

Using the CLI it is possible to add platforms and plugins. Different platforms

can be added to the same project, in this case iOS and Android has been added

but windows, blackberry and several others can be added as well although Ionic

is optimized for the first two. Plugins can be added through URL or manual

installation. In this project all plugins have been added through URL using git

repositories. Below are the CLI commands used.

\\ Adding platforms

ionic platform add android

ionic platform add ios

\\ Adding plugins

cordova plugin add URL

Each time splash and icon are changed, these changes need to be followed

to the platforms and generated the OS specific images depending on their image

guidelines. This is possible by doing:

// Both Splash and Icon

$ ionic resources

// Only Splash

$ ionic resources --splash

// Only Icon

$ ionic resources --icon

Since Ionic uses web technology to create a hybrid application, the www

contains all the files to allow it to happen.

50

Chapter 4. Application Development

Figure 4.5: Struture of the www folder

This folder have a struture similiar to a website:

css Cascading Style Sheets files that define the style of web pages.

directives Angular directives that tells AngularJS HTML compiler which attach-

ments or changes it has to do to a Document Object Model (DOM) element,

like atributtes and names.

font File used in the build of the app with the used resources, preferences and

plugins used. Allows the generation of the manifest for the different OS.

img Where all the images files that the application uses are stored.

js Javascript files including the core files app.js and controllers.js

lib Contains core files for AngularJS and Ionic

templates Template pages that will be compiled by AngularJS to provide the

pages used in the application.

index.html Initial page that loads all Javascript files and Cascading Style Sheets

for the application.

In the Javascript file named app.js every page also known as state is listed to

be compiled using the information provided. Below is an example of declaring a

state.

51

Chapter 4. Application Development

$stateProvider

.state(’app.login’, {

url: "/login",

views: {

’menuContent ’: {

templateUrl: "templates/login.html",

controller: ’LoginCtrl ’

}

}

})

All states are added to the $stateProvider service. Each state contains the

information of the URL, the controller that will manage it and the template that

will be compiled.

When coding a app in AngularJS we need to take a look at their powerful

features and how they affect the development. One of the key features of AngularJS

is the use of data binding, allowing the application to synchronize the data between

the model and view component.

An example used in the application that the user can see this feature is on the

search of POI. When the user types to filter the results, it will automatically filter

while the user type. This is possible due to the data binding.

The code bellow shows how this is possible.

<input type="text" placeholder =" Pesquisa (Minimo: 2 caracteres)"

ng -model =" searchAllRooms" value ="">

Using the input tag known in the HTML language, we can define the name of the

variable using ng-model attribute added in AngularJS. Each time a modification

is made to this input, the variable searchAllRoom is updated.

<ion -item ng-if=" searchAllRooms.length >= 2" ng -repeat ="mRoom in filtermarkers =

(markers | filter :{title:searchAllRooms ,type_id :2})" href ="#/ app/map /{{ mRoom}}">

\\ Output variable

{{mRoom }}

52

Chapter 4. Application Development

Figure 4.6: Map search
with no filter applied

Figure 4.7: Map search
with ’C4’ filter applied

Ion-Item is a directive created by Ionic[11]. This directive is a child class of a list

and will be used in a repeat with ng-repeat which is also added with AngularJS.

This allows to list all the rooms within the filter applied.

The ng-if directive is similar to a if-else statement and in this case only allows

to show rooms when a filter with 2 or more length is applied. This choice was

to avoid a list with over 100 rooms to be listed which could cause a performance

issue.

Finally, the ng-repeat creates a item per room, similar to a for each state-

ment with a powerful potential due to its filter, allowing to filter by one or multiple

variables.

To make this possible all the map markers have to be sent when the Map

state/page is called. All markers are listed in a JSON response when the request

/map is called to the API.

53

Chapter 4. Application Development

Although data bindings are very useful in AngularJS apps, in some cases a

special attention is required to work.

A problem has been encountered in the early stage of the app when trying to

pass the user information after login back to the page where the user was. For

example, if the user tries to go see his curricula without being signed in, it will

prompt the login page. After confirming the login it will go to the same page

although the user variable name, email and username have not been updated.

The reason for this situation is because the variables inside the login controller

don’t change the global variables. This has to be done in the main controller. To

make this happen, an event trigger has to be created in the main controller.

$scope.$on(’loggedIn ’, function(event , user){

$timeout(function (){

$scope.$apply(function (){

$scope.name = user.name;

$scope.email = user.email;

$scope.username = user.username;

localStorage.User_Name = user.name;

localStorage.User_Username = user.username;

localStorage.User_Email = user.email;

localStorage.token = user.token;

$ionicHistory.nextViewOptions ({

disableBack: true

});

if($scope.lastState == null || $scope.lastState == undefined)

{

$location.path("/app/home");

}

else{

var state = $scope.lastState;

$scope.lastState = null;

$location.path(state.url);

}

});

});

});

On loggedIn event a function is called. Basically the function stores all the

information passed by the API after authenticating the user into global variables

54

Chapter 4. Application Development

and local storage so the user doesn’t get prompted to login every time he opens

the application. After that it will redirect the page also known as state to the

previous one before login. After confirming the login in the login controller a

broadcast as to be made to trigger the loggedIn event.

$rootScope.$broadcast(’loggedIn ’, data);

Most of the controllers make a request to the API to provide the information

to the user. This information is called using $http service provided by AngularJS

that facilitates the connection with remote servers, in this case the API.

var req = {

method: ’GET’,

url: $rootScope.baseUrl+’curriculars/’+$scope.username ,

timeout : 5000

}

To be able to do this, a request array is created with the URL, method and timeout.

The URL contains the request curriculars/ and passes the $scope.username

variable which is the username of the logged in student. The request method

indicates which action to be executed in the API. Finally the timeout variable

defines how long will the application wait for a response.

$http(req).

success(function(data) {

$scope.curriculars = data;

})

.error(function(data , status , headers , config) {

window.plugins.toast.showLongBottom(’Problemas na ligacao com o servidor ’);

});

To finalize, the code shows how to execute the request to the API by calling

$http service and in case it is a success it stores the data to the $scope.curriculars

and if it gives an error it will show a toast saying there is a problem with the con-

nection to the server.

The only thing missing on the request is the system authorization and user

authorization if required. These are passed in the HTTP headers.

55

Chapter 4. Application Development

Figure 4.8: Toast in case
of an error

Authorization Token that authorize the device/system to use the API.

Bearer Token that authorize the user for certain API requests.

These tokens are passed using a interceptor available in $http service from

AngularJS. The interceptor in each HTTP request pushes the tokens to the headers

of the requests and forwards the request.

$httpProvider.interceptors.push(function($q, $location ,$rootScope) {

return {

’request ’: function (config) {

$rootScope.$broadcast(’loading:show’);

if(config.url.startsWith($rootScope.baseUrl)){

config.headers.Authorization =

’SYSTEMAUTHORIZATIONTOKENHERE ’;

if (localStorage.token) {

config.headers.Bearer = localStorage.token;

}

}

return config;

},

’responseError ’: function(response) {

$rootScope.$broadcast(’loading:hide’);

if(response.status === 401 || response.status === 403) {

$rootScope.$broadcast(’tokenexpired ’);

}

return $q.reject(response);

},

’response ’: function(response) {

$rootScope.$broadcast(’loading:hide’);

return response;

}

};

});

56

Chapter 4. Application Development

When a request is executed using $http service the application enters in a

loading stage, and a broadcast for loading:show is called to place a spinner indi-

cating that the application is loading. After that, if the URL starts with the base

URL of the API it will add the system authorization token in the Authorization

header and if there is a user token it will be placed on the Bearer header.

If the response from the API is a error, the responseError will be called,

hiding the loading spinner and in case it is an expired user token it will broadcast

tokenexpired. This will make the main controller call the login state so the user

can authenticate.

In case of success, it will hide the loading spinner by broadcasting load-

ing:hide and return the response.

Similar to the filter used in the map markers, it is also possible to create custom

filters[12]. In this app it was required to format the dates differently due to issues

with iOS dates. In Android date formats like ’DD-MM-YYYY’ were accepted

but in iOS an Undefined Error would occur. So the dates had to be filtered

and changed to ’DD/MM/YYYY’. It also allowed to show the day of the week

using the same filters.

.filter("formatDate", function (){

return function(input){

input = input.replace (/-/g, ’//’);

var date = new Date(input);

var weekday = new Array (7);

weekday [0]= "Domingo";

weekday [1] = "Segunda";

weekday [2] = "Terca";

weekday [3] = "Quarta";

weekday [4] = "Quinta";

weekday [5] = "Sexta";

weekday [6] = "Sabado";

var monthNames = ["Jan", "Fev", "Mar", "Abr", "Maio", "Jun",

"Jul", "Ago", "Set", "Out", "Nove", "Dez"

];

var result = weekday[date.getDay ()] + ", "+ date.getDate ()+" "+

monthNames[date.getMonth ()];

return result;

}

57

Chapter 4. Application Development

})

The filter formatDate replaces the date inside input variable from ’-’ to ’/’

and creates a date variable as Date Javascript class to get the desired date format.

{{stk.start_date | formatDate }}

The variable stk.start_date will be changed using formatDate. Another date

filter is used to convert Unix timestamp to the desired date format.

Along with the date filters some images filters were also created. When a user

logs in, a username variable is stored to indicate which user has logged in. This

variable is going to be used to get the image of the student from the API.

.filter("getImageUrl", function($rootScope){

return function(input){

var url = $rootScope.baseUrl+’images/’+input+".png";

return url;

}

})

When getImageUrl filter is called, it will return an URL with the base URL

of the API and the rest of the path for the image.

4.3.4 Layouts

The design of the app is simple and with the help of Ionic CSS it provides, it looks

and feels similar to a native app. Below it is possible to see the icon used in the

application and the splash art when loading the application.

In the early stages the application looked pale, although over the time it began

to be more pleasant using the institution colors. Below is a comparison side by

side of the menu, canteen and curricular state.

58

Chapter 4. Application Development

Figure 4.9: Icon used in
the app

Figure 4.10: Splash
screen used in the app

Figure 4.11: Old side
menu

Figure 4.12: New side
menu

59

Chapter 4. Application Development

The side menu can be opened with sliding from left to right, or simple pushing

the three bar icon near the page title. The evolution from figure 4.8 and figure 4.9

is visible on the different information available as well as the header of the side

menu. The new header allows to see if there is any student logged in and if it

isn’t, it will appear a button that will redirect to the login page.

A new set of colors, text font and icon were added to provide the user a more

intuitive and simple to read menu.

Figure 4.13: Old canteen
state

Figure 4.14: New can-
teen state

Initially, the canteen state presented the daily meals listed vertically and users

had to scroll down until they found the desired day. In the figure 4.11 it is possible

to see the visual overhaul that changed to a horizontal listing making users to scroll

left or right to see their desired day of the week, which was also an improvement

from only showing the day.

Finally the text font and size was improved for better readability and a faster

interaction through the days was added at the top of the page.

60

Chapter 4. Application Development

Figure 4.15: Old curric-
ulars state

Figure 4.16: New curric-
ulars state

The curricular state lists all the curricula that the authenticated user is en-

rolled. In the figure 4.12 it is possible to see that the state had a very simple layout

with the curricular descriptions being cut due to the size of the text. Furthermore

there was no reference to the user that by tapping in one of the curricular it would

lead to another page. In figure 4.13 it is possible to see the changes made to the

page that, similarly to the canteen page and menu, had the text font and size

changed to increase readability and an arrow was added in the right side of each

item (in this case curricular) to tell the user that something exists after tapping

the curricular.

4.3.5 Limitations and Problems

As seen in the state of the art chapter hybrid applications don’t support all APIs

available in the mobile devices.

61

Chapter 4. Application Development

Android systems allow a creation of a service that runs in the background al-

lowing the user to receive notifications regarding the app without having it opened.

This feature could be used to notify the user about the tickets from MyTicket API.

In iOS systems this feature would not be able to be implemented since the OS does

not support applications or services to run on the background for a long period of

time.

The most common alternative would be Push notifications. Push notifications

are requests through an application server that will contact with the notification

service which will forward the requested message to its target. The notification

services are named Apple Push Notification Service[3] and Google Cloud

Messaging[14]. Push notifications, also known as remote notifications, can be

used using Ionic framework through a Cordova plugin.

One problem regarding the interface was the use of the Materialize CSS [1].

This CSS was created by a team of students from Carnegie Mellon University

and although it is a powerful way to style websites to look similar to the Material

design from Google[16] it was causing performance issues in some devices so it was

removed in the later phase of the prototype.

62

Chapter 5

Results

To confirm the solution proposed in this project, several students were invited

to test the prototype and check if their opinions meet the requirements. In this

chapter it is possible to see the response from those students and in which real

mobile devices the application was tested.

5.1 Students Tests

To increase the amount of testers, all the students tests were made in several

computers from the institution using Firefox or Chrome browser. This decision

was made due to the fact that the application runs in a WebView inside the device

so the tests could also be made in the browser since there is no native mobile API

that would impact the app.

A mobile simulation (see Image 5.1) was made using iFrames where the stu-

dents selected the phone they wanted to test and size of the iFrame would be

similar to the selected phone.

63

Chapter 5. Results

Figure 5.1: Page where students tested the app

In total, 66 students tested the application where the majority were male (83%)

with ages between 21 and 25 years old. (see Image 5.2 and 5.3)

Figure 5.2: Chart with genre of
the testers

Figure 5.3: Chart with ages of the
testers

64

Chapter 5. Results

Similar to the first questionnaire made in 2014, the majority of the testers are

from engineering courses (see Image 5.4).

Figure 5.4: Chart with the testers enrolled courses

Only 1 (1.5%) of the 66 testers didn’t own a smartphone (see Image 5.5).

Regarding the often use of internet in their phones, 61 (98.5%) answered that

they did use internet (see Image 5.6).

Figure 5.5: Chart with testers
that have a smartphone

Figure 5.6: Chart with the inter-
net usage of the testers

Most of the testers possess a Android smartphone (72.7%) followed by iOS

(18.2%), Windows Phone (6.1%) and Blackberry (1.5%) (see Image 5.7).

65

Chapter 5. Results

Figure 5.7: Chart with distribution on operative systems

Overall the testers rated the usability of the application at a average weight of

4,56 (see Image 5.8) and its utility at 4,76 (see Image 5.9) out of 5.

Figure 5.8: Testers opinion re-
garding usability of the app

Figure 5.9: Testers opinion re-
garding utility of the app

In the general appreciation of the app the testers rated the application 4,52

out of 5 (see Image 5.10).

66

Chapter 5. Results

Figure 5.10: Testers opinion regarding the general appreciation of the app

Out of all the features, the testers considered that the worst feature with 3,88

out of 5 was the map, due to difficulty of seeing which place to go and the lack

of geo-location of the user. The best one based on the testers evaluation was the

ticket services with 4,74 out of 5 (see Image 5.11).

Figure 5.11: Testers evaluation regarding features of the app

All testers considered that the application was useful to their academic life in

the institution (100%) (see Image 5.12) and that they would use the application

(100%) (see Image 5.13).

67

Chapter 5. Results

Figure 5.12: Testers opinion re-
garding usefulness of the app

Figure 5.13: Testers opinion re-
garding if they would use the app

5.1.1 Suggested Functionalities

After the tests, the students were also queried regarding additional functionalities

or improvements of the application. The majority of the testers wanted to see

their private information regarding tuitions, grades, exams and schedule. This

results were similar to the inquiry in October.

Although a map functionality is already implemented in the application, the

students wanted an improvement to allow them to see the institution indoors. This

feature could be implemented using Google Indoor Maps[15].

Other functionalities and improvements were suggested by the students and

have been listed below.

• Integration with e-learning to allow students to see contents regarding their

curricula

• More restaurants and meals information

• Contacts for the institution services

• Transports information regarding bus stops, trains and metro stations.

• Forum inside the application

• Advertising room rentals

68

Chapter 5. Results

• National News

• Library information

5.2 Real Devices

In addition to the student tests, some tests were performed using real devices.

These tests helped checking for bugs with devices and OS. Two of those bugs were

the date format problem between Android and iOS devices and the performance

issue with the Materialize CSS. Both of these problems (and adopted solutions)

were described in the previous chapter.

The Android devices were tested using the alpha testing provided by Google

Developer Console[17]. Below are listed the devices used to test the application.

• Vodafone Smart 4 Turbo

• Sony Ericsson Xperia ray

• BQ Aquaris E4.5

• BQ Aquaris E4

• Google Nexus 4

• Google Nexus 5

• NVIDIA Shield Tablet

• LG G Pad 7.0"

Another operative system tested was the iOS using the iPhone 6.

69

Chapter 6

Conclusion

The results from the general opinion of the students towards the application met

with the requirements obtained from the beginning of the project. Although some

of the features that the students wanted couldn’t be made due to the state of

the technology available inside ISCTE-IUL the rest of the application had a great

response.

The prototype made it clear that a mobile application is viable inside the

institution and that the students are interested in it.

6.1 Future work

Unfortunately some features weren’t possible to implement due to the information

available or time until the prototype presentation. These are the features that

were not possible to develop due to the lack of any information or support from

ISCTE-IUL systems:

Schedule Allow students to view their schedule and classroom would help new

and old students in the institution and would make it possible to point out

where the classroom is.

70

Chapter 6. Conclusion

Exams Students could see which, when and where would the exams be.

Tuitions An easier control for the students to know which tuitions they have

overdue and which are still left to pay, with the necessary information to

make the payment.

Map A better map with the interior of the institution would help newer students

due to the complexity of the campus. Similar to other universities, a Google

Indoor map would be a good addition to the application or institution.

At the end of the prototype presentation to the students, a new API was found

called One.Stop.Transport that provides data regarding public transportation

like schedules and stops[34]. This feature could be added to the application since

most of the students use public transportation to get to and from the university.

And finally due to the change of the tickets system inside the institution a new

adaptation is required to the new system.

71

Chapter 7

Appendix A

72

Appendix A. API Requests Table

R
eq
ue
st

P
ar
am

et
er

U
se
r
To

ke
n

R
es
po

ns
e

/l
og

in
N
on

e
N
o

O
bj
ec
t
w
it
h
in
fo
rm

at
io
n
ab

ou
t
th
e
lo
gg

ed
in

st
ud

en
t

an
d
th
ei
r
sp
ec
ifi
c
to
ke
n

/s
tu
de
nt
s

N
on

e
N
o

A
rr
ay

w
it
h
al
ls

tu
de
nt
s
an

d
in
fo
rm

at
io
n
lik

e
em

ai
l,

na
m
e
an

d
us
er
na

m
e

/s
tu
de
nt
s/
:u
se
rn
am

e
St
ud

en
t
U
se
rn
am

e
Y
es

O
bj
ec
t
w
it
h
in
fo
rm

at
io
n
re
ga

rd
in
g
a
sp
ec
ifi
c
st
ud

en
t

/t
ea
ch
er
s

N
on

e
N
o

A
rr
ay

w
it
h
al
lt

ea
ch
er
s
an

d
in
fo
rm

at
io
n
lik

e
em

ai
l,

na
m
e
an

d
us
er
na

m
e

/t
ea
ch
er
s/
:u
se
rn
am

e
Te

ac
he
r
U
se
rn
am

e
Y
es

O
bj
ec
t
w
it
h
in
fo
rm

at
io
n
re
ga

rd
in
g
a
sp
ec
ifi
c
te
ac
he
r

/t
ea
ch
er
sB

yC
ur
ri
cu
la
r/
:c
ur
ri
cu
la
rI
D

C
ur
ri
cu
la
r
ID

N
o

A
rr
ay

w
it
h
al
lt
he

te
ac
he
rs

in
fo
rm

at
io
ns

th
at

le
ct
ur
e

th
e
sp
ec
ifi
c
cu
rr
ic
ul
ar

/t
ea
ch
er
sB

yS
tu
de
nt
/:
us
er
na

m
e

St
ud

en
t
U
se
rn
am

e
Y
es

A
rr
ay

w
it
h
al
lt
he

te
ac
he
rs

in
fo
rm

at
io
ns

th
at

le
ct
ur
e

a
cu
rr
ic
ul
ar

w
he
re

a
sp
ec
ifi
c
st
ud

en
t
is

en
lis
te
d

/c
ur
ri
cu
la
rs
B
yT

ea
ch
er
/:
us
er
na

m
e

Te
ac
he
r
U
se
rn
am

e
Y
es

A
rr
ay

w
it
h
al
lc

ur
ri
cu
la
rs

th
at

a
sp
ec
ifi
c
te
ac
he
r

le
ct
ur
e

/c
ur
ri
cu
la
rs
/:
us
er
na

m
e

St
ud

en
t
U
se
rn
am

e
N
o

A
rr
ay

w
it
h
al
lc

ur
ri
cu
la
rs

th
at

a
sp
ec
ifi
c
st
ud

en
t
is

en
lis
te
d

/c
ur
ri
cu
la
r/
:c
ur
ri
cu
la
rI
D

C
ur
ri
cu
la
r
ID

N
o

O
bj
ec
t
w
it
h
in
fo
rm

at
io
n
re
ga

rd
in
g
a
sp
ec
ifi
c

cu
rr
ic
ul
ar

/e
ve
nt
s

N
on

e
N
o

A
rr
ay

w
it
h
al
le

ve
nt
s

/e
ve
nt
s/
:e
ve
nt
ID

E
ve
nt

ID
N
o

O
bj
ec
t
w
it
h
in
fo
rm

at
io
n
re
ga

rd
in
g
a
sp
ec
ifi
c
ev
en
t

/m
ap

/r
es
ta
ur
at
io
n

N
on

e
N
o

A
rr
ay

w
it
h
co
or
de
na

te
s
of

th
e
re
st
au

ra
ti
on

pl
ac
es

/m
yt
ic
ke
ts

N
on

e
N
o

R
et
ur
ns

th
e
re
sp
on

se
pr
ov

id
ed

by
M
yT

ic
ke
ts

A
P
I

/w
ea
th
er

N
on

e
N
o

R
et
ur
ns

th
e
re
sp
on

se
pr
ov

id
ed

by
O
pe

nW
ea
th
er
D
at
a
A
P
I

73

Appendix A. API Requests Table

R
eq
ue
st

P
ar
am

et
er

U
se
r
To

ke
n

R
es
po

ns
e

/s
tr
ik
es

N
on

e
N
o

A
rr
ay

w
it
h
al
ls

tr
ik
es

/s
tr
ik
es
/:
nu

m
be

rD
ay
s

N
um

be
r
da

ys
,e

.g
3,

fo
r
th
e
ne
xt

3
da

ys
N
o

A
rr
ay

w
it
h
th
e
st
ri
ke
s
fo
r
th
e
fo
llo

w
in
g
N

da
ys

/r
es
ta
ur
an

t
N
on

e
N
o

A
rr
ay

w
it
h
al
lt

he
re
st
au

ra
nt
s

/m
ea
ls
/:
re
st
au

ra
nt
ID

/:
nr

R
es
ta
ur
an

t
ID

an
d

nu
m
be

r
of

da
ys
,e

.g
3,

fo
r
th
e
ne
xt

3
da

ys

N
o

A
rr
ay

w
it
h
th
e
da

ily
m
ea
ls

fo
r
a
sp
ec
ifi
c
re
st
au

ra
nt

in
th
e
fo
llo

w
in
g
N

da
ys

/m
ap

N
on

e
N
o

A
rr
ay

w
it
h
al
lt

he
P
oi
nt
s
of

In
te
re
st

(P
O
I)

in
IS
C
T
E
-I
U
L
w
it
h
La

ti
tu
de

an
d
Lo

ng
it
ud

e

74

Bibliography

[1] Alex Mark Kevin Louie Alvin Wang, Alan Chang. Materialize - A mod-

ern responsive front-end framework based on Material Design. http://

materializecss.com/. [Online; Seen on 12-September-2015].

[2] Esteban Angulo and Xavier Ferre. A case study on cross-platform develop-

ment frameworks for mobile applications and ux. In Proceedings of the XV

International Conference on Human Computer Interaction, page 27. ACM,

2014.

[3] Apple. Apple Push Notification Service. https://developer.apple.

com/library/ios/documentation/NetworkingInternet/Conceptual/

RemoteNotificationsPG/Chapters/ApplePushService.html. [Online;

Seen on 11-September-2015].

[4] Jamie Appleseed. 8 Limitations When Designing For Mobile. http://

baymard.com/blog/mobile-design-limitations, 2012. [Online; Seen on

06-January-2015].

[5] Andre Charland and Brian Leroux. Mobile application development: web vs.

native. Communications of the ACM, 54(5):49–53, 2011.

[6] Jonathan Dann. Under the hood: Rebuilding Facebook for

iOS. https://www.facebook.com/notes/facebook-engineering/

under-the-hood-rebuilding-facebook-for-ios/10151036091753920,

2012. [Online; Seen on 16-January-2015].

75

http://materializecss.com/
http://materializecss.com/
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
http://baymard.com/blog/mobile-design-limitations
http://baymard.com/blog/mobile-design-limitations
https://www.facebook.com/notes/facebook-engineering/under-the-hood-rebuilding-facebook-for-ios/10151036091753920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-rebuilding-facebook-for-ios/10151036091753920

References

[7] Universidade de Aveiro. UAMobile. http://www.ua.pt/stic/uamobile.

[Online; Seen on 15-January-2015].

[8] Instituto Técnico de Lisboa. Técnico Lisboa Mobile. https://mobile.

tecnico.ulisboa.pt/. [Online; Seen on 15-January-2015].

[9] Jolie Dell. Why LinkedIn dumped HTML5 & went native for its mobile apps.

http://venturebeat.com/2013/04/17/linkedin-mobile-web-breakup/,

2013. [Online; Seen on 16-January-2015].

[10] Drifty. Ionic Framework. http://ionicframework.com/. [Online; Seen on

11-September-2015].

[11] Google. AngularJS - Directives. https://docs.angularjs.org/guide/

directive. [Online; Seen on 11-September-2015].

[12] Google. AngularJS - Filters. https://docs.angularjs.org/api/ng/

filter/filter. [Online; Seen on 11-September-2015].

[13] Google. AngularJS - HTML enhanced for web apps! https://angularjs.

org/. [Online; Seen on 11-September-2015].

[14] Google. Google Cloud Messaging. https://developers.google.com/

cloud-messaging/. [Online; Seen on 11-September-2015].

[15] Google. Indoor Maps. https://www.google.pt/intl/pt-BR/maps/about/

partners/indoormaps/. [Online; Seen on 24-September-2015].

[16] Google. Material design. https://www.google.com/design/spec/

material-design/introduction.html. [Online; Seen on 12-September-

2015].

[17] Google. Use alpha/beta testing & staged rollouts. https://support.

google.com/googleplay/android-developer/answer/3131213?hl=en.

[Online; Seen on 12-September-2015].

[18] The PHP Group. PDO Drivers. http://php.net/manual/en/pdo.drivers.

php. [Online; Seen on 12-September-2015].

76

http://www.ua.pt/stic/uamobile
https://mobile.tecnico.ulisboa.pt/
https://mobile.tecnico.ulisboa.pt/
http://venturebeat.com/2013/04/17/linkedin-mobile-web-breakup/
http://ionicframework.com/
https://docs.angularjs.org/guide/directive
https://docs.angularjs.org/guide/directive
https://docs.angularjs.org/api/ng/filter/filter
https://docs.angularjs.org/api/ng/filter/filter
https://angularjs.org/
https://angularjs.org/
https://developers.google.com/cloud-messaging/
https://developers.google.com/cloud-messaging/
https://www.google.pt/intl/pt-BR/maps/about/partners/indoormaps/
https://www.google.pt/intl/pt-BR/maps/about/partners/indoormaps/
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://support.google.com/googleplay/android-developer/answer/3131213?hl=en
https://support.google.com/googleplay/android-developer/answer/3131213?hl=en
http://php.net/manual/en/pdo.drivers.php
http://php.net/manual/en/pdo.drivers.php

References

[19] Clare Hopping. Hybrid Apps: The Mules of the Mobile Market. http://www.

appmakr.com/blog/hybrid-apps-mobile-market/, 2014. [Online; Seen on

17-January-2015].

[20] IBM. Native, web or hybrid mobile-app development. ftp://public.dhe.

ibm.com/software/pdf/mobile-enterprise/WSW14182USEN.pdf, 2012.

[Online; Seen on 19-January-2015].

[21] ISCTE-IUL. Documentação da API Pública (Versão 1.3). https://ciencia.

iscte-iul.pt/api/doc. [Online; Seen on 11-September-2015].

[22] ISCTE-IUL. ISCTE-IUL Tickets. http://myticket.iscte-iul.pt/. [On-

line; Seen on 11-September-2015].

[23] Filipe Cabecinhas João Neves, Carlos Fonseca. Hoje há greve? https:

//hagreve.com/. [Online; Seen on 11-September-2015].

[24] Rob Allen Slim Framework Team Josh Lockhart, Andrew Smith. Slim 3

Beta 1. http://www.slimframework.com/2015/07/03/slim3-beta1.html.

[Online; Seen on 11-September-2015].

[25] Rob Allen Slim Framework Team Josh Lockhart, Andrew Smith. Slim a

micro framework for PHP. http://www.slimframework.com/. [Online; Seen

on 11-September-2015].

[26] Inc. Joyent. Node.js. https://nodejs.org/en/. [Online; Seen on 11-

September-2015].

[27] Brian Klais. Research: How Many Apps Are in Each App Store. http:

//pureoxygenlabs.com/how-many-apps-in-each-app-store/, 2013. [On-

line; Update: 25-September-2014; Seen on 04-January-2015].

[28] Universidade Lusófona. Lusófona Mobile. http://www.ulusofona.pt/

mobile.html. [Online; Seen on 15-January-2015].

[29] Salesforce marketing cloud. 2014 Mobile Behavior Report. http:

//www.exacttarget.com/sites/exacttarget/files/deliverables/

77

http://www.appmakr.com/blog/hybrid-apps-mobile-market/
http://www.appmakr.com/blog/hybrid-apps-mobile-market/
ftp://public.dhe.ibm.com/software/pdf/mobile-enterprise/WSW14182USEN.pdf
ftp://public.dhe.ibm.com/software/pdf/mobile-enterprise/WSW14182USEN.pdf
https://ciencia.iscte-iul.pt/api/doc
https://ciencia.iscte-iul.pt/api/doc
http://myticket.iscte-iul.pt/
https://hagreve.com/
https://hagreve.com/
http://www.slimframework.com/2015/07/03/slim3-beta1.html
http://www.slimframework.com/
https://nodejs.org/en/
http://pureoxygenlabs.com/how-many-apps-in-each-app-store/
http://pureoxygenlabs.com/how-many-apps-in-each-app-store/
http://www.ulusofona.pt/mobile.html
http://www.ulusofona.pt/mobile.html
http://www.exacttarget.com/sites/exacttarget/files/deliverables/etmc-2014mobilebehaviorreport.pdf
http://www.exacttarget.com/sites/exacttarget/files/deliverables/etmc-2014mobilebehaviorreport.pdf
http://www.exacttarget.com/sites/exacttarget/files/deliverables/etmc-2014mobilebehaviorreport.pdf
http://www.exacttarget.com/sites/exacttarget/files/deliverables/etmc-2014mobilebehaviorreport.pdf

References

etmc-2014mobilebehaviorreport.pdf. [Online; Seen on 10-September-

2015].

[30] UMass Boston News. UMass Boston Releases Mobile App for iPhones

and Android Devices. http://www.umb.edu/news/detail/umass_boston_

releases_mobile_app_for_iphones_and_android_devices, 2014. [Online;

Seen on 15-January-2015].

[31] University of Illinois. UIS Mobile. http://www.uis.edu/apps/. [Online;

Seen on 15-January-2015].

[32] University of Oxford. Oxford Mobile. http://m.ox.ac.uk/. [Online; Seen

on 15-January-2015].

[33] Massachusetts Institute of Technology. MIT Mobile. http://m.mit.edu/

about/. [Online; Seen on 15-January-2015].

[34] One.Stop.Transport. One.Stop.Transport - Construído para o futuro. Hoje.

https://www.ost.pt/. [Online; Seen on 12-September-2015].

[35] OpenWeatherMap. Weather API. http://openweathermap.org/api. [On-

line; Seen on 11-September-2015].

[36] Optimus. Cross-Platform Framework Comparison: Xamarin vs

Titanium vs PhoneGap. http://www.optimusinfo.com/blog/

cross-platform-framework-comparison-xamarin-vs-titanium-vs-phonegap/.

[Online; Seen on 10-September-2015].

[37] PhoneGap. http://phonegap.com/. [Online; Seen on 19-January-2015].

[38] PORDATA. Assinantes / equipamentos de utilizadores do serviço

móvel em Portugal. http://www.pordata.pt/Portugal/Assinantes+++

equipamentos+de+utilizadores+do+servico+movel-1180, 2014. [Online;

Seen on 08-January-2015].

[39] Universidade Católica Portuguesa. Universidade Católica Portuguesa desen-

volve APP MYCATÓLICA. http://www.ucp.pt/site/custom/template/

78

http://www.exacttarget.com/sites/exacttarget/files/deliverables/etmc-2014mobilebehaviorreport.pdf
http://www.exacttarget.com/sites/exacttarget/files/deliverables/etmc-2014mobilebehaviorreport.pdf
http://www.exacttarget.com/sites/exacttarget/files/deliverables/etmc-2014mobilebehaviorreport.pdf
http://www.umb.edu/news/detail/umass_boston_releases_mobile_app_for_iphones_and_android_devices
http://www.umb.edu/news/detail/umass_boston_releases_mobile_app_for_iphones_and_android_devices
http://www.uis.edu/apps/
http://m.ox.ac.uk/
http://m.mit.edu/about/
http://m.mit.edu/about/
https://www.ost.pt/
http://openweathermap.org/api
http://www.optimusinfo.com/blog/cross-platform-framework-comparison-xamarin-vs-titanium-vs-phonegap/
http://www.optimusinfo.com/blog/cross-platform-framework-comparison-xamarin-vs-titanium-vs-phonegap/
http://phonegap.com/
http://www.pordata.pt/Portugal/Assinantes+++equipamentos+de+utilizadores+do+servico+movel-1180
http://www.pordata.pt/Portugal/Assinantes+++equipamentos+de+utilizadores+do+servico+movel-1180
http://www.ucp.pt/site/custom/template/ucptplportalpag.asp?SSPAGEID=386&lang=1&artigoID=9601
http://www.ucp.pt/site/custom/template/ucptplportalpag.asp?SSPAGEID=386&lang=1&artigoID=9601
http://www.ucp.pt/site/custom/template/ucptplportalpag.asp?SSPAGEID=386&lang=1&artigoID=9601

References

ucptplportalpag.asp?SSPAGEID=386&lang=1&artigoID=9601. [Online;

Seen on 15-January-2015].

[40] Pedro Nogueira Ramos. Caso de estudo - questionários online. In Desenhar

Bases de Dados com UML, pages 120–134. Edições Sílabo, 2006.

[41] Kelly Rice. Why Facebook Ditched its Hybrid App. http://www.kinvey.

com/blog/3414/why-facebook-ditched-its-hybrid-app, 2014. [Online;

Seen on 11-January-2015].

[42] Patrick Rudolph. Hybrid Mobile Apps: Providing A Native Experience

With Web Technologies. http://www.smashingmagazine.com/2014/10/

21/providing-a-native-experience-with-web-technologies/. [Online;

Seen on 08-January-2015].

[43] stccorp. EasyWSDL2PHP. http://sourceforge.net/projects/

easywsdl2php/. [Online; Seen on 11-September-2015].

[44] Harvard University. All Harvard Mobile. http://www.harvard.edu/

all-harvard-mobile. [Online; Seen on 15-January-2015].

[45] Xamarin. http://xamarin.com/. [Online; Seen on 19-January-2015].

[46] Xamarin. Xamarin Costumers. http://xamarin.com/customers. [Online;

Seen on 10-September-2015].

79

http://www.ucp.pt/site/custom/template/ucptplportalpag.asp?SSPAGEID=386&lang=1&artigoID=9601
http://www.ucp.pt/site/custom/template/ucptplportalpag.asp?SSPAGEID=386&lang=1&artigoID=9601
http://www.ucp.pt/site/custom/template/ucptplportalpag.asp?SSPAGEID=386&lang=1&artigoID=9601
http://www.kinvey.com/blog/3414/why-facebook-ditched-its-hybrid-app
http://www.kinvey.com/blog/3414/why-facebook-ditched-its-hybrid-app
http://www.smashingmagazine.com/2014/10/21/providing-a-native-experience-with-web-technologies/
http://www.smashingmagazine.com/2014/10/21/providing-a-native-experience-with-web-technologies/
http://sourceforge.net/projects/easywsdl2php/
http://sourceforge.net/projects/easywsdl2php/
http://www.harvard.edu/all-harvard-mobile
http://www.harvard.edu/all-harvard-mobile
http://xamarin.com/
http://xamarin.com/customers

	Resumo
	Abstract
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Relevance
	1.3 Objectives

	2 State of the art
	2.1 Mobile Computation
	2.2 Application development for mobile devices
	2.2.1 Native Applications
	2.2.2 Web-based Applications
	2.2.3 Hybrid Applications

	2.3 The University Case
	2.3.1 Examples of universities mobile applications
	2.3.2 Features grid and comparison

	2.4 Conclusion

	3 Application Concept
	3.1 Current Situation
	3.2 Students Opinion
	3.3 Application Requirements
	3.3.1 Functional Requirements

	3.4 Framework
	3.4.1 Xamarin
	3.4.2 Titanium
	3.4.3 PhoneGap
	3.4.4 Comparison Grid
	3.4.5 Ionic
	3.4.6 Decision

	3.5 Facing Requirements
	3.6 Conceptualization
	3.6.1 ISCTE-IUL APIs
	3.6.2 Third-Party APIs
	3.6.3 Use Case Diagram
	3.6.4 UML Diagram
	3.6.4.1 Curricula
	3.6.4.2 Canteen
	3.6.4.3 Others

	3.6.5 Restful API
	3.6.5.1 Security

	4 Application Development
	4.1 Database
	4.1.1 Populating Database
	4.1.2 Limitations
	4.1.3 Generating PHP classes
	4.1.4 Script

	4.2 Restful API
	4.2.1 Slim Framework
	4.2.2 PHP
	4.2.3 Where to Start
	4.2.4 Database Connection
	4.2.5 Security
	4.2.5.1 Token

	4.2.6 Code
	4.2.7 Available Requests

	4.3 Mobile Application
	4.3.1 Ionic
	4.3.2 AngularJS
	4.3.3 Development
	4.3.4 Layouts
	4.3.5 Limitations and Problems

	5 Results
	5.1 Students Tests
	5.1.1 Suggested Functionalities

	5.2 Real Devices

	6 Conclusion
	6.1 Future work

	7 Appendix A
	Bibliography

