
University Institute of Lisbon

Department of Information Science and Technology

MotionDesigner: A Tool for
Creating Interactive Performances

Using RGB-D Cameras

Filipe Miguel Simões Baptista

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Computer Science

Supervisor

Prof. Dr. Pedro Faria Lopes, Associate Professor
ISCTE-IUL

Co-Supervisor

Prof. Dr. Pedro Santana, Assistant Professor
ISCTE-IUL

September 2015

"The art challenges the technology, and the technology inspires the art." [20]

John Lasseter

Resumo

Desde há duas décadas que o uso da tecnologia em projetos artísticos tem
proliferado cada vez mais, como é o caso das projeções interativas baseadas em
movimento utilizadas em performances e instalações artísticas. No entanto, os
artistas responsáveis pela criação destes trabalhos têm, tipicamente, de recorrer a
especialistas em computadores para implementar este tipo de sistemas interativos.
A ferramenta apresentada nesta dissertação, o MotionDesigner, pretende auxiliar
o papel do criador artístico na conceção destes sistemas, permitindo que haja au-
tonomia e eficiência no processo criativo das suas próprias obras. A ferramenta
proposta possui um design orientado para estes utilizadores de modo a estimular
e agilizar a criação autónoma deste tipo de obras e tem uma natureza extensível,
na medida em que mais conteúdo pode ser adicionado no futuro. O software de-
senvolvido foi testado com bailarinos, coreógrafos e arquitetos, revelando-se como
uma ajuda e um catalisador do processo criativo da suas obras interativas.

Palavras-chave: Design, Interatividade, Tempo-real, Audiovisual, Projeção
interativa, Câmaras de profundidade, Kinect, Arte, Multimédia, Performance, In-
stalação.

v

Abstract

In the last two decades the use of technology in art projects has proliferated,
as is the case of the interactive projections based on movement used in art perfor-
mances and installations. However, the artists responsible for creating this work
typically have to rely on computer experts to implement this type of interactive
systems. The tool herein presented, MotionDesigner, intends to assist the role of
the artistic creator in the design of these systems, allowing them to have autonomy
and efficiency during the creative process of their own works. The proposed tool
has a design oriented to these users so that it stimulates and proliferates their work,
having an extensible nature, in the way that more content may be added further
in the future. The developed software was tested with dancers, choreographers
and architects, revealing itself as an aid and catalyst of the creative process.

Keywords: Design, Interactivity, Real-time, Audiovisual, Interactive projec-
tion, Depth cameras, Kinect, Art, Multimedia, Performance, Installation.

vii

Acknowledgements

I would like to acknowledge Prof. Dr. Pedro Faria Lopes for supervising this
work and Prof. Dr. Pedro Santana for his careful supervision and constant aid in
the development of this project. I also want to acknowledge all the dancers, chore-
ographers, architects and multimedia artists interviewed during the development
process, specially Beatriz Couto, Júlio Núncio, Maria Antunes and Catarina Júlio
for their valuable feedback.
I direct a special acknowledgment to Maria Antunes, the dancer which collabo-
rated in the creation of the small interactive dance performance we prepared using
the developed tool, and to the Information Sciences, Technologies and Architec-
ture Research Center (ISTAR) at ISCTE-IUL for the continuous support and for
providing the necessary conditions to implement and test this project.

ix

Contents

Resumo v

Abstract vii

Acknowledgements ix

List of Figures xiii

Abbreviations xv

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Research Questions . 5
1.4 Objectives . 6
1.5 Research Method . 7
1.6 Document Structure . 8

2 Literature Survey 9
2.1 Depth-Cameras Based Systems . 10
2.2 Interactive Projections . 10

2.2.1 Graphical Interactivity . 11
2.2.2 Sound Interactivity . 12

2.3 Tools for Creating Interactive Audiovisual Art 14

3 System Overview 19
3.1 User Interface . 19
3.2 Hardware Setup . 22

3.2.1 Kinect sensor . 23
3.3 Software Setup . 25

3.3.1 openFrameworks . 26
3.3.2 OpenNI & NiTE middleware 27
3.3.3 openFrameworks Add-ons 27

4 Development and Implementation 29
4.1 Editing Studio . 30

xi

Contents

4.1.1 Scenes Parameterizations . 33
4.1.2 Previewing the Projection Sequence 36
4.1.3 Displaying the Scenes . 37
4.1.4 Projecting the Sequence . 39

4.2 Interactive Graphical Scenes . 41
4.2.1 Scenes Editing GUI . 42
4.2.2 Motion Capture Algorithms 49
4.2.3 Particle System . 50
4.2.4 Drawing With Joints . 58

4.3 Interactive Audio . 62

5 Evaluation and Discussion 67
5.1 Evaluation Method . 67
5.2 Results . 70

6 Conclusions and Future Work 83
6.1 Conclusions . 83
6.2 Future Work . 85

Appendices 89

A GUI Design Sketches 89
A.1 Editing Studio . 89
A.2 Interactive Scenes . 90

B Source Code Snippets 91
B.1 Interactive Scenes GUI . 91
B.2 NiTE . 94
B.3 Particle System . 95
B.4 Joints Draw . 99

Bibliography 101

xii

List of Figures

1.1 Pixel Performance . 3
1.2 Mind the Dots Performance . 3

2.1 Interactive Projection Setup Scheme 10
2.2 Divided By Zero Performance . 11
2.3 MotionDraw’s User Interface . 15

3.1 System Setup . 20
3.2 MotionDesigner’s Editing Studio GUI Layout 21
3.3 MotionDesigner’s Interactive Scene GUI Layout 22
3.4 Kinect Sensor Hardware . 24
3.5 Kinect Sensor Inner Structure . 24

4.1 MotionDesigner’s Software Architecture 30
4.2 Editing Studio’s Timeline . 31
4.3 Scenes Palette GUI . 32
4.4 Editing Studio’s Timeline Object 33
4.5 Timeline Objects Parameterization Diagram 34
4.6 Editing Studio’s Parameterizations Panel 35
4.7 Editing Studio’s Preview Player . 37
4.8 Editing Studio’s Explore Button . 38
4.9 Copy/Paste Parameterizations Data Flow 39
4.10 Editing Studio’s Panels Distribution 40
4.11 Second Window for Projection . 41
4.12 Interactive Graphical Scenes GUI 42
4.13 Parameters Panel Iterations . 43
4.14 Color Picker . 45
4.15 Color Picker Experimentations . 46
4.16 Interactive Scenes Editing GUI (using ofxUI) 47
4.17 Joints Selector Panel . 47
4.18 Particle System GUI with Joints Selector 48
4.19 Particle System Example . 51
4.20 OF Functions Diagram . 53
4.21 Particle System Parameters . 54
4.22 Particles Color Interpolation . 55
4.23 Particles Motion Blur . 57

xiii

List of Figures

4.24 Particle System Kinect Screenshot 59
4.25 Joints Draw GUI . 60
4.26 Joints Draw Kinect Screenshot . 61
4.27 Explore Audio Button . 63
4.28 Interactive Audio Scene GUI . 64
4.29 MotionDesigner Logo . 66
4.30 Sketch and Final Implementation Comparison 66

5.1 Users Implementation Suggestions Graph 72
5.2 Evaluation Question 1 Graph . 73
5.3 Evaluation Question 3 Graph . 74
5.4 Evaluation Question 4 Graph . 75
5.5 Evaluation Question 5 Graph . 76
5.6 Evaluation Question 8 Graph . 79
5.7 Evaluation Question 9 Graph . 79
5.8 Interactive Performance Rehearsal (Performer) 81
5.9 Interactive Performance Rehearsal (User) 81

xiv

Abbreviations

OF OpenFrameworks

IDE Integrated Development Enviroment

GUI Graphical User Interface

Mocap Motion Capture

OSC Open Sound Control

SDK Software Development Kit

FBO Frame Buffer Object

XML eXtensible Markup Language

FPS Frames Per Second

xv

Chapter 1

Introduction

1.1 Context

Since the 1950s a lot of artists and computer scientists started to use programming

to create different art pieces and this is a practice that continues today thanks to

an enthusiast group of creative programmers all around the world [3]. Nowadays

the community of artists and programmers that create computer art is bigger than

ever. It was in the 90s that the use of technology in contemporary art increased

exponentially and a lot of interactive systems started to be developed as result

of a collaboration between computer programmers/software engineers and artists

from different fields like painting, dancing and cinema [36]. The term coined to

describe what these programmers and engineers were doing is creative coding.

Creative coding is a term that was coined to distinguish a particular type of

programming in which the developer pretends to create something expressive. It

is used to create live audiovisuals, interactive projections for art performances or

installations, interactive soundscapes, etc [4]. Programming such systems helps

artists to lately produce real interesting works, but it represents a real challenge

to programmers and software engineers.

1

Chapter 1. Introduction

Today there are many different tools and libraries that help programmers and

engineers to prototype and develop interactive systems to embed in art perfor-

mances or installations. Many of these libraries can be used within different toolk-

its. The most popular toolkits used nowadays by creative coders are openFrame-

works (OF), Processing, Cinder, Max/MSP, etc [9] [12] [1] [5]. By integrating

one of these toolkits and their libraries within a chosen Integrated Development

Environment (IDE), like Microsoft Visual Studio for instance, a lot of possibilities

can be explored and implemented in a much more prolific way.

Despite having many tools that support the implementation of interactive au-

diovisuals generated by the computer and affected by another person (through the

use of a video camera, for instance [24]) there are not many tools, already imple-

mented, that help the creative people to produce these interactive works without

having to program them or without depending on the technical knowledge of an-

other person.

1.2 Motivation

Despite the challenge of creating interactive systems for an art performance or

installation, many programmers and engineers collaborated with different artists

to produce them over the past years. Today there are many art works based on

the interaction between a person, typically an art performer, and a computer sys-

tem [26] [11] [24]. Two of the most explored types of human-machine interaction

in an artistic work are installation art and interactive performance, where spe-

cial cameras, called RGB-Depth cameras (or simply depth-cameras), are used to

capture the position and movement of the user/performer, allowing him/her to

directly interact with the art piece.

Figures 1.1 and 1.2 show two different art performances which used interac-

tive computer systems, both capable of producing computer graphics that would

be manipulated by a dancer or performer. In both of these systems, the body

movement data was captured by RGB-Depth cameras.

2

Chapter 1. Introduction

Figure 1.1: “Pixel”, a dance piece where the graphics projected on the wall
and floor are transformed by the dancers position and movement [11].

Figure 1.2: “Mind the Dots” a piece where a solo dancer interacts with virtual
dots creating abstract graphic shapes generated by a computer [7].

Interactive systems like those used on the shows pictured on Figures 1.1 and 1.2

are complicated to implement, not because a special hardware is needed (in these

cases only a depth-camera connected to the computer and calibrated correctly),

but mainly because of the programming complexity behind such systems. To sur-

pass this challenge the artists often collaborate with skilled programmers and soft-

ware engineers to implement the system they want for a specific art piece. However,

despite the interesting aspects of having different people from different work fields

3

Chapter 1. Introduction

collaborating with each other, the fact that they need to interact so intricately

can be seen less positively, since it often works as an undesired inter-dependency,

typically for the creative person. Due to this dependency issue, the creative peo-

ple also need a tool to help them create these type of works autonomously. Such

dependency questions arise because the creative process behind any work needs

the ideas and their concretion to be a quick and fluid action-reaction process.

Having the artists dependent of computer programmers to successfully imple-

ment their own ideas for an interactive system will make the creative process longer

and not as fluid as should be. This happens because the artists need the imple-

mentation of their ideas to be completed and presented to them in order to know if

it feels right and give feedback to the programmer. Therefore, the action-reaction

process behind any creative work is impaired by this inter-dependency between

artist and programmer.

Through early interviews with the target audience, we found that the artists

also like to have real-time control over the projection content and over how the

use of the technology is explored during the performance, which sets the basis

for any improvisational work. Although the artists can show their work in the

presence of a programmer or other computer operator, they can not immediately

and autonomously perform those changes without depending on the programmer’s

knowledge [35].

In order to fight the dependency problem that artists often have to face, and to

allow them to autonomously explore the creative possibilities in a more comfortable

and effortless way, there should be a tool oriented for these people. It would be

through this tool that they would be able to manipulate and conduct the content

of the projection they are creating and specify the rules of interaction between the

performer/viewer and the content created, in an intuitive way.

Having a tool that aids the creation of interactive projections the artists can

create interactive installations or performances without (necessarily) depending

on the technical skills of a computer programmer. This will, hopefully, allow the

creative people to quickly see results during the implementation of their ideas

4

Chapter 1. Introduction

since, through the interaction with a simple and intuitive Graphical User Interface

(GUI), they can quickly and intuitively manipulate the audiovisual content of the

piece and explore the combination of rules by which the content plays in relation

to the viewer or the performer without needing to write code.

Developing a tool for the creation of interactive projections that serve a cre-

ative purpose, will be beneficial for artists like choreographers, performers, theater

directors, etc., since they can have a tool that will possibly serve their needs for

producing interactive digital art in a comfortable and autonomous way. But many

different people can also benefit from such tool even if they are not artists. People

like researchers and professionals working with human-machine interaction can

benefit from the creation of such system, as well as architects. The latter can,

for instance, use a tool like this to create a media wall for a building or use it to

create an interactive art piece for a museum or other space found pertinent.

The tool herein proposed, MotionDesigner, is a computer program with which

the creative people can autonomously create an interactive projection and ma-

nipulate its audiovisual content and relate it with data gathered from the body

movement of a third-person (performer, person from the audience, etc.). The in-

teraction between the performer and the projection content is done through the

use of an RGB-D camera. This tool will hopefully boost the creative process

of such interactive art works, since now the art creator can autonomously and

immediately test out the different possibilities for the projection content.

1.3 Research Questions

Facing the fact that artists often need to depend on a computer programmer to im-

plement the interactive systems to use in their art works, the tool herein presented

was developed with the goal of answering the following research questions:

1. Can a computer program oriented for the creative people give them the

sufficient autonomy to create their own interactive projections?

5

Chapter 1. Introduction

2. Is it possible for the artists to feel they have control over the projection con-

tent and the interaction rules between the digital work and the performance?

These questions were a conductive force in the software development, in order

to produce a more intuitive system and to better understand what are the elements

the software must provide the users so they can create a set of graphical scenes

to be projected, create an interactive soundscape and set the rules of interaction

between the body of another person and the projection according to their own

needs.

1.4 Objectives

In order to know if a single computer program can help artists to autonomously

create their interactive projections, the main objective of this work is to elaborate

and develop a standalone software to be used by choreographers, theater directors,

performers, architects or anyone who wants to create an interactive performance or

art piece by manipulating audiovisual content in real-time through motion capture,

and facilitate the creative process of such works.

Using some affordable hardware (a depth-camera like Microsoft Kinect) the

software should provide all the means to create, edit and sequence audiovisual

content for a projection, allowing the user to create a sequence of different 2D/3D

graphical scenes (with computer graphics created in real-time) and set, if wanted,

an interactive soundscape using the desired sound samples. The software should

also allow the user to specify how the person being detected by the depth sensor will

affect the projected graphical scenes and/or the sounds being played, by choosing

witch body joints participate in the interaction, as well as adjust the parameters

that dictate how the graphical information is represented.

By giving control over the projection content, the tool herein proposed pretends

that its users autonomously integrate the elements they need, without having to

depend on programming skills or other technical dependencies, by making the

6

Chapter 1. Introduction

generation, transformation and sequencing of audiovisual content manageable by

the user through an intuitive and simple interface. This is how the proposed tool

aims to help the creative people, like artists and architects, to develop their work

independently and productively.

1.5 Research Method

During the development process the Design Science Research method was used [37],

which is a process with different models of approach for solving problems and is

divided in the following steps:

1. Problem identification and motivation

2. Objectives of a solution

3. Design and development

4. Demonstration

5. Evaluation

6. Communication

The first step of this process resulted in what is explained in Sections 1.1 and

1.2 of this chapter, since they explain the artists’ need for having a tool like the

one herein proposed. The second step is covered in Section 1.4, which describes

which kind of solution we are going to implement. The third and fourth steps

will be described in Chapters 3 and 4, which explain each feature of the proposed

solution and describe its development process, respectively. Lately, in Chapter 5

the evaluation process and its results will be presented.

7

Chapter 1. Introduction

1.6 Document Structure

This document describes all the aspects of our project, from the proposed system’s

premises to its implementation and evaluation processes, having the following

structure:

• Chapter 2 overviews some of the existing projects in interactive performance

using RGB-D cameras and the tools that aid the artists in the creation of

such works, comparing them with our approach.

• Chapter 3 gives an overview of the proposed system, describing its principles,

features and design and introduces the hardware and software tools we chose

to implement this system.

• Chapter 4 describes the implementation of the proposed system, explaining

how each feature was implemented and how they are presented to the final

user.

• Chapter 5 describes the evaluation method chosen to validate our work and

the results of these evaluation tests with the final users.

• Chapter 6 presents the final conclusions of our work and proposes a number

of features that can be implemented in the future

8

Chapter 2

Literature Survey

Creating interactive systems using motion capture data is a practice that resulted

in many different applications until today, specially in artistic mediums. From

all these different applications, a great majority are in the context of interactive

projections for a dance performance or installation. Typically what these systems

have is a sequence of computer graphics projected on a surface, like a wall or

the floor [11] [24] [26], and/or an interactive soundscape to set the mood of the

performative work [18]. This area of interactive art performance and installation

art is one of the most creative areas explored until today regarding the marriage

between arts and technology.

Researchers like O’Neal, Meador and Kurt worked with dancers using motion

capture (mocap) suits in order to generate computer data by their movement

and input this data into an interactive system [30] [31]. Other researchers like

Latulipe and Huskey [29] used instead a portable mice, while Hewison, Bailey and

Turner [16] used vision sensors that they integrated with the performers’ suits.

Some years after these projects have appeared, the mocap process started to be

made using external markers attached to the performers’ bodies [21]. The main

limitations associated with all these different motion capture techniques are the

occlusion of markers or sensors and the movement limitations that arise by the

use of special suits and the gear attached to it.

9

Chapter 2. Literature Survey

2.1 Depth-Cameras Based Systems

The appearance of RGB-D cameras, or depth cameras, opened a new space of

opportunity for multimedia computing, allowing the implementation of motion-

capture-based systems without the need of special apparel or hardware apart from

the cameras/sensors themselves [38]. Many researchers started to work with these

depth sensors in order to fight the problems of marker occlusions and movement

limitations [26] [11] [24], making the mocap process more comfortable and produc-

tive.

2.2 Interactive Projections

The possibility of having a simple camera capturing all the movement data from

a person without the need of special apparel caused the arise of interactive art

pieces where a person, or more, can stand in front of the sensor and instantly and

comfortably interact with the audiovisuals being computed. The visual result of

this interaction is often projected on a plane surface like a wall or the floor. In

Figure 2.1 it is shown the setup we typically find in an interactive work like this

(e.g., [24] [35]).

Figure 2.1: Typical setup for an interactive projection using RGB-D cameras.

10

Chapter 2. Literature Survey

2.2.1 Graphical Interactivity

An example of a work that uses depth-sensors to capture the movement data of a

person, in this case a dancer, is an interactive performance called .cyclic., which

combines computer graphics with dancing and Kinect technology [26]. In .cyclic.

a pre-sequenced set of images to be iterated are synced with the music and drawn

to the screen according to the performer’s position.

There are other projects that had a similar approach to .cyclic., providing

computer generated graphics manipulated by the performer in real-time, using

a depth camera. An example is the project Divided By Zero by Hellicar and

Lewis [24], which resulted in an interactive dance performance that used depth

sensor technology to track the dancer’s body silhouette which would affect the

visuals that were generated in response, in real-time. In this project, no pre-

rendered video was used and the soundscape used was not generated or affected in

real-time, but rather was something pre-recorded. See Figure 2.2 to have an idea

of the visual aesthetic of this performance.

Figure 2.2: An abstract representation of the dancer’s silhouette is pro-
jected on a wall and transformed by her movement in real-time, so as in Hel-

licar&Lewis’s Divided By Zero, 2010.

Another project that focuses on the interaction between projected graphics

and a performer using depth sensors technology is one of Benjamin Glover[22]. In

11

Chapter 2. Literature Survey

this project, Glover developed an interactive system using openFrameworks (OF)

libraries and a Kinect sensor to interact in real-time with computer graphics pro-

jected on a wall. The system developed by Glover allowed the configuration of the

visual aspect of the projection to be changed in real-time through the interaction

with a simple GUI [22], but the order of the elements that would be projected was

pre-programed and not easily changeable. The system also did not cover any as-

pect of interactive sound in real-time. Despite the graphical interactivity of these

systems, none of them focuses on sound manipulation in real-time. However, some

researchers already explored the possibility of having the performer’s movement

interact with both the graphical elements and the soundscape of the art piece.

2.2.2 Sound Interactivity

A research project that marries interactive sound with graphical elements is the

one by Joey Bargsten, in which he developed two interactive applications using

PureData and Quartz Composer software to control audio and graphical content,

respectively, using a Kinect sensor [17]. To extract the data to input in both

PureData and Quartz Composer he used a software called Synapse along with

some Open Sound Control (OSC) routers [17]. He concludes that OSC controllers

with Kinect technology can bring new opportunities in translating the motion of

the human body to transformations in both sound and images. However, Bargsten

defended the division of labors and focused on the advantages of exploring sound

and video in their separate domains. Despite this, Bargsten’s article addresses

the possibility of having a system that displays interactive sound and graphics

simultaneously and in real-time. Ultimately, no software capable of doing both of

these things was actually implemented.

There is another project, by Berg et al. [18], in which sound interactivity is

the main focus. In this project the researchers produced a music generator system

where each joint of the mover was responsible to transform a specific sound sample.

In this system, no graphical interaction was developed, but the generation and

12

Chapter 2. Literature Survey

manipulation of different sound samples through the movement of a person’s body

was a considerable advance in this research area.

By analyzing all these different projects we conclude that, to the best of our

knowledge, there is a scarcity of systems that provide the possibility to interact

with both the computer-generated graphics and the sound used in the performance

or installation. This scenario of having a person not only conducting the behavior

of the projection elements but also being the conductor of the soundscape is some-

thing yet to be explored. A commom issue among all these projects is that the

use of more than one RGB-D camera for the mocap process is never referred. The

reason for not having these interactive systems using more than one depth camera

may be the fact that this represents a big technological challenge, since problems

like the unreadability of the point clouds generated by the Kinects may arise (due

to the infrared mapping overlap), which makes the data partially unreadable and

much more difficult to deal in terms of programing and calibration of the sensors.

The system herein proposed was implemented using only one RGB-D camera due

to these reasons.

Taking into account the state of the art regarding the use of technology in art

performances and installations, from the most suitable hardware to the solutions

implemented, one can conclude that the implementation of such systems could be

richer if they provided both audio and visual control and if the creative person

could have the control of these elements, since lot of interesting possibilities could

be fulfilled by their artistic vision.

As depicted in the literature review, the artists or architects interested in

creating an interactive projection to integrate in their art work, often do it by

asking a programmer or a software developer to implement the solution they need

for that specific work [26] [23]. What happens in these situations is that the artists

depend on the programmer or engineer productivity to see the results implemented,

i.e., they need to wait for the implementation to be completed in order to test

it. Only then the artist can continue the creative process by refining that idea

and thinking about new ones. This is a problem the artists often find during

13

Chapter 2. Literature Survey

the creative process of these type of works. Additionally, the solution typically

implemented are a sequence of code lines that run during the exhibition of the art

piece and have a preset order of events, i.e., there is no possibility for the creator

of the art piece to change the order of what is being projected in real-time.

2.3 Tools for Creating Interactive Audiovisual Art

Facing the autonomy problem that the creative people typically have during the

creative process of interactive art works that embed technology, there should be a

tool that aids them by allowing them to:

1. Choose their own projection content without needing to program them;

2. Change the aspect of the projection content and the interaction rules between

the performer and the projection and/or the soundscape, in real-time;

3. Freely sequence the order of the interactive content he/she is using in the

projection, i.e., what is seen/heard during the performance/exhibition and

when.

One of the few examples of artists-oriented tools for creating interactive per-

formances/installations is a tool called MotionDraw [35], implemented using OF

libraries, which focuses on enhancing the experience of the artist when conducting

an interactive projection in real-time. In this work only the graphical interac-

tivity is considered, i.e., no sound interactivity is explored, but they explore the

graphical interaction in a different way than the works discussed previously by

creating a tool oriented for the artist. In MotionDraw, the creative person can

directly manipulate the visual aspect of the projection - which conceptually is

something similar to brushes painting on a canvas - by interacting with a simple

GUI that allows him/her to configure the aspect of the brush for each body joint

being captured by the Kinect sensor and choose which joints are active (2). This

system’s interface, depicted in Figure 2.3, allows the artist to freely explore the

14

Chapter 2. Literature Survey

possible visual representations of the scene in real-time. However, this tool does

not give the user freedom to choose another content for the projection apart from

the drawing brushes. So, this is a tool for a one-case scenario and lacks on other

types of interactive scenes for the users to work with and an environment where

they can sequence the projection content and use them as they want.

Figure 2.3: MotionDraw’s simple GUI allows the user to control the aspect of
each joint’s brush in real-time.

Another example of a tool that was developed for the artists to directly ma-

nipulate the projection content by interacting with a simple and intuitive GUI

is Adrien Monodot and Claire Bardainne’s eMotion [15], which is a software de-

veloped for displaying virtual objects chosen by the user (1) and make the body

motion of a performer, which is being captured by a depth sensor, to interact with

those virtual objects. The user of the software can easily change the behavior and

representation of the virtual objects by manipulating the physics laws governing

those objects, through the interaction with a simple GUI (2). However, this tool

is also a one-case scenario, meaning that the users do not have much freedom to

15

Chapter 2. Literature Survey

choose which elements are represented on the scene nor sequence them as they

want.

In the case of MotionDraw the user can set the aspect of the projection in

real-time by manipulating the color of the scene elements and the width of the

trail left by the joints, as well as choose which joints are visible, which verifies

the second feature of the three previously proposed. In eMotion the users have

more freedom to choose which elements are shown by choosing which type of 3D

graphics are shown in the projection, however they can not choose and sequence a

set of different types of graphics to be projected, so it is not a considerable freedom

for the user in terms of control. This, however, can validate both the first and the

second conditions in the case of eMotion.

In both the MotionDraw [35] and eMotion [15] cases the user of the software,

typically the artist responsible for envisioning the interactive projection, does not

have more than one type of graphical scene to use in the projection and, conse-

quently, can not sequence multiple types of scenes to project (3). In both these

cases the artist also can not use interactive sound within the provided tools, which

means that if they want an interactive soundscape to go along with the projection

they need to implement it (or ask for that implementation) outside the environ-

ment of the provided tool. This makes none of the tools we know at the moment

eligible for the third feature, i.e., allowing the users to freely sequence the order

of the interactive content they want to project.

At this point, one can see that the number of tools available for the creative

people to make and conduct their own interactive performances or installations

is small and that, even those that already exist, do not give the user freedom to

choose different types of interactive content to be projected and sequence them

along the exhibition time. If the users wants to mix different types of interactive

graphics in their interactive projection they can not do it autonomously, since they

need a programmer to implement other scenarios. Having he ability to use more

than one type of interactive scenes in the projection and, for each of them, having

the freedom to parameterize it and configure its interaction rules is something we

16

Chapter 2. Literature Survey

will cover in the system herein proposed, as well as the ability for the user to create

an interactive soundscape to go with the projection.

In order to fill the gap on the existing tools that intend to aid the artists, and to

fulfill all the three features proposed, the tool herein presented, MotionDesigner,

provides the users an environment where they can set which type of graphical and

audio elements are going to be projected during the interactive performance or

installation and also when, i.e., the users can sequence the audiovisual elements

along the projection time, as well as change their aspect and behavior in real-time.

This makes the proposed tool fulfill all the three aspects that shall aid the users

in creating an interactive projection.

17

Chapter 3

System Overview

In order to cover the gap that exists in the supporting tools for the artists to create

their own interactive projections based on the capture of human body movements,

we propose a software tool that focuses mainly on the creative person responsible

for the artistic ideas behind the interactive work. In the system herein proposed,

the creative person is the final user of the software and will act as the conductor

of the projection itself, from dictating which content is being presented in the

projection to setting the rules of interaction between the performer’s body and

the audiovisual elements of the performance.

3.1 User Interface

The system presented in this dissertation is composed of a software we developed,

which we called MotionDesigner, and an RGB-D camera, like Microsoft Kinect,

as seen on Figure 3.1. The RGB-D camera captures all the movement from the

performer’s body and feeds it into the software, which computed the graphical and

audio data according to the body pose. A projector connected to the computer

projects the resulting visuals in a plain surface. The developed software and is to

be used by anyone who wants to create an interactive projection using real-time

computer-graphics and sound manipulation through the movement of a human

19

Chapter 3. System Overview

body. It is by directly interacting with the software that the users can to change

the aspect and behavior of the projection.

Figure 3.1: The system herein proposed is composed by a software, Motion-
Designer, an RGB-D camera, which captures the body movement of at least one

person, and a projector that maps the resulting visuals in a plain surface.

The software to be used by the creative person who pretends to create an

interactive projection, MotionDesigner, has a simple and intuitive Graphical User

Interface (GUI). It is by interacting with this GUI that the creator of the projection

can choose what to display on the projection (which graphical elements), what is

their visual aspect (which can be set before projecting the graphical content or

during the live projection) and when these graphical elements, as well as the sounds

the user wants to play, will appear during the projection. Figure 3.2 shows the

main interface of MotionDesigner, which is called Editing Studio.

The Editing Studio is the first environment to be presented to the users, and it

has a timeline-based interface. In this environment the users can drag to a timeline

a set of graphical scenes to be projected and sounds samples to play along with

the projection. The panel with the graphical scenes and the panel with the audio

files are displayed according to the tab currently selected by the user (in Figure 3.2

the scenes palette is the panel currently selected). It is on this timeline where the

users can manipulate the projection time of each audiovisual element and set their

order of appearance. These are all concepts borrowed from video editing systems.

Besides sequencing the audiovisual elements and set their duration, the user

is also be able to set timestamps/markers during the projection time of a scene

20

Chapter 3. System Overview

Figure 3.2: 1 - Parameterizations Panel, where the user can add times-
tamps to a scene form the timeline and set the desired parameters for that time
instant; 2 - Scenes Palette, which displays the graphical scenes the user can
drag to the timeline; 3 - Sounds Palette, which displays the sound samples the
user can drag to the timeline; 4 - Preview Player, where the user can preview
the scenes representation over time according to the current parameterizations;
5 - Timeline, where the user can sequence the graphical scenes and set their
duration; 6 - Launch Button, where the user can play/launch the sequence

onto the projector.

(represented by the red lines on the timeline) and associate to them a set of values

for that scene’s parameters. This allows the user to pre-parameterize the scene

without having to change the scene visual aspect only in real-time, i.e., only when

the scene is being projected. This feature is provided because, although the real-

time live manipulation is one of the core principles of the proposed system, it is

also interesting to allow other scenarios where the users already know what they

want to project and how.

The users also need an interface to freely parameterize an interactive scene,

i.e., a GUI that allows them to experiment different possible representations for

a specific scene. Figure 3.3 shows the interactive scenes editing GUI. This inter-

face is presented to the users whenever they press the Explore button, which is

represented in Figure 3.2 as an eye icon on the bottom left corner of each scene

from the scenes palette. When the users press this button the respective scene

is launched in fullscreen along with this GUI, so that they experiment with that

scene before the live projection. When the timeline sequence is projected during

21

Chapter 3. System Overview

the live performance the users can see the current scene content replicated on the

computer screen along with this editing GUI, which allows live parameterizations

in real-time.

Figure 3.3: 1 - Parameters Control Panel, sliders-based panel where the
user can set a different value for each scene parameter; 2 - Info Panel, panel
with useful info, namely short key commands; 3 - Scene Content, where the
scene is displayed as is being rendered on the projection; 4 - Joints Selector
Panel, where the user can choose which of the performer’s body joint is going
to be parameterized (how much that joint affects the projection); 5 - Color

Picker, where the user sets the color for each scene element

Whether the users are live projecting the audiovisuals sequence or simply ex-

perimenting different parameterizations for a specific scene, they are presented

with the interface depicted in Figure 3.3. The content of the scene depends on the

type of scene that is being previewed or launched.

3.2 Hardware Setup

Since the audiovisuals used in the projection focus on the interactivity with body

movement, a technology to successfully recognize the human body and provide

22

Chapter 3. System Overview

that information as usable data to be computed by the software is needed. Mo-

tionDesigner is prepared to be used with an RGB-D camera, which is responsible

for capturing point clouds of the scene. These point clouds data are processed by

a third-party software, namely, NiTE, to infer the pose of the performer’s body.

In order for the proposed system to be easily usable and accessible to the

majority of the target audience, we needed to integrate a reasonably accessible

depth camera. Microsoft Kinect was seen as the most appropriate camera since it

provides all the necessary technology by a considerably low monetary cost.

3.2.1 Kinect sensor

Kinect is a consumer-grade range camera, or depth camera, created by Microsoft

in 2010 [34]. It was initially designed with the purpose to commercialize it along

with Xbox 360 so that the users of this console could physically interact with the

game and control them through their body movements [6]. However, since its

release, many people started to explore its application in different domains [27].

Like any other RGB-D camera, the Kinect has an RGB camera and a 3D depth

sensor. As depicted in Figure 3.4, it also has a multi-array microphone (composed

of four microphones) for sound capture and a 3-axis accelerometer, from which

is possible to infer the current orientation of the camera [38]. The RGB camera

has a resolution of 1280x960 and it can be used to capture a colored image or

to stream video [22]. The depth sensors are composed of an infrared projector

and an infrared camera (see Figure 3.5). The first emits a dot pattern of infrared

light onto the scene and the other receives the reflected beams of the pattern and

infers the depth information from the deformations imposed by the geometry of

the scene to the projected dots [38].

After the release of Microsoft Kinect for the Xbox console, Microsoft an-

nounced, on February 21, 2011, the release of Kinect for Windows. This is the

same device already released for the console but usable and programmable on the

23

Chapter 3. System Overview

Figure 3.4: Microsoft Kinect hardware composition

Figure 3.5: Inner structure of the Microsoft Kinect sensors

computer. They released the device in the same year, with a non-commercial

Software Development Kit (SDK) associated to it [32].

Soon after the release of Kinect for Windows, a lot of people started to program

different type of systems, exploring the creative possibilities behind the applica-

tion of this technology. Since its release a lot of artists already integrated the

Kinect in their artistic works, specifically in interactive dance performances and

art installations [24] [26] [11].

24

Chapter 3. System Overview

3.3 Software Setup

Since the Kinect sensor is being used to capture the body movement data to input

into our system, the choice of the programming environment and the libraries used

to manipulate this data was done carefully. Currently there are two strong can-

didates for the programming libraries to be used to develop the proposed system,

being those:

Kinect SDK Released from Microsoft along with Kinect for Windows [2]

Programming Languages: C++, C#, Visual Basic or other .NET language

openFrameworks An open source toolkit designed to assist creative coding [9]

Programming Language: C++

Table 3.1 presents the main characteristics of both options side-by-side. This

comparison allowed us to understand what was the most appropriate choice for

the project implementation.

openFrameworks vs Kinect SDK

openFrameworks Kinect SDK

Open-source and cross-platform Not open-source nor cross-platform

Commercial usage Commercial applications not allowed

Skeletal and Hand Tracking Skeletal and Hand Tracking

Oriented for sound sampling control Sound sampling control is possible

Oriented for computer graphics gener-
ation

Computer graphics generation is possi-
ble

Table 3.1: Comparison between openFrameworks and Kinect SDK features

Choosing between Kinect SDK and openFrameworks simply regarding the mo-

tion tracking capabilities is something that should suit the developer preferences,

since both can do it. However, there are several reasons that highlighted open-

Frameworks over Kinect SDK. As Table 3.1 shows, openFrameworks, unlike Kinect

SDK, is cross-platform, allowing to port the software to Windows, OSX and Linux

25

Chapter 3. System Overview

systems in a more comfortable way, which was an important aspect since our sys-

tem was projected with no operating system constraints.

Another issue that highlights openFrameworks over Kinect SDK is how it fa-

cilitates the process of drawing graphical content on the screen. Since openFrame-

works is a wrapper of libraries such OpenGL, GLEW, GLUT and Cairo [9], it

already provides basic methods for drawing geometric shapes, in the case of 2D,

and easily generate 3D models and shaders, which makes the programming of the

graphical elements much more comfortable.

Regarding the sound elements control, openFrameworks also provides simple

methods for playing sound samples in formats like MP3, WAV and AIFF, and

transform their speed, volume and panning options in a more comfortable and

productive way thanks to some libraries it wraps, like rtAudio, PortAudio, Ope-

nAL, etc. All the playback and grabbing of video files are done by using libraries

like Quicktime, GStreamer and videoInput [9].

Since openFrameworks was created with a focus on multimedia computing,

from 2D/3D graphics to images, sound and video, it is a very good tool for

developing multimedia projects that will portray real-time environments. Also,

openFrameworks uses C++ language, which is a low-level programming language,

allowing us to control and process data very fast and optimize the use of mem-

ory in projects that demand a high computing speed and deal with performance

issues, which is the case. Considering all these aspects, openFrameworks is the

most suitable choice for the project herein presented.

3.3.1 openFrameworks

OpenFrameworks (OF) is an open-source C++ toolkit developed and maintained

by a large community of programmers and creative coding enthusiasts [9]. OF

allows programmers to easily generate and render 2D/3D graphical content, as

well as manipulate different sound samples. The libraries it wraps around allows

the developer to manipulate all these different types of media in a more comfortable

26

Chapter 3. System Overview

way. Since the tool herein proposed, MotionDesigner, also deals with point data

gathered from the Kinect sensor some additional libraries and middleware were

needed in order to successfully implement the system.

3.3.2 OpenNI & NiTE middleware

OpenNI, which stands for Open Natural Interaction, is an open-source library, used

by openFrameworks, which allows the programmer to access and control Prime-

Sense compatible depth sensors [10]. Since PrimeSense was the company behind

the depth sensing technology of the Kinect sensor, this library was a suitable

choice. The version used in the project implementation is OpenNI 2.0, and its

API allows us to initialize the Kinect sensor and receive RGB, depth and IR video

streams from it.

Along with OpenNI2, a middleware, also released from PrimeSense, was used,

which is called NiTE (Natural Interaction Middleware). NiTE is a very useful

and efficient middleware when dealing with human body recognition and tracking,

since it can detect when a body is in front of the sensor and detect its joints very

quickly, with minimal CPU usage [8]. This middleware already provides algorithms

for hands and full-body tracking, which use data from the RGB, depth and IR

streams provided by OpenNI2 functions.

3.3.3 openFrameworks Add-ons

Additional libraries were used along with openFrameworks default tools, namely

ofxUI and ofxSecondWindow. The first add-on, ofxUI, was developed by Reza Ali

and it allows us to create GL based GUIs like buttons/toggles, drop-down lists,

sliders, labels and text fields without having to program them from scratch. Its

functions are implemented using OpenGL and use OF drawing calls to render the

different widgets onto the screen [14].

27

Chapter 3. System Overview

The second, ofxSecondWindow, is an add-on created by Gene Kogan, which

allows the programmer to easily create and call multiple windows to use within

the application [28]. This was a great help since the management of multiple

windows is typically a time consuming task to program in C++.

28

Chapter 4

Development and Implementation

For the development of MotionDesigner, openFrameworks 0.8.4, OpenNI 2.2 and

NiTE 2.2 middleware were used, along with ofxUI and ofxSecondWindow add-ons.

The chosen IDE was Microsoft Visual Studio 2012 Express and for version-control

it was used Git. The software architecture for MotionDesigner is depicted in

Figure 4.1, which also shows how each software and hardware components were

integrated. The user interacts with the software through a GUI, which sets the

graphical aspect of the current graphical scene and the rules for the motion capture

process. OpenGL renders the scene according to the user’s parameterization,

OpenNI turns the depth sensor on when the user chooses to project the sequence

and NiTE tracks the skeleton joints the user wants to be tracked.

There are two main environments that make MotionDesigner the tool we en-

visioned: (1) Editing Studio, where the user can choose which graphical scenes

and audio samples will be used in the interactive projection, sequence them and

pre-parameterize them; and (2) Interactive Scenes/Audio Editing environment,

which allows the user to explore the different possible parameterizations for each

scene and for affecting the audio samples being played.

Whenever the users open MotionDesigner to create an interactive projection,

the environment presented to them is (1), form which they can see the audiovisual

material available to use in the projection and sequence them as they like. For

29

Chapter 4. Development and Implementation

Figure 4.1: System architecture. The performer interacts with the Kinect,
which feeds the software with body movement data. The graphical content is
rendered according to this data and and the current parameterization set by the

user through a GUI. A projector renders the scene in a plain surface.

controlling the representation and behavior of the projection element, the environ-

ment (2) is presented, where the user can try different possible representations for

each graphical scene and configure the motion capture rules, e.g., deactivate some

joints so they do not affect the projection content. A similar environment is used

to control the interaction with the sound samples played during the projection.

4.1 Editing Studio

The main environment of MotionDesigner is the one called Editing Studio. It is

through this environment that the users can access all the interactive scenes and

audio samples to use in the projection and where they can also call the editing

environment for the interactive scenes or audio elements.

Since the users would be able to sequence the scenes and the sound sam-

ples to be played during the projection as they like, the Editing Studio has a

timeline-based interface. The timeline allows the users to manage the order of

the audiovisual elements during the projection and the duration time for each of

them. This timeline is presented to the users with a simple and minimalist design,

30

Chapter 4. Development and Implementation

as shown in Figure 4.2, and was created by using geometric primitives, e.g., lines

and rectangles, using OpenGL’s 2D primitives drawing operations.

Figure 4.2: The Editing Studio’s timeline is represented with a simple inter-
face. The user should be able to drag the time marker (in white) and see the

current time while hovering the timeline with the mouse (green)

The dimensions of the timeline take in consideration the current size of the

window frame. Every time the user resizes the window, the timeline reshapes

itself so that it always fits on the window frame with proper dimensions (the

timeline width value depends on the window width).

For showing the current time on the time marker (white line) we used a linear

relationship between the position of the markers on the screen, given where the

timeline begins and ends on the screen, and the time it is supposed to show given

the initial time (0 seconds) and the maximum time on the timeline (for instance 120

seconds, as on Figure 4.2). By doing so, we can get the time value to be shown in

the marker in relation to the boundaries of the timeline and the maximum time of

the timeline. The same principle was used for calculating the time value to display

in the cursor marker (green line), but now knowing the position of the marker and

wanting to know the time corresponding to that position on the timeline.

The users can control the time marker by dragging it with the mouse or by

pressing the arrow keys on the keyboard. Besides this, a few more key commands

were implemented and binded to the following keyboard keys:

• Left/Right Arrows - Move time marker backwards or forward in time,

respectively

• SPACE - Play/pause sequence on the timeline

31

Chapter 4. Development and Implementation

• ENTER - Replay sequence

• +/- - Increase/decrease the timeline maximum time (sequence duration)

• F - Set timeline maximum time (sequence ending) to the end of the last

scene

• DEL - Delete selected scene from the timeline

• H - Show/hide virtual skeleton on the preview player

These commands allowed the user to have a more intuitive control over the

timeline, since these are standard key commands in most video editing softwares.

In order to store the graphical scenes that the user could drag to the timeline,

a scenes palette panel was created. This panel has the same visual aesthetic as the

timeline, as Figure 4.3 shows, with an image resembling each type of interactive

scene, and a bitmap string to displaying its name. This reinforces the simple and

minimalist aesthetic we are looking for in the development of the software.

Figure 4.3: A separate panel is provided with a palette of the available inter-
active graphical scenes. The user can directly drag each scene from the palette

onto the timeline, in order to use them as part of the projection sequence

Whenever the users drag a scene from the scenes palette onto the timeline,

they create a new timeline object, i.e., a new timeline component which can be

32

Chapter 4. Development and Implementation

dragged and resized within the timeline and stores all the data related to that

scene (when it begins and ends on the sequence, the parameterizations it has on a

given time instant, etc.). This timeline object stores the type of scene it refers to

(the Particle System or the Joints Draw scene) and all the parameterizations data

related to that scene. This newly created timeline object will automatically start

on the instant where the last scene from the timeline ends. This kind of knowledge

is made possible since all the timeline objects, i.e., all the scenes instances on the

timeline, are stored in an array.

Figure 4.4: A scene on the timeline is represented as a rectangular object with
text information regarding its time properties (beginning, ending and duration

variables) and the correspondent type of scene

4.1.1 Scenes Parameterizations

One of the main features of MotionDesigner ’s Editing Studio is the possibility for

the users to pre-parameterize each graphical scene before projecting it. This means

the users can preset the aspect and behavior of the graphical scene’s elements

over the projection time, without having to do it only during the live projection.

The users can still parameterize the scenes elements in real-time during the live

projection, but when the timeline sequence is projected it will be rendered and

computed according to these pre-parameterizations data, so it can always have a

preset aesthetic.

Each timeline object (graphical scene or sound sample) has a bi-dimensional

vector to store the list of parameterizations for that element. What this vector

stores is the list of times instants, i.e., timestamps, that have a parameterization

associated to it. A parameterization vector stores real-valued numbers, which

33

Chapter 4. Development and Implementation

refer to the values of the parameters we allow the user to control associated to

a specific instant in time. This vector will take part of the list of vectors (list of

parameterizations), as illustrated in Figure 4.5.

Figure 4.5: The parameterizations for a scene on the timeline are stored in
a vector (parameterizations). Each parameterization (P) corresponds to a
vector which stores a timestamp (pt), i.e., a time instant between the beginning
and the end of the scene, and the parameters values for that scene in that
instant pt (e.g., in Joints Draw scene p1, p2 and p3 refer to size, trail and

speed, respectively)

Another panel was created just to manage all the operations related with the

scenes parameterizations. Through this new panel, shown in Figure 4.6 the user

can access the list of existing timestamps, i.e., parameterizations, for a specific

scene selected from the timeline, add timestamps to the list or delete an existing

timestamp. The parameterizations panel was added to the scenes palette panel

location and can be accessed through a tab selecting system.

In order to create a new timestamp with a parameterization associated to it,

the user should first click on the respective scene on the timeline and then click on

the corresponding button on the parameters panel (see Figure 4.6). After clicking

this button, a new timestamp is automatically added to the list (a new param-

eterization vector is created and added to the parameterizations vector of the

selected timeline object). The timestamp value for the newly created parameter-

ization is the current value on the time marker (white line on timeline) and the

values of the parameters are default values (which can later be changed). If the

value on the time marker is not within the beginning and ending of the selected

scene from the timeline, the timestamp can not be created. If the users try to

34

Chapter 4. Development and Implementation

create the same timestamp twice, i.e., two parameterizations for the same time

instant, they can not do it, since duplicates are not allowed in the timestamps list.

Figure 4.6: The Parameterizations Panel shows a drop-down list of the times-
tamps already created for the selected scene on the timeline. On the right a
sliders interface is shown, where the user can change the parameters values for
that time instant. A button for adding a new timestamp is provided on the
bottom left corner of this panel. The timestamps appear as red lines on the

timeline.

To allow a more efficient management of the parameterizations, specially if

one wants to know which timestamp will be read next when playing back the

timeline sequence, when a new timestamp is added to the list it will be added

orderly, i.e., when a new parameterization vector is added to the parameterizations

vector, the latter is automatically sorted according to the timestamps values, in an

ascendant order. To sort the parameterizations array the Selection Sort algorithm

was implemented [25]. This algorithm was chosen due to its simplicity and to the

performance advantages associated to it, since this is one of the vector sorting

algorithms that best preserves the auxiliary memory usage.

35

Chapter 4. Development and Implementation

After selecting one of the timestamps from the list, a sliders interface is shown

(similar to those found on the interactive scenes GUI) where the parameters values

for that time instant can be changed by the users as they desire (see Figure 4.6).

If the users want to delete a timestamp parameterization they can do it by clicking

on the respective button displayed on the bottom right corner of the parameteri-

zations panel, after that timestamp is selected from the list.

A Paste Settings button was also added, which allows the users to set the

parameters values of the currently selected timestamp to the values copied from

the interactive scenes editing GUI (these copy/paste operations for the parameters

values are further discussed on Section 4.1.3 of the current chapter).

4.1.2 Previewing the Projection Sequence

In order for the users to be able to preview the aspect and behavior of the scenes

elements, according to the timeline sequence, before projecting it, a preview player

was added to the Editing Studio environment. This is a necessary feature in order

to give the users comfort and efficiency during the management of the graphical

scenes to be used in the interactive projection.

A new panel was created with a small preview screen and three control buttons

to control the time marker along the timeline (besides the keyboard and mouse

controls already implemented). A Play/Pause button and two Skip buttons were

added. The Skip buttons skip the time marker to the next (or to the previous)

timestamp of the scene or, if it is on the last timestamp, to the beginning of the

next scene on the timeline (and vice-versa).

The preview player panel was ultimately placed where the Scenes Palette panel

was on the original sketches (see Section A.1 of Appendix A) and it renders each

scene from the timeline according to the parameters values on the current time

instant (the parameters values interpolate between each timestamp). A virtual

skeleton, moving in a loop routine, is also displayed so that the user can see the

behavior of the content previewed in relation to the movement of a human body.

36

Chapter 4. Development and Implementation

Figure 4.7 shows the preview player displaying a particle system scene with the

virtual skeleton reference, which can be set as visible by the user by pressing the

H key on the keyboard.

Figure 4.7: The Preview Panel provides a player which previews the timeline
scenes content over time. It also displays a virtual skeleton that moves with
a preset of movements so that the user can see not only the visual aspect of
the scene elements but also their behavior. The circles represent the particles

tracking the skeleton joints.

4.1.3 Displaying the Scenes

As depicted on Figure 4.3, each scene image from the scenes palette has a small

button on the bottom left corner. This is the Explore button that in our early

sketch was reserved to the control buttons area on the bottom right corner of the

screen. It was found, though user testing, that clicking on a scene from the timeline

or from the scenes palette and then clicking on this button on the other side of the

screen was an unnecessary process. With the new solution implemented, the user

can launch a specific type of graphical scene on fullscreen, in order to explore the

parameterizations possibilities, by just clicking on this button on the respective

scene from the scenes palette.

If the user clicks on the Explore button, represented on Figure 4.8, it launches

the respective interactive scene with the GUI elements reserved for this context,

37

Chapter 4. Development and Implementation

which are a parameters panel, a joints selector and a color picker (these are further

discussed on Section 4.2 of the current chapter).

Figure 4.8: The Explore button allows the user to launch an interactive scene
and freely explore the possible parameterizations of the scene elements

When the user launches a scene, the respective scene is presented with a default

aspect and behavior but with a GUI that allows the user to change these char-

acteristics in real-time by freely exploring the possible different parameterizations

for that scene. On the panel where the users can change the parameters values

of the scene’s elements, the parameters panel, there is a Copy Settings button,

which, when clicked, writes the current parameters values of that scene in a XML

file. This XML file is read whenever the user clicks on the Paste Settings button

from the Parameterizations Panel of the Editing Studio. See Figure 4.9 to see the

data flow in this copy/paste parameterization scenario.

By alternating between each interactive scene exploration and the editing stu-

dio, where the user can sequence these scenes and pre-parameterize them along

the projection time, the users can comfortably achieve the interactive audiovisual

experience they want within the provided materials.

38

Chapter 4. Development and Implementation

Figure 4.9: Parameterizations data flow. When the users are controlling an
interactive graphical scene (on the left) they can click on a Copy Settings button,
which will save all the parameters sliders values into a XML file. Then, on the
Editing Studio (on the right), the user can click on a Paste Settings button to
set the parameters values of the currently selected timestamp to those on the

XML file.

4.1.4 Projecting the Sequence

As depicted in the Editing Studio’s interface early sketch (see Section A.1 of Ap-

pendix A) the bottom right area of this environment was reserved for control

buttons. A button for launching the projection sequence, i.e., the interactive

scenes and audio on the timeline, was added to this area of the GUI, as shown in

Figure 4.10.

When the user clicks on the Launch button a second window is created, which

will render the interactive scenes as they appear on the original window but with-

out the GUI elements. This window is the one which is supposed to be dragged

to the projector area, i.e., to the second screen of the computer (assuming it has

the projection configuration in Extend mode). This duplicated window is created

using the ofxSecondWindow add-on, getting the result shown in Figure 4.11.

39

Chapter 4. Development and Implementation

Figure 4.10: The Editing Studio interface provides four different panels. A
panel with a Preview Player on the right and on the left a panel that can show
three different contents: the audio files the users can drag to the timeline, the
graphical scenes they can use and the parameterizations control panel for a scene

or audio element selected from the timeline

40

Chapter 4. Development and Implementation

Figure 4.11: When the user launches the timeline content into the projection
a second window is created without the GUI elements. It is the content of this

second window that will be shown by the projector

4.2 Interactive Graphical Scenes

Unlike other systems that have a set of images to embed with the projection or

some preset graphics to be projected the way they are, like in cyclic for instance

[26], in the software herein proposed the computer completely generates the graph-

ics algorithmically. The aspect and behavior of the rendered scenes are dependent

not only on the movement of the person interacting with the projection but also

the configuration set by the conductor of the projection, which can be always

changed in real-time.

For each type of graphical scene, the user should be able to control its visual

aspect and behavior in real-time, which is possible due to the GUI shown in

Figure 4.12.

41

Chapter 4. Development and Implementation

4.2.1 Scenes Editing GUI

In order to allow the users to have real-time control over the graphical scenes

content, a scenes editing environment was implemented. Whenever the users are

either live projecting interactive graphical content or simply experimenting each

scene parameterization on the editing studio, the GUI shown in Figure 4.12 is

presented to them.

Figure 4.12: Interactive Scenes Editing GUI. A sliders-based panel allows real-
time parameterizations for the scene’s elements (left panel). A joints selector
panel allows the user to choose to which joint the current parameterization will
be associated with (upper right panel). The color of the scene’s elements can be

set through a color picker (bottom right corner).

Regarding the parameters panel (left corner of the screen), there were two

different implementation options for the user to change the parameters values

of the scene’s elements: either making a sliders-based UI or one based on text

input. Through testing a simple implementation of each option with the users,

the sliders-based UI revealed itself as the strongest candidate, since the changes

to the parameters values could be performed much quicker by simple dragging a

slider, allowing the users to test different values very quickly. On the other hand,

if the users need to input the desired values for experimentation on a text field

they first need to click on the desired text field and then press the corresponding

42

Chapter 4. Development and Implementation

value numbers on the keyboard. This is a slower process when compared to sliders

control and it needed to be repeated for each value the user wanted to test.

Taking the differences between a sliders-based UI and a text-based UI into

account, the parameters control panel was implemented based on sliders control.

Figure 4.13 shows the differences between the first prototype of the parameters

panel and the final iteration, implemented using the ofxUI add-on. The users felt

that the final iteration provided a clearer and more pleasant design then the first

iteration.

Figure 4.13: The first iteration of the parameters panel (left) simply provided
a slider to control the value for each parameter. The final iteration (right) still
provides a minimalist design but with its content much more organized. It also
displays the name of the joint currently selected on the joints selector panel,

since the current parameterization will be associated to that joint.

Additionally, an informative panel was added underneath the parameters panel,

providing useful info for the users. This info is specifically short key commands for

the user to control the interface or the scene’s elements, which are the following:

• ENTER Hide/Show GUI elements;

• F1 Capture and save a screenshot of the scene;

43

Chapter 4. Development and Implementation

• SPACE Randomly reset particles position (Particle System scene);

• CTRL Set tracking on/off for each living particle (Particle System scene).

Having these key commands for minor operations like hiding the GUI, taking

a screenshot, etc., made the interaction between the user and the software much

more practical and efficient.

After implementing the parameters panel based on sliders-control, that compo-

nent was promptly tested with an architect and a dancer/choreographer in order

to validate the concept before moving onto the rest of the implementation. This

was a necessary step of the development process since, throughout our research

on previous related works, it was found that some artists, or other people not

familiar with programming concepts, do not easily understand the concept of pa-

rameters [26]. The results and procedures of these tests are further discussed on

Chapter 5, but it can be advanced that all the testers easily assimilated the concept

of parameters and considered the interaction with sliders a very efficient method

for controlling the parameters values.

To allow the user to set the desired colors for the scene elements, the GUI

also encompasses a color picker. For implementing the color picker, it was used

a Frame Buffer Object (FBO), which is an off-screen buffer to which the color

picker and all its components are drawn. After having the color picker correctly

rendered according to its current properties, the FBO is drawn into the right

bottom corner of the screen, as seen on Figure 4.12 (for implementation details

see ColorPicker.cpp on Section B.1 of Appendix B).

The color picker is composed of a color gradient, two or three color containers

(depending on the number of customizable elements of the scene) and the display

names of each container (whose text color is always contrasting with the back-

ground color), as depicted on Figure 4.14. The user must first click on a color

container and only then pick a color to associate it with, by clicking or dragging

the mouse inside the color gradient.

44

Chapter 4. Development and Implementation

Figure 4.14: The color picker is composed by a color gradient and two or three
color containers (Joints Draw or Particle System scene, respectively). This is a

color picker as shown in the Particle System scene GUI.

Depending on the graphical scene the users are controlling, the color containers

will be associated to the following elements:

Particle System:

• Background Color - The background color of the scene;

• Birth Color - The color with which the particles are born on the emitter;

• Death Color - The color the particles should have when they are about to

die.

Joints Draw:

• Background Color - The background color of the scene;

• Brush Color - The color of the joints’ brushes.

By experimenting with the color picker and making different color combinations

the aesthetics differences they cause on the scene can be seen right away, since all

the changes are processed in real-time. Figure 4.15 shows two different situations

arrived by experimenting with the color picker in the particle system scene.

45

Chapter 4. Development and Implementation

Figure 4.15: Two different results from experimenting with the color picker on
the particles system scene. The circles represent the floating particles and their

color is set according to the values on the color picker.

An FPS (Frames Per Second) counter was also added to the interactive scenes

editing GUI, so that the users could keeps track of the computer performance

while processing and rendering all the data from the current scene. All these GUI

elements can be seen displayed on the screen on Figure 4.16.

A joint selector panel is also displayed on the interactive scenes editing GUI,

which is what allows the user to control which joints from the performer’s body will

affect the projection graphical content. The design for the joints selector is also

minimalist, simply providing a human body silhouette with circles representing

each joint traceable by the Kinect sensor and lines connecting each joint circle, as

seen on Figure 4.17.

When the user selects a joint from the joints selector, the parameters control

46

Chapter 4. Development and Implementation

Figure 4.16: All the three GUI panels added to the scenes editing GUI (pa-
rameters panel, info panel and FPS counter) were implemented using the ofxUI

add-on.

Figure 4.17: The joint selector panel shows a human silhouette with circles
representing the skeleton joints. The currently selected joint is surrounded by a

white circle and the currently active joints are filled with the color green.

47

Chapter 4. Development and Implementation

panel automatically changes to the parameters panel corresponding to that joint.

Therefore, when the scenes editing environment is called by the user, fifteen dif-

ferent parameters panels are created, but only one of them is shown at a time

(depending on the joint currently selected on the joints selector). This allows the

users to associate a different parameterization of the scene’s element to each joint,

making each body joint affect the scene’s content in a different way. For com-

pletely deactivating a joint, i.e., making a performer’s body joint to not affect the

projection at all, the user must select it on the joints selector panel and then, on

the parameters panel, click the toggle that activates/deactivates that joint.

Having the possibility to choose which joints affect the projection graphical

content and how each of them affects it (e.g., different intensity values for at-

tracting the scene’s elements) the results are much more interesting. As seen on

Figure 4.18, now it is possible to avoid that every particle has the same size,

since now the users can parameterize the scene’s content in relation to the joints

properties.

Figure 4.18: The parameters panel shown on the left corresponds to the cur-
rently selected joint on the joints selector panel, on the right. The displayed
particles now have differences on the way they look (e.g., different sizes) and
how they behave due to the differences between each joint’s parametrization.

48

Chapter 4. Development and Implementation

4.2.2 Motion Capture Algorithms

In order to actually relate the scene’s elements with the body movement of the

person being tracked by the Kinect camera, according to the configuration set by

the user, an algorithm for detecting and storing the position of a human body in

front of the camera was used. The motion capture algorithms in MotionDesigner

were developed resorting to OpenNI and NiTE libraries.

The OpenNI libraries were used to detect if at least one Kinect sensor is con-

nected to the computer and, if so, access its depth sensor and turn it on each

time the software needs to track a person in front of the camera, typically when

the users launch the projection sequence from the editing studio or when they are

exploring the possible parameterizations before the live projection.

Having access to the Kinect’s depth sensor, the management of the motion cap-

ture data was done resorting to the skeleton tracking algorithms already provided

by NiTE middleware. To do so, when the Kinect’s infrared emitter is initialized,

a user tracker algorithm provided by NiTE is also initialized. This algorithm can

be found in NiTE amongst others like scene segmentation, floor plane recognition

and pose detection algorithms. The User Tracker algorithm finds all the active

users on the scene (users being the people in front of the Kinect camera) and for

each of them recognize their body boundaries and separate them from each other

and from the background. This allows to distinguish the area of the depth-camera

frame occupied by each performer’s body.

Apart from the user tracker, NiTE also provides an algorithm for skeleton

recognition. This algorithm is called at each new frame, since it needs to constantly

track the position of each skeleton joint of the person in front of the camera. To

manage the data gathered from this algorithm, for each detected performer in

front of the Kinect camera the position data is stored in an array.

At each new frame, the array which stores the body pose data of each person

in front of the Kinect sensor is accessed and, for those whose body is already

recognized by the User Tracker algorithm, we access its skeleton information and

49

Chapter 4. Development and Implementation

call the algorithm for recognizing each joint of that user skeleton (see Section B.2

of Appendix B for further details). By doing so, the performers’ joints position

and orientation in space can be obtained. These joints positions are then fed into

the algorithms responsible for managing the position of the scene’s elements.

The implemented GUI for editing the graphical scenes content and for man-

aging the motion tracking properties were used in all types of graphical scenes

provided in the software. In order to provide more than one scenario for the

users of MotionDesigner to experiment with while creating their own interactive

projections, two different types of graphical scenes were implemented:

1. Particle System - where a point in space emits a set of floating particles

that track and orbit the performer’s body joints;

2. Joints Draw - where the skeleton joints of the performer act like brushes

painting on a canvas.

To find out which scenes the software would provide right from the start some

interviews were conducted with a group of people from the target audience. Ac-

cording to the dancers and architects interviewed, these two types of graphical

scenes are the most used and the most interesting types of graphical content to

use in interactive performances or installations.

4.2.3 Particle System

A particle system is one of the interactive graphical scenes provided by Motion-

Designer for its users to embed in their interactive projections. This type of scene

was implemented since it is one of the most explored in interactive projections

due to its interesting behavior and the many different and interesting shapes it

assumes when interacting with the movement of a performer.

The particle system scene consists on a particles emitter, i.e., a point in space

that constantly ejects particles onto the scene. The particles ejected by this emit-

ter move independently from each other and will track a specific joint from the

50

Chapter 4. Development and Implementation

skeleton(s) detected by the depth camera. Figure 4.19 illustrates a particle system

composed of an emitter on the center of the screen and an attraction point.

Figure 4.19: Typical structure of a particle system. 1 - Particles emitter; 2 -
Attraction point for the particles

The parameters that characterize the particle system, i.e., the variables that

would be adjustable by the final user, are [33]:

1. Attraction Force - the intensity with which the point of attraction pulls

the particles;

2. Particles Size - the size of the particles radius (in pixels);

3. Life Time - time that the particles take to disappear from the scene (in

seconds);

4. Motion Blur - visibility of the trail leaved by the particles motion;

5. Rotation - centrifugal force of the attractor point, i.e., controls the speed

and orientation with which the particles orbit the target;

6. Emitter Radius - the size of the emitter radius (in pixels);

7. Particles Rate - the number of particles ejected by the emitter (in particles

per second);

51

Chapter 4. Development and Implementation

8. Initial Velocity - the maximum velocity with which the particles are ejected

from the emitter.

These are the parameters that will be shown in the parameters control panel

(left panel on Figure 4.18). By setting different values to each of these parameters,

through the GUI elements provided on this panel, the user will affect the aspect and

behavior of the particles being drawn and computed by the responsible algorithms,

in real-time.

The particle system implemented is one of independently moving particles.

This was decided because it would be easier to compute all the data in real-time,

since each particle’s movement is not affected by the surrounding particles, i.e.,

no collision detection, no gravitational attraction, etc. This allows us to have a

larger number of particles on the screen without slowing down the computation

speed.

Each particle is drawn in the screen as a 2D primitive, specifically a circle. By

doing so, the drawing and managing of the rendering properties was quicker, when

comparing to 3D rendering, allowing us to focus on the behavioral algorithms of

the particles.

There is a single class, called Particle, to manage all the particles properties,

since their data and functions will be reusable for each particle generated by the

emitter (see Section B.3 of Appendix B). The first three functions defined after

the constructor are the basic functions of any openFrameworks program. In OF

typically every class has these methods implemented and they are called during

the execution of the program as Figure 4.20 shows.

The arguments passed to the update() function of the particles are, respec-

tively, the time passed between each calling of this function (in seconds) and the

x,y and z coordinates of the destination point, i.e., the attractor’s position (for pro-

totyping we passed the mouse coordinates but later we passed the corresponding

joints position).

52

Chapter 4. Development and Implementation

Figure 4.20: Basic function calling in a typical OF class. The function setup()
is called when the class is instantiated, then the update() and draw() functions

are called cyclically until the user terminates the program execution [33]

The draw() function has two arguments which are, respectively, the minimum

and the maximum color value between which the particle will interpolate. This

means that when a new particle is born it will have associated a specific color

and, as its time of living approximates the instant where it is supposed to die, its

color will interpolate until it reaches the value of the other color specified. This

color interpolation concept was already explored by Denis Perevalov [33], but in

his implementation the user can not change these values. In MotionDesigner the

user can set, in real-time, the desired birth and death colors for the particles by

using the color picker provided on the GUI.

Figure 4.21 shows a screenshot of the implemented particle system, which

illustrates which parameters the users can control and to what they refer to.

Everytime a particle is born and ejected by the emitter it has associate to it a

life time (time allowed for the particle to be alive), a radius size and a force value

(the intensity with which the particle is pulled by the attractor), which are all

parameterized by the user. The particles position and velocity are initialized with

a random value within the emitter radius and the velocity radius of the particle,

respectively, as depicted on Figure 4.21. This makes the particles to never be born

on the exact same place nor being all ejected with the same speed.

53

Chapter 4. Development and Implementation

Figure 4.21: eCenter - Emitter Center; eRadius - Emitter radius, i.e., possible
area where the particle are born; pos - Particle position; vel - Particle velocity
vector; velRad - Particle’s initial velocity limit (the particle is born with a

random velocity within this limit)

At each new frame, the particles’ state is updated and they are drawn to

the screen according to their parameters values. For computing each particle’s

properties, at each new frame, their velocity vector is rotated according to the

value specified by the user in the corresponding parameter, whose value ranges

from -500 to 500 (positive or negative sign refers to the rotation orientation, being

it counter-clockwise or clockwise, respectively). Since the particles are supposed

to move on the xy plane, their velocity vector is rotated on the z plane (see

Particle::update() on Section B.3 of Appendix B). The particles position is

computed using the Euler method [19], which is one of the simplest numerical

integration methods there is. The formula used in the Euler method is:

f(t0 + dt) = f(t0) + g(t0)dt (4.1)

With Equation 4.1, each particle’s position will be updated to the position it

should assume regarding the velocity vector and the time passed before the last

update function call. Then, the newly position coordinates are aligned towards

the target, i.e., towards the particle attraction point. This is done by computing

the Euclidean distance between the coordinates of the target and the particle’s

54

Chapter 4. Development and Implementation

current coordinates, and multiplying this difference by the intensity they are being

pulled in this direction, which is also one of the parameters specified by the user.

However, instead of simply multiplying the attraction force value, it is actually

multiplied by a random value between half of the attraction force value and its

actual value. This makes each particle to be pulled by the attraction point with

different intensities, varying somewhat within the value specified by the user. This

makes the particles to move in a much more interesting way as a group, which was

something not explored by Perevalov’s system [33].

In order for the particles to be drawn to the screen according to the values

computed on the update function, simple circles primitives are drawn on the screen

for each number of articles alive, according to their computed positions and radius

(the latter specified by the user). Each circle is drawn filled with the color it is

supposed to have in that time instant (an RGB value between the birth and death

colors, specified on the color picker, according to the life time of the particle). This

concept of color interpolation is illustrated in Figure 4.22.

Figure 4.22: The color of the particles are the result of the interpolation of the
Birth and Death colors (specified by the user through the color picker provided
on the GUI), which is related to the distance the life time value of the particle
is between 0 and the maximum life time allowed (specified by the user in the

parameters panel).

For rendering the particle system as a whole, and since the user can set the

intensity of the motion blur left by the particles, it was used an off-screen raster

buffer, an FBO, for drawing the different particles positions over time. This FBO

has the same width and height as the screen and is used for accumulating the

drawings on the screen, as typically done for rendering overlapping drawing layers.

55

Chapter 4. Development and Implementation

The background color specified in the color picker is set to the FBO at each new

frame, so as the circles representing the particles. Therefore, the positions of the

particles are drawn to the FBO accumulatively, allowing the possibility for each of

them to leave a trail while moving around. Only when all the particles are drawn

to the FBO and this has the rendering according to the current parameters values

and colors specified by the users, the frame buffer is drawn on the screen.

Having an FBO for accumulating the particles position allows them to leave

a trail while moving on the screen. But in order for the user to control the trail

intensity left by the particles (motion blur) a semi-transparent rectangle with

the screen dimensions is drawn inside the FBO after all the drawing operations

for the particles are done. By drawing various rectangles above the particles

layer (one at each new frame) the previous positions occupied by the particles

will become gradually transparent until they are no longer visible. The time the

particles previous positions, i.e., the particles trail, take to disappear form the

screen depends on the motion blur value specified by the users on the parameters

panel, e.g., if it is higher then the transparency of the rectangle will be greater

and, therefore, the trail will take longer to disappear.

By using an off-screen buffer to accumulate the particles positions and a

method for controlling the transparency of each drawing layer, allows the particles

to have motion blur, which intensity is controlled by the user in real-time, along

with other parameters like the size of the particles, the intensity with which they

are attracted to the performer’s body joints, their rotation speed, etc. Figure 4.23

shows a screenshot of the particle system, which shows the particles leaving a

motion blur while moving on the screen.

For each particle born and ejected by the emitter there is a specific target

to which they will travel. At first this target was, for every particle, the mouse

coordinates (Figure 4.23 is an example of this type of implementation). Later,

when the tracking was working properly, the particles would move in the direction

of the body joints of the person being tracked by the Kinect. To map the particles

into the positions of each body joint, each particle is born with a different target

56

Chapter 4. Development and Implementation

Figure 4.23: Visual result of the particle system implementation. Each particle
leave a trail whose intensity is controlled by the user in real-time (motion blur
parameter). Other parameters like the size, attraction force, rotation speed,

etc., are controlled in the parameters panel on the left.

joint. Each particles has a joint index value associated to it, which ranges from 0

to 14 (to cover all the fifteen traceable joints). The value attributed to the first

particle to be born is 0 and it iterates for the next particles until it reaches 14, then

it resets the target to 0 for the 15th particle to be born and continues the iteration

for the following particles, and so on. This allows the particles to have different

target joints. The relationship between the target index and the corresponding

joint can be seen on Table 4.1.

The target joint linear iteration is considered for every joint of the performer’s

body only if the user did not set any joint as inactive. When the user clicks on

the Active toggle on the parameters panel, the currently selected joint will be set

to the value of the toggle, e.g., if the selected joint on the joints selector panel

is the right shoulder, and if its toggle on the parameters panel is off, then the

right shoulder joint will not be considered as an attractor for the particles born

on the emitter, making the newborn particles to ignore this joint as a target. This

successfully makes the particles to travel in the direction of different points in

space, which correspond to the performer’s body joints traceable by the Kinect

and activated on the GUI. So that the emitter does not always stay in the same

position, its coordinates are also updated so it follows the performer’s center of

57

Chapter 4. Development and Implementation

Target Index Target Joint

0 Head

1 Neck

2 Left Shoulder

3 Right Shoulder

4 Left Elbow

5 Right Elbow

6 Left Hand

7 Right Hand

8 Torso

9 Left Hip

10 Right Hip

11 Left Knee

12 Right Knee

13 Left Foot

14 Right Foot

Table 4.1: List of traceable joints and the corresponding target index. The
1st particle to be born on the emitter will trace the performer’s head, the 15th

particle will trace the right foot, the 16th will trace the head, and so on.

mass.

The testing and experimentation with the particle system scene, with the par-

ticles tracking the body joints of a person in front of the Kinect camera, resulted

in very interesting situations which are illustrated on Figure 4.24.

4.2.4 Drawing With Joints

In order to have more than one scene to provide to the users and to allow them to

have different materials to work within their interactive projections, another type

of interactive graphical scene was implemented, which was called Joints Draw.

58

Chapter 4. Development and Implementation

Figure 4.24: The particles track the performer’s skeleton joints and orbit
them forming an anthropomorphic swarm of particles, which is more or less
recognizable as a human form depending on the current active joints and their

parameterization.

In the Joints Draw scene the performer’s skeleton joints act like brushes paint-

ing on a canvas, which is the screen. In this type of scene the parameters config-

urable by the user are:

1. Brush Size - the size of the brush radius (in pixels);

2. Trail - the perseverance of the trail leaved by the brush motion (how many

seconds does it take for the drawing to be erased);

3. Drawing Speed - the intensity with which the joints move the brushes.

To allow the management of the parameterizations, behavior and rendering

properties of each brush a class called Brush was implemented (see Section B.4 of

Appendix B for further details) and instantiated fifteen times (one for each body

joint traceable by the Kinect camera), storing each of them in an array, so as in

the particle system implementation. The brushes are also drawn in the screen as

simple circle primitives, whose size and color can be set by the user in real-time

by interacting with the provided GUI (see Figure 4.25).

59

Chapter 4. Development and Implementation

Figure 4.25: Two brushes (head and left shoulder) painting on the screen. The
user can set the size of the brushes, the drawing speed and the erase time for
the drawing on the parameters panel (left). Each parameterization is associated
to the brush corresponding to the joint currently selected on the joints selector

panel (upper right).

In order to make each traceable body joint to paint on the screen, i.e., to make

each brush leave a trail, an off-screen raster buffer (FBO) was used, so as in the

Particle System scene. The FBO is used to accumulate the drawings of each brush

on the screen. It is this accumulation that makes each brush to leave a trail, which

represents the drawing the performer is actually making.

As in the Particle System scene, it is by controlling the transparency of the

semi-transparent rectangle that is drawn above the screen buffer, that the users

can set the intensity of the trail leaved by the moving objects. In this case, a

higher trail intensity means the drawing will take more time to be erased from the

canvas. However, this time the user can not set this trail value to a value that is

so low it actually does not result in a visible trail. Therefore, there is a minimum

value that is allowed for the user to set on the parameters panel, which still makes

the brushes to leave a trail on the screen although this trail (the drawing itself)

will take a few seconds to be erased from the screen.

Figure 4.26 illustrates some results by experimenting this scene with a per-

former. Some moments allow a more clear reading of the performer’s pose, for

60

Chapter 4. Development and Implementation

instance the upper right screenshot, where the head (biggest brush) the torso and

the legs are identifiable. Other moments, like the ones depicted in the bottom

images, present a more abstract shape due either to the lack of joints actually

painting on the screen. On the bottom left image only two joints are shown,

which are not identifiable, while on the bottom right image, due to the fast move-

ments created by the performer’s body and the many active joints, the brushes’

drawings overlap each other.

Figure 4.26: Some abstract shapes can be drawn on the screen by having a
performer moving around and conducting each brush move on the canvas/screen.
By changing the parameters values the user can set different aesthetics to draw-

ings

61

Chapter 4. Development and Implementation

4.3 Interactive Audio

Besides the interactive graphical scenes, MotionDesigner also provided its users

the possibility to work with interactive audio to play along with the projection of

the graphical elements.

The developed software allows the users to use a specific sound file, e.g., WAV

or MP3 file, and transform its properties while it plays, according to a set of

interaction rules that they set as desired. The sound properties which can be

affected through the motion of the performer in front of the depth camera are the

following:

1. Volume - the volume of the sound being played;

2. Speed - the speed with which the sound is being played (can be lower than

the normal speed or higher);

3. Panning - sets how the sound is channeled through the speakers (speakers

primacy).

For each of these sound properties, the user can choose which body joint of

the performer will affect that property, as well as choose the position reference for

that joint. This means that, after the users select a joint to affect a specific sound

property, they can set one the following position references for that joint:

1. X-Axis - the sound is transformed according to position of the joint on the

x-axis of the screen;

2. Y-Axis - the sound is transformed according to position of the joint in the

y-axis of the screen;

3. Distance to Marker - the sound is transformed according to distance be-

tween the joint position and the position of a marker on the screen (which

can be changed by the user);

62

Chapter 4. Development and Implementation

4. Distance to Mouse - the sound is transformed according to distance be-

tween the joint position on the screen and the position of the mouse.

There are four different ways a single joint can transform a sound property and

there are fifteen different joints that can affect that property. This opens a wide

range of possibilities for the performer to interact with the sound samples being

played, since there are joints that are more often moved by the performer than

others, e.g., the hands have a higher tendency to be moved than the hips. By mak-

ing different combinations between the joints which affect a sound property and

the transformation reference for that joint, the users can have different behaviors

for the soundscape of their interactive art piece, since the way the soundscape be-

haves do not depend only on the performer’s body motion but also on the current

configuration the user sets.

To allow the users to explore which joints they will want to control a specific

sound sample, they can launch, on the Editing Studio, a new editing environment

where the sound chosen sound sample is being played and where a GUI allows

them to set the desired control settings. This is done by clicking on the Explore

button associated with the sound samples aon the audio files palette of the Editing

Studio, as done with the interactive graphical scenes (see Figure 4.27).

Figure 4.27: Explore Interactive Audio button. The sound files presented on
the sounds panel display an Explore button for the user to run the interactive

audio parameterization environment.

In order to load a specific sound file the OF class ofSoundPlayer was used,

which allows to load a sound file of type WAV or MP3. In the case of Motion-

Designer, WAV files are used, since these files are much faster to compute in OF,

63

Chapter 4. Development and Implementation

giving the fact that MP3 files represent a compressed form of audio and so these

type of files consume more CPU memory for decoding and processing their data

[33].

When the interactive audio editing scene is called, the loaded sound file is im-

mediately played. The OF sound engine will make the sound sample to be loaded

instantly and played in a loop until the user exits the audio editing environment.

The user can pause the sound sample playback at any time by pressing the Space

key on the keyboard. The GUI for this audio editing environment, seen on Fig-

ure 4.28 was also developed using Reza’s ofxUI add-on and consists on a panel

with multiple drop down lists, two for each sound property so that the user can

choose the desired control joint and its position reference, and text information

which display the current values of each sound property.

Figure 4.28: Interactive Audio Editing GUI. The user can set the joints respon-
sible for transforming the properties of the sound sample being played during the
projection. The panel on the left allows the user to associate a specific joint to a
sound property (speed, volume and panning) and specify its position reference.
On the bottom left corner the current values for each sound property are shown.

For computing the changes to be performed to the sound sample being played

according to the current configuration, different operations are done. At each new

frame, it is checked what are the joints and references selected on the sound control

panel and, according to this data, check the corresponding joints position. For the

sound speed control the corresponding joint position is read (which is known due

64

Chapter 4. Development and Implementation

to the NiTE skeleton tracking algorithms) and its value is compared to the position

references it should take. Only then, according to the joint position on the screen,

e.g., position on the screen x-axis, the value for the speed of the sound is known,

which will be a value between 0.5 and 1.5 (sound speed x0.5 or x1.5, respectively).

The value to be set to the sound speed is proportional to the distance between the

joint position (be it the x position, the y position, the position in relation to the

marker, etc.) and the screen borders.

The proportional distance method for computing the sound speed value accord-

ing to the control joint position in relation to the screen is the same for computing

the other sound properties, except that each of them has different minimum and

maximum values, e.g., while the sound speed can be half or the double of the

normal value, the sound volume can go from 0.0 to 1.0 (which represents mute

and 100% of the sound volume, respectively). The value for the sound panning

ranges from -1.0 to 1.0, representing 100% of the sound being played on the left

speaker or the right speaker, respectively.

Complementary to the sound properties control panel and the text display, a

representation of the skeleton being tracked by the depth camera is also drawn on

the screen. As seen on Figure 4.28, the performer’s skeleton joints are represented

through the use of small rectangles, which are inter-connected by lines to give the

look of a human figure. Two circles are also drawn in the screen, representing

the marker and the mouse position so that the user is always aware where these

references are according to the skeleton joints position.

With the interactive audio control environment, along with the graphical scenes

editing GUI implemented and accessible through the Editing Studio, the users

can have real-time control over different audiovisual elements to integrate in the

interactive projection they are creating. In order to reinforce and strengthen Mo-

tionDeisgner ’s own identity, a logo was created, which can be seen in Figure 4.29.

65

Chapter 4. Development and Implementation

In Figure 4.30 it can be seen a side-by-side comparison between the soft-

ware’s early sketches, which were functionality-driven, and its final implemen-

tation, which resulted from the interaction with the final users along the develop-

ment process (details on how this interaction and its results are further discussed

on Chapter 5). In this comparison it can be seen the different editing environments

MotionDesigner provides: the Editing Studio, which is the main environment of

the software and where the user can sequence and pre-configure all the audiovisual

content of the projection (see section A.1 of Appendix A for the rough hand-drawn

sketch); and the Interactive Scenes Editing environment, where the user can pa-

rameterize and control the projection content in real-time (for these sketches see

section A.2 of Appendix A).

Figure 4.29: The MotionDesigner logo, which was created in a vector graphics
editing software.

Figure 4.30: A side-by-side comparison between the proposed software inter-
face as depicted on our early sketches and the final implementation.

66

Chapter 5

Evaluation and Discussion

The developed software, MotionDesigner, was tested with ten people from the

target audience, being those choreographers, dancers, architects and multimedia

artists interest in creating interactive projections for a live performance or for an

installation art piece. The software was tested with these people to check how

intuitive and efficient it is and to confirm if this tool is a catalyst in the creation of

this type of interactive art works. The majority of these tests (six out of ten) were

done at the end of the development process in order to validate its concept and

efficiency, whereas the remainder were done during the development process to

aid the software implementation. When the implementation was finished a build

of the developed software was given to a dancer/choreographer, so that she could

autonomously create an interactive projection to her liking using the developed

tool.

5.1 Evaluation Method

To test MotionDesigner we conducted different sessions which consisted on pre-

senting each interactive graphical scene to the user, as well as the editing stu-

dio environment, and ask the tester to perform a set of tasks we gave to them.

67

Chapter 5. Evaluation and Discussion

These tasks consisted on editing the content of each scene and sequence and pre-

parameterize them in the timeline of the editing studio.

For gathering the ideal conditions to carry out the tests we guaranteed ac-

cess to a room with 20 m2 of free space and a projector installed, which, along

with the Microsoft Kinect camera, would be connected to a computer running

MotionDesigner.

The ages of the ten testers were between 19 and 33 years of age and they

were professionals from different areas such as architecture, dance/performance,

video art and research science. Each of these testers performed the set of tasks we

proposed them without the presence of any other person in the room, apart from

ourselves. This means each test session was private and the testers did not know

beforehand anything about the software they were about to manipulate.

Each test session started with a brief explanation of the premise behind the

creation of the tool the testers were about to use and the purpose of its imple-

mentation. Then, the testers were immediately invited to use a laptop that was

running a build of our software and they were asked to perform some tasks in the

Editing Studio, which is the first environment presented to the user when run-

ning MotionDesigner. These tasks consisted on dragging a graphical scene to the

timeline (the one the user wanted), increasing the time duration of that scene,

changing the instant at which the scene begins, dragging an audio file to the time-

line and repeating the previous operations for the sound files. Once the testers

performed these tasks successfully, they were asked to parametrize the scene or

the audio sample on the timeline by adding at least one timestamp to that time-

line object. Then, they were asked to change the parameters values for the newly

created timestamp, delete a timestamp from the timestamps list and, finally, play

the timeline sequence and preview its result on the preview player.

Once the users finished interacting with the editing studio environment, they

were introduced to the interactive scenes editing interface. We asked the tester to

run each of the interactive scenes by clicking on the Explore button (in the order

they wanted) and perform another set of tasks for each of the two scenes provided.

68

Chapter 5. Evaluation and Discussion

On this part of the test one of the developers acted as the performer in front of

the Kinect sensor, while the tester was operating the computer. This was done so

that the content being projected had a real-time response to the movement of a

third person, as it is supposed to.

For the Particle System scene the tester was asked to change the behavior of

particles and the emitter by interacting with the parameters panel. They had

freedom to change the parameters they wanted to, but we suggested them to try

to change the particles size, increase the area where the particles are born, change

the particles rotation, decrease the delay between the movement of the performer

and the movement of the particles and decrease the number of particles in the

screen. After the users interacted with the parameters panel, they were asked to

change the color of the scene’s background and the color the particles should have

when they are about to die. Finally, it was asked that they changed the number

of joints that affect the particles motion, by making the head and the hands of the

performer the only joints that affect the projection content (although they had

the freedom to perform other joints combination).

For the Joints Draw scene we asked the tester to try to deactivate the head

brush, change the size of the hands brushes, changing the color of the brushes and

the background, and, finally, making the drawing to be erased faster.

The evaluation process for both the editing studio and the interactive graphical

scenes environments was conducted through careful observation, since we observed

how each tester interacted with the software’s GUI and how they performed each

of the tasks from the proposed guideline. At the end of the test session, a small

questionnaire was hand-out to the tester, which addressed the following questions:

1. Is the interface intuitive to be used?

2. Which of the provided parameters are the most relevant and which are dis-

pensable?

3. Which parameters could be added to the interface?

69

Chapter 5. Evaluation and Discussion

4. Are the sliders a good and intuitive way to control the parameters values?

5. Which visual and functional aspects of the UI could be improved?

6. Do you feel you had total control over the projection content and was the

creative process easier?

7. Would you prefer using a tool like this for autonomously creating and edit-

ing the projection content or rather delegate these functions to a computer

programmer?

8. Did you feel any difficulty or unsuccessful carrying out your ideas using this

tool?

9. Did you feel that this tool helps the creative process?

The results of these guided tests, from what we got from observation to the

questionnaire answers, were diversified and allowed us to understand what was

lacking in the software implementation, in terms of features and requirements,

and which components of the software are more efficient and robust and which are

not.

5.2 Results

At the end of each test session it was concluded that the tester could perform all

the tasks they were proposed, regardless of the time each one of them took to do

so, which was different in each case.

Since the Editing Studio was the first environment to be tested it could be

seen right away that it was really intuitive for any tester to have a timeline based

system for manipulating different audiovisual files. On this environment, each

graphical scene was conceptually seen as separate files that the users can use and

reuse, which caused many testers to make an analogy between video files and the

interactive scenes. Analogously, the Editing Studio environment was compared

70

Chapter 5. Evaluation and Discussion

to the environment of any video editing software, making the users feel that the

developed tool is conceptually close to a video editing software. This analogy and

sense of familiarity to most of the users made its use much more effortless and

intuitive, meaning that the borrowing of the video editing concepts was well done,

as was supposed to.

The GUI for the interactive scenes editing environment presents the users an

interface based on sliders manipulation, with which one of them referring to a

parameter of the scene elements. As Jung, Doris, et al. concluded on their paper

[26], the concept of parameters is something that the professionals from the arts

field are, typically, not familiar with and it is sometimes difficult for them to fully

understand it. However, we could see in our tests that each of the users could

easily understand this concept of parameters as being characteristics of the scene

elements, and that changing each parameter value was going to change the form

or behavior of the elements displayed on the scene. It could also be seen that the

testers made a clear correspondence between the listed parameters and the charac-

teristics of the elements on the scene, since they altered the right parameter when

attempting to change a specific characteristic of the scene elements. The reason for

contradicting Jung’s results may be that the people that tested MotionDesigner

were somehow scientifically literate.

Regarding the four tests that were conducted during the development process,

each test was done with a different person from the target audience. Each of

these four people tested a different version of the software. These versions had

different features turned on and off, i.e., a version presented some features that

could not be presented in another version, which means each version had a different

combination of features available. This allowed us to better understand which

features are fundamental for the users. The feedback the users gave at the end

or while performing the proposed tasks, by interacting with these versions, was

a valuable contribute. At the end of each test the users suggested some features

that they felt were needed, as well as pointed some design issues to be fixed.

There were some options on the design and implementation of our system, e.g.,

adding or not a preview player and changing the panel distribution on the editing

71

Chapter 5. Evaluation and Discussion

studio interface, that resulted from the testers feedback or just by observing them

interacting with the different versions of the system. It can be seen in Figure 5.1

that the number of suggestions, i.e., features the users felt that were missing in

our implementation, decreased over time, since each version of the tested software

had more features presented to them then the previous versions, e.g., the preview

player, the panels organized in a tab-system, etc., covering a wider range of needs

that the users feel when using the developed tool.

Figure 5.1: Number of implementation suggestions proposed by the testers
according to each tested version of the software

The first version of MotionDesigner to be tested did not have the preview

player panel and the parameterizations/timestamps system implemented on the

editing studio environment. The joints selector panel was also not displayed to the

users on the interactive scenes editing environment. Version 2 still did not provide

the joints selector panel and iteration 3 already covered the previous features that

were not available, although it lacked the sound interactivity. The fourth and last

iteration to be tested was a version very similar to the final prototype version of

the software (with only a few design differences).

After the final version of the system was tested with each of the six people

from the target audience (those that did not tested it in an early stage) they

were asked each question from the questionnaire, in order to better understand

the efficiency of our implementation. The answers they gave to the questionnaire

72

Chapter 5. Evaluation and Discussion

allowed to directly know how the experience was for each tester. The results

presented further are relative to these six testers that already tested the final

implementation version.

The first question to be asked to the testers addressed the intuitiveness of the

presented system. It was intended to know if the users felt that interacting with

the system was relatively easy and if they could perform the desired tasks in an

intuitive and effortless way.

Figure 5.2: Graph relative to the testers feedback on the intuitiveness of the
system.

It can be seen in Figure 5.2 that all the users considered that our tool was

relatively intuitive to use. However, 62,50% of the testers considered that, despite

of being intuitive, there are some minor changes that could be done to the GUI

in order to boost even more the user experience. They suggested a few design

decisions, such as changing the sliders name position from underneath to above

the slider itself, as well as provide pop up text notes so the user understands what

a specific button does the first time they see that interface, e.g., the Explore button

on the scenes palette of the editing studio, etc. Other visual feedback issues like

the pointing arrows that appear when hovering the border of the timeline objects

(representing the fact that these are resizable elements) are examples of details

that were not yet implemented when the tests were carried out and are things that

some testers felt were lacking in order to have a completely effortless experience.

It can also be seen by analyzing the Figure 5.2 that no tester said the developed

73

Chapter 5. Evaluation and Discussion

software was not intuitive at all and this reflects the fact that our design approach

was somehow appropriate despite the issues that could be refined.

The second question from the questionnaire intended to check which parame-

ters were the most interesting and fundamental in each scene and which were not.

For both type of scenes, the Particle System and the Joints Draw scenes, all the

users replied that all the parameters were relevant for affecting the scene, feeling

that none of them induced redundancy on the way they affected the scene ele-

ments. Some of the testers reinforced that, for all the parameters, by changing the

values of each one of them we could directly see the consequence of that change

and that this consequence was obvious and coherent giving the new parameter

value. These real-time results was something that pleased the testers a lot, since

it catalyzes the action-reaction process when they are testing the ideas they have

for that projection scene.

On the next question, the users were asked which graphical scenes could have

more controllable parameters and which parameters could these be.

Figure 5.3: Graph relative to the testers feedback on which scenes could have
more control parameters beyond those which are provided.

As can be seen on Figure 5.3, half of the testers did not have anything to add

to any scene in terms of controllable parameters. However, the other half of the

testers referred to the Particle System scene and/or the Joints Draw scene. It can

be concluded that the particle system scene is the one with more fertile ground,

74

Chapter 5. Evaluation and Discussion

since, besides being the scene with more control parameters (eight, against three

of the joints draw scene) it had more testers suggesting new control parameters

than the joints draw scene (approximately three times the number of testers).

From these suggestions the testers referred new options like controlling the speed

at which the particles are born on the emitter, setting the position to the emitter

so that it does not always follow the performer’s center of mass, adding a jitter

controller to induce instability to the particles behavior or even choosing to rep-

resent the particles as filled or unfilled circles. For the joints draw scene, a tester

suggested things like the possibility to draw straight and/or dashed lines. These

are all new control parameters that could be added to each respective scene, allow-

ing the expansion of the user’s degree of freedom when manipulating the contents

of the projection.

After confirming that the concept of parameters was something easy to grasp

for each of the testers, it was necessary to check if they also considered the sliders

an easy and intuitive way to control those parameters.

Figure 5.4: Graph relative to the testers feedback on the intuitiveness and
practicability of having a sliders-based interface for controlling the parameters

of the scene elements.

Through the results which are illustrated in Figure 5.4, it can be concluded that

the implementation of a sliders based panel was a good interface design decision,

since every tester considered the interaction with this interface element efficient.

The sliders allowed the users to go from one value to another much higher or much

75

Chapter 5. Evaluation and Discussion

lower value in a one second operation. Despite the fact that all of the testers felt

the sliders were a great interface element to control the parameters values, half

of the interviewed said that they could also benefit from a text field for setting

more precise values, which can be something frustrating to do when controlling

the slider. The combination of these two elements could make the interaction with

the GUI parameters panel much more efficient, despite having the slider as the

main controller.

Still focusing on user interface polishing, the testers were asked which GUI

elements could be visually or functionally improved. These GUI elements refer to

each interface panel form the interactive scenes editing environment (parameters

panel, info panel, color picker and joints selector) and from the editing studio

(parameterizations panel, scenes and audio panels, preview player and timeline).

Figure 5.5: Graph relative to the testers feedback on the improvement of the
GUI elements of each MotionDesigner environment

In this poll, half of the testers said that all the GUI elements were satisfac-

tory enough for them and did not need any improvement. However, the other

half referred to different GUI elements from both the interactive scenes and the

editing studio environments. A small percentage of the users, 12.5%, referred to

the color picker saying that its visual representation could be improved, namely

the display text for the color containers names and the way the containers are

differentiated from the background. The same number of testers referred to two

76

Chapter 5. Evaluation and Discussion

different elements from the other environment, the editing studio. One of these el-

ements was the parameterizations panel, and it was suggested that the drop-down

list where we can see the list of timestamps and pick one of them was immediately

identifiable as so. This was posteriorly fixed by auto-opening the drop down list

when the users open this panel for the first time and every time they add a new

timestamp.

Another design issue referred by the testers was the general design of the editing

studio, specifically the color scheme, claiming that it could not be appellative to

most of the common users. A GUI element that had more suggestions, 25% of the

testers, was the parameters panel from the interactive scenes editing environment.

They suggested improvements like changing the color scheme for the sliders, i.e.,

swapping the colors between the unfilled and the filled part of the slider. These

observations were taken in consideration but since we had to change the source

code of the ofxUI add-on, which was used to implement the sliders, and since this

was suggested by a considerably small number of users, these changes were not

implemented.

After asking the users about the software interface, it was needed to know

how they felt about the degree of freedom this tool gives them during the creative

process. In order to do so, they were asked if during the time they were using

MotionDesigner they felt they had total control over the projection content and

if the experimentation process (e.g., for representing the graphical scenes) was

easier having a tool like this, which is specifically oriented for the creative per-

son’s use without needing the technical person or the computer specialist. All the

testers said they felt this tool helped them in creating the interactive content they

idealized and that it gives them autonomy in that process.

Besides asking about the degree of freedom this tool provides to its users, we

went further in the question and also asked if they prefer, during the creative

process, to autonomously dictate, manipulate and sequence the content of the

interactive projection or if they prefer to delegate all the technical aspects to

a programmer or computer specialist. To this question all the testers, with no

77

Chapter 5. Evaluation and Discussion

exception, told that they would prefer to use a tool like this since it gives them

autonomy to experiment their ideas as they come by during the creative process,

which is something really desirable by most of the creative people engaging in a

creation of their own.

To reinforce the testers argument on preferring to have a tool like Motion-

Designer to autonomously create their interactive projections, a set of graphical

scenes were proposed to the testes so that they could reimagine them. We would

then implement the tester’s idea right away so that he/she could measure how

much time is consumed during that task and if still feels stimulated after a while.

What was concluded is that everyone felt it took too long for the changes to be

made through coding and that while we were still implementing the change the

users wanted to make they already felt the need to experiment other ideas and

not loose much time with one. The testers reinforced that with a tool oriented

for the creative people, they can test different possibilities at a much faster pace

and without having to depend on third-party skills. This was a great concept

validation for system herein presented.

After confirming that the ideas materialization is a fundamental process of

the creative process, we asked the users if they felt any difficulty in carrying

out their own ideas for the interactive projection they were supposedly creating

with tour software. As can be seen on Figure 5.6, all the users felt successful on

achieving the results they wanted when creating their own interactive projections.

A considerable number of the testers also said they felt this tool could make them

reach new ideas, since they can not only implement in real-time the ideas that

emerge but also, through experimentation, arrive to new and different ideas that

were not foreseen. This is a very useful aspect since the artists do not always know

what they wants and since a set of graphical scenes is already provided for them

to experiment with, new ideas can emerge and the creative process will hopefully

be easier and productive.

In order to confirm if the developed software really facilitates the creative

process of such interactive works, the testers were directly asked if they felt this

78

Chapter 5. Evaluation and Discussion

Figure 5.6: Graph relative to the testers feedback on materializing their ideas
for an interactive projection using MotionDesigner

process facilitation, to which all of them answered positively, as seen on the results

presented on Figure 5.7. However, a quarter percent of the testers said that

they felt the tool had a complicated learning curve, since it is harder for the

user to master the manipulation of each system component. Despite this, they

immediately stated that after some practice this tool is something really efficient

and productive. They also suggested making a brief introduction tutorial when

running the software for the first time, which is something considered for further

software iterations.

Figure 5.7: Graph relative to the testers feedback on materializing their ideas
for an interactive projection using MotionDesigner

79

Chapter 5. Evaluation and Discussion

After finishing the questionnaire the users had freedom to suggest other fea-

tures or simply give an overall feedback. Most of the users did not cover any issue

that they did not addressed already when answering the questionnaire. However,

two testers said they wanted to try acting as the performer in front of the depth-

camera and interact directly with the projection content. This is a very interesting

scenario that was not foreseen when outlining the tests. In this scenario the tester

was directly interacting with the projection content, e.g., the particle system scene,

and exploring the shapes those scene elements could assume, while asking one of

us to operate the computer and change the parameters values to their liking. This

is another way for the artists to explore, in real-time, the possible representations

of the scene elements and find an aesthetic that pleases them, but was something

that we did not expected and found as a very interesting scenario.

One of the testers, which is a dance degree student, was chosen to act as the

performer and she also showed interest in participating in the creation of a small

interactive performance. Therefore, the developed tool was used to create a small

dance performance, in which both the particle system scene and the joints draw

scene were used as the projection content. Figures 5.8 and 5.9 show some moments

of the performance rehearsal with the dancer acting as the performer and one of

us as the conductor of the performance. All the projection aesthetic was found by

following the dancer’s artistic vision.

Through the evaluation results a very positive conclusion can be made, since

they validate the concept of the proposed system and confirm that the developed

tool is a significant aid in the creation of interactive projections for art perfor-

mances or installations, allowing the creative person to test many different and

interesting scenarios. A great majority of the testers also said that they would

acquire a copy of MotionDesigner and actually use it in the creation of future

artistic works, which was something that reinforced the potential of the developed

tool.

80

Chapter 5. Evaluation and Discussion

Figure 5.8: Rehearsal moments for the small interactive performance that was
prepared. The dancer is performing a choreography while the graphics projected
on the wall react to her movement in real-time. On the first three images the
Particle System scene is being projected and on the last one is the Joints Draw
scene. The user can mirror the projection content in relation to the body pose

if wanted, as seen on the first image.

Figure 5.9: The user sequences the scenes he is going to use in the projec-
tion and sets a few initial parameterizations (left image), then he controls the
representation and behavior of the scenes by changing the parameters values in

real-time.

81

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The system herein proposed intends to help creative people to create an interac-

tive projection using RGB-D cameras and give them freedom and autonomy to

control all the audiovisual elements in real-time. Using the developed tool, Mo-

tionDesigner, the user is be able to dictate which graphical elements are going to

be projected and their order of appearance in the projection, as well as editing

its visual representation and behavior through a high-level interaction with the

system, made possible due to a GUI oriented for the artist.

The literature survey highlighted a gap on the existing tools that aim to aid the

artists to autonomously create an interactive projection for art performances or

installations, which is the scarcity of materials given within these tools (typically

they have a single type of graphical scene to be manipulated) and the lack of control

over the sounds played during the projection. Therefore, instead of providing just

one case, the developed tool provides two different interactive graphical scenes for

the users to embed in the projection, providing an environment where they can

sequence these scenes and edit them according to a given aesthetic logic. The

users also have the possibility to use the desired sound files and relate them with

the movement of the performer. Ultimately, the developed software covers both

83

Chapter 6. Conclusion and Future Work

graphical and audio interactivity and gives the user the possibility to parameterize

the audiovisual content in real-time, either during the live projection or before

projecting the audiovisual sequence (pre-parameterizations on the editing studio).

This pre-parameterization feature was not found in any other tool that has the

same focus as the one herein presented and it was something that pleased the

users, since by using timestamps/markers on the timeline the person creating the

projection can act alone as both the conductor and the performer.

Based on the evaluation tests results and the feedback given by different peo-

ple from the target audience, it can be concluded that the kind of setup herein

proposed and all the features developed worked successfully on achieving its goal.

All the users from the target audience that tested MotionDesigner, from archi-

tects to dancers/choreographers, achieved the results they wanted and recognized

it as a catalyst for the creative process. The interviewees from the target audience

considered both interactive graphical scenes provided in the software as two types

of material they would like to use in an interactive projection due to the many

different results they can obtain by manipulating each of them.

The testers in general considered the developed tool as a help for achieving

new ideas during the creative process, since through experimenting with the pro-

vided materials and their possible configurations they can arrive to scenarios not

imagined before. Adding to the creative possibilities the developed tool opens for

its users, its interface design showed to be very intuitive and the sliders-based con-

trol and the timeline-based environment revealed to be a very simple and efficient

method for the users to quickly parameterize the scenes elements and sequence

them over time, respectively.

The real-time interactivity between the user (the creator and conductor of

the interactive projection) and the projection content showed to be one of the

strongest valencies of the presented system. Various testers referred that one of

the best things about the developed tool is that they can change the parameters

that characterize the interactive scenes elements and the result of those changes are

seen immediately. Complementary, the users can pre-parameterize each scene they

84

Chapter 6. Conclusion and Future Work

are going to project, through the timestamps system implemented in the editing

studio environment. This pre-parameterization feature allowed each user to be

the curator of the projection as well as the performer that affects the projection,

which is a scenario that, to the extent of our knowledge, was not covered in any

other tool before.

Through the feedback given by the artists and architects that tested Motion-

Deisgner, it can be concluded that, despite all the features and material that could

be added further in the future, the developed tool already provides the users suf-

ficient autonomy to develop an interactive projection. The users that tested the

software considered that this single tool already provides them a significant degree

of freedom to control the projection audiovisual content. The creative people in-

volved in the work herein presented referred to MotionDesigner as a great catalyst

and facilitator of their own work when creating an interactive performance with

audiovisuals reacting to a performer’s movement in real-time. Its simple inter-

face, according to the users opinions, allows them to easily and intuitively choose

what is going to be projected, when these elements are revealed to the audience,

how they are represented and how the interaction between the performer and the

projection unfolds over time, which reinforces the advantage of using a tool as

the one developed. Although the degree of freedom given to the users can always

be maximized, a tool with the design and features herein presented can already

significantly help the artists to create their own interactive projections to embed

in their art works.

6.2 Future Work

Despite the positive impact that MotionDesigner had amongst the people from

the target audience, there are small improvements that could be made, whether

functional or merely visual enhancements, which could expand the efficiency of the

proposed tool and the comfort it brings to its users. These improvements, which

we pretend to implement in the near future, are:

85

Chapter 6. Conclusion and Future Work

• Allowing specific body poses to be the cue for starting or ending a scene or

a sound sample from the timeline (rather than relying solely on time);

• A basic sound synthesizer module or implementing OSC routers to allow the

communication between MotionDesigner and third-party software for music

production, e.g., Ableton’s Live [13];

• A Save/Load Project feature on the editing studio environment, allowing

the user to save the current timeline content and status, in order to continue

editing them later;

• An interface panel for controlling the RGB-D cameras so that, if the users

connect more than one Kinect, they can choose which of the cameras is

collecting the performer’s motion data in a given time interval;

• A flag for activating/deactivating all the traceable joints at once.

There are also some questions that the work herein presented raised and that

may induce a conceptual leap, namely:

• Why did some artists struggle with the concept of parameters using other

tools [26] and not with MotionDesigner?

• If the users had the possibility to embed their own graphic material (e.g.,

image and video files) would it give them a higher sense of control over the

projection content?

• Which creative possibilities arise by allowing the performer’s pose to trigger

other audiovisual elements on the scene?

We believe that answering these questions will allow the artists to have an even

more prepared tool for them to use when creating their own interactive audiovisual

work as well as possibly broaden the context in which the developed tool can be

used.

86

Appendices

87

Appendix A

GUI Design Sketches

A.1 Editing Studio

89

Appendix A. GUI Design Sketches

A.2 Interactive Scenes

90

Appendix B

Source Code Snippets

B.1 Interactive Scenes GUI

Slider.h:

s t r i n g t i t l e ;

o fR e c t ang l e r e c t ;

f l o a t ∗ v a l u e ;

f l o a t minV , maxV ;

Interface.h:

c l a s s I n t e r f a c e {

p u b l i c :

v o i d s e tup () ;

v o i d draw () ;

v o i d a d dS l i d e r (s t r i n g t i t l e , f l o a t ∗ va lue , f l o a t minV , f l o a t maxV) ;

v ec to r <S l i d e r > s l i d e r ; // Array o f s l i d e r s

i n t s e l e c t e d ; // Index o f s e l e c t e d s l i d e r

} ;

Interface.cpp:

vo i d I n t e r f a c e : : draw (){

f o r (i n t i =0; i < s l i d e r . s i z e () ; i++) {

S l i d e r &s = s l i d e r [i] ;

o fR e c t ang l e r = s . r e c t ;

o f F i l l () ;

91

Appendix B. Source Code Snippets

o f S e tCo l o r (255 , 255 , 255) ;

o fRec t (r) ;

o f S e tCo l o r (0 , 0 , 0) ;

o f N o F i l l () ;

o fRec t (r) ;

o f F i l l () ;

f l o a t w = ofMap (∗ s . va lue , s . minV , s .maxV , 0 , r . w idth) ;

o fRec t (r . x , r . y + 15 , w, r . h e i g h t − 15) ;

o fDrawBitmapStr ing (s . t i t l e + " " + o fToSt r i ng (∗ s . va lue , 2) , r . x + 5 ,

r . y + 12) ;

}

}

ColorPicker.h:

c l a s s Co l o rP i c k e r {

p u b l i c :

ofFbo fbo ;

f l o a t r e c tHe i g h t ;

f l o a t margin ;

o f Image img ;

o fCo l o r co l o r 1 , co l o r 2 , co l o r 3 , t e x t C o l o r ;

o fCo l o r g e tCo l o r 1 () , g e tCo l o r 2 () , g e tCo l o r 3 () ;

f l o a t c o l o r P i c k e r I n d e x ;

} ;

ColorPicker.cpp:

vo i d Co l o rP i c k e r : : s e tup (){

img . load Image (" co l o r−p i c k e r . png ") ;

r e c tH e i g h t = 25 ;

margin = 5 ;

fbo . a l l o c a t e (img . width , img . h e i g h t + r e c tHe i g h t + margin , GL_RGB32F_ARB) ;

c o l o r 1 = o fCo l o r (1 5 , 1 0 , 1 5) ;

c o l o r 2 = o fCo l o r (o fCo l o r : : r ed) ;

c o l o r 3 = o fCo l o r (o fCo l o r : : b l u e) ;

t e x t C o l o r = o fCo l o r (o fCo l o r : : b l a c k) ;

c o l o r P i c k e r I n d e x = 0 ;

}

vo i d Co l o rP i c k e r : : draw (){

fbo . beg i n () ;

o fEnab l eA lphaB l end i ng () ;

//Draw c o l o r g r a d i e n t image

o f S e tCo l o r (255 , 255 , 255) ;

img . draw (0 , r e c tHe i g h t + margin) ;

//Draw l e f t c o n t a i n e r

92

Appendix B. Source Code Snippets

o f S e tCo l o r (c o l o r 1) ;

o f F i l l () ;

o fRec t (2 , 2 , img . getWidth ()/3 , r e c tHe i g h t) ;

//Draw r i g h t c o n t a i n e r

o f S e tCo l o r (c o l o r 2) ;

o f F i l l () ;

o fRec t (img . getWidth () − (img . getWidth ()/3)−2 , 2 , img . getWidth ()/3 , r e c tH e i g h t) ;

//Draw midd le c o n t a i n e r

o f S e tCo l o r (c o l o r 3) ;

o f F i l l () ;

o fRec t (4 + img . getWidth ()/3 , 2 , img . getWidth ()/3 , r e c tHe i g h t) ;

o fD i s a b l eA l phaB l e nd i n g () ;

fbo . end () ;

g l Enab l e (GL_BLEND) ;

g lB lendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA) ;

o f S e tCo l o r (255 , 255 , 255) ;

fbo . draw (ofGetWidth () − fbo . getWidth ()−20 , o fGe tHe igh t () − fbo . g e tHe i gh t () −20);

}

Interface.cpp:

vo i d I n t e r f a c e : : setupGUI (f l o a t ∗ f o r c e , f l o a t ∗ s i z e , f l o a t ∗ l i f eT ime ,

f l o a t ∗ h i s t o r y , f l o a t ∗ r o t a t e , f l o a t ∗eRad , f l o a t ∗bornRate , f l o a t ∗ ve lRad){

gu i = new ofxUISuperCanvas ("PARAMETERS : ") ;

sP . f o r c e = f o r c e ;

sP . s i z e = s i z e ;

sP . l i f eT im e = l i f eT im e ;

sP . h i s t o r y = h i s t o r y ;

sP . r o t a t e = r o t a t e ;

sP . eRad = eRad ;

sP . bornRate = bornRate ;

sP . ve lRad = ve lRad ;

gu i−>addLabe l ("PARTICLES ") ;

gu i−>addS l i d e r (" A t t r a c t i o n Force " , 0 . 0 , 0 . 5 ,∗ sP . f o r c e)−>

se tT r i gg e rType (OFX_UI_TRIGGER_ALL) ;

gu i−>addS l i d e r (" S i z e " , 0 . 0 , 3 0 . 0 ,∗ sP . size_PS)−>se tT r i gg e rType (OFX_UI_TRIGGER_ALL) ;

gu i−>addS l i d e r (" L i f e Time " , 0 . 0 , 120 .0 , ∗sP . l i feTime_PS)−>

se tT r i gg e rType (OFX_UI_TRIGGER_ALL) ;

gu i−>addS l i d e r (" Motion B lu r " , 0 . 0 , 1 . 0 , ∗sP . h i s t o r y)−>

se tT r i gg e rType (OFX_UI_TRIGGER_ALL) ;

gu i−>addS l i d e r (" Ro ta t i on " , −500, 500 , ∗sP . r o t a t e)−>

se tT r i gg e rType (OFX_UI_TRIGGER_ALL) ;

gu i−>addLabe l ("EMITTER") ;

gu i−>addS l i d e r (" Rad ius " , 0 . 0 , 5 00 . 0 ,∗ sP . eRad)−>se tT r i gg e rType (OFX_UI_TRIGGER_ALL) ;

gu i−>addS l i d e r (" P a r t i c l e s Rate " , 0 . 0 , 500 .0 , ∗sP . bornRate)−>

93

Appendix B. Source Code Snippets

s e tT r i gg e rType (OFX_UI_TRIGGER_ALL) ;

gu i−>addS l i d e r (" I n i t i a l V e l o c i t y " , 0 . 0 , 400 .0 , ∗sP . ve lRad)−>

se tT r i gg e rType (OFX_UI_TRIGGER_ALL) ;

gu i−>autoS i z eToF i tWidge t s () ;

o fAddL i s t e n e r (gui1−>newGUIEvent , t h i s , &I n t e r f a c e : : gu iEven t) ;

}

B.2 NiTE

testApp.cpp:

vo i d tes tApp : : update (){

. . .

c on s t n i t e : : Array<n i t e : : UserData>& u s e r s = use rTracke rFrame . g e tUs e r s () ;

f o r (i n t i = 0 ; i < u s e r s . g e t S i z e () ; i ++){

cons t n i t e : : UserData& u s e r = u s e r s [i] ;

upda t eUse rS ta t e (use r , u se rTracke rFrame . getTimestamp ()) ;

i f (u s e r . isNew ())

u s e rT r a c k e r . s t a r t S k e l e t o nT r a c k i n g (u s e r . g e t I d ()) ;

e l s e

i f (u s e r . g e t S k e l e t o n () . g e t S t a t e () == n i t e : : SKELETON_TRACKED) {

cons t n i t e : : S k e l e t o n J o i n t& head =

us e r . g e t S k e l e t o n () . g e t J o i n t (n i t e : : JOINT_HEAD) ;

con s t n i t e : : S k e l e t o n J o i n t& neck =

us e r . g e t S k e l e t o n () . g e t J o i n t (n i t e : : JOINT_NECK) ;

con s t n i t e : : S k e l e t o n J o i n t& handL =

us e r . g e t S k e l e t o n () . g e t J o i n t (n i t e : : JOINT_LEFT_HAND) ;

. . .

c on s t n i t e : : S k e l e t o n J o i n t& foo tL =

us e r . g e t S k e l e t o n () . g e t J o i n t (n i t e : : JOINT_LEFT_FOOT) ;

con s t n i t e : : S k e l e t o n J o i n t& footR =

us e r . g e t S k e l e t o n () . g e t J o i n t (n i t e : : JOINT_RIGHT_FOOT) ;

headPos = o fPo i n t (head . g e t P o s i t i o n () . x + ofGetWidth ()/2 ,

−(head . g e t P o s i t i o n () . y − o fGe tHe igh t () / 2) ,

−head . g e t P o s i t i o n () . z/param . Z i n t e n s i t y) ;

neckPos = o fPo i n t (neck . g e t P o s i t i o n () . x + ofGetWidth ()/2 ,

−(neck . g e t P o s i t i o n () . y − o fGe tHe igh t () / 2) ,

−neck . g e t P o s i t i o n () . z/param . Z i n t e n s i t y) ;

handLPos = o fPo i n t (handL . g e t P o s i t i o n () . x + ofGetWidth ()/2 ,

−(handL . g e t P o s i t i o n () . y − o fGe tHe igh t () / 2) ,

−handL . g e t P o s i t i o n () . z/param . Z i n t e n s i t y) ;

. . .

footLPos = o fPo i n t (f oo tL . g e t P o s i t i o n () . x + ofGetWidth ()/2 ,

94

Appendix B. Source Code Snippets

−(f oo tL . g e t P o s i t i o n () . y − o fGe tHe igh t () / 2) ,

−f oo tL . g e t P o s i t i o n () . z/param . Z i n t e n s i t y) ;

footRPos = o fPo i n t (footR . g e t P o s i t i o n () . x + ofGetWidth ()/2 ,

−(footR . g e t P o s i t i o n () . y − o fGe tHe igh t () / 2) ,

−footR . g e t P o s i t i o n () . z/param . Z i n t e n s i t y) ;

//Update the p a r t i c l e s p o s i t i o n

f o r (i n t i = 0 ; i < p a r t i c l e s . s i z e () ; i ++){

sw i t ch (p a r t i c l e s [i] . g e tTa r g e t J o i n t ()) {

ca se 0 :

destX = headPos . x ;

destY = −headPos . y ;

destZ = headPos . z ;

b reak ;

. . .

c a s e 14 :

destX = footRPos . x ;

destY = −footRPos . y ;

destZ = footRPos . z ;

b reak ;

}

p a r t i c l e s [i] . update (dt , destX , destY , destZ) ;

}

}

}

B.3 Particle System

Particle.h

\#pragma once

\#i n c l u d e " ofMain . h"

c l a s s P a r t i c l e {

p u b l i c :

P a r t i c l e () ; // Con s t r u c t o r

vo i d s e tup () ; // S t a r t p a r t i c l e

vo i d update (f l o a t dt , f l o a t destX , f l o a t destY , f l o a t destZ) ; //Compute p h y s i c s

vo i d draw (o fCo l o r pColor1 , o fCo l o r pCo lo r2) ; //Draw p a r t i c l e

o fPo i n t pos ; // Cur r en t p o s i t i o n

o fPo i n t v e l ; // Cur r en t v e l o c i t y

f l o a t t ime ; //Time s i n c e b i r t h

f l o a t l i f eT im e ; //Maximum l i f e t ime

95

Appendix B. Source Code Snippets

f l o a t s i z e ; //Maximum p a r t i c l e s i z e

boo l l i v e ; // I s p a r t i c l e a l i v e

f l o a t f o r c e ; // I n t e n s i t y o f a t t r a c t i o n

boo l t r a c k i n g ; // I s p a r t i c l e t r a c k i n g the a t t r a c t o r

} ;

Particle.cpp

vo i d Params : : s e tup (){

eCente r = o fPo i n t (ofGetWidth ()/2 , o fGe tHe igh t () /2 , 1) ;

eRad = 40 ;

bornRate = 178 ;

bornCount = 0 ;

ve lRad = 200 ;

l i f eT im e = 5 . 0 ;

r o t a t e = 2 ;

s i z e = 1 ;

f o r c e = 0 . 0 3 ;

t r a c k i n g = t r u e ;

}

Particle.cpp:

vo i d P a r t i c l e : : s e tup (){

pos = param . eCente r + r andomPo i n t I nC i r c l e (param . eRad) ;

v e l = r andomPo i n t I nC i r c l e (param . ve lRad) ;

t ime = 0 ;

l i f eT im e = param . l i feTime_PS ;

l i v e = t r u e ;

s i z e = param . size_PS ;

f o r c e = param . f o r c e ;

t r a c k i n g = param . t r a c k i n g ;

}

vo i d P a r t i c l e : : update (f l o a t dt , f l o a t destX , f l o a t destY , f l o a t destZ){

i f (l i v e){

v e l . r o t a t e (0 , 0 , param . r o t a t e ∗ dt) ;

pos += v e l ∗ dt ;

i f (t r a c k i n g){

pos . x += (destX − pos . x) ∗ ofRandom (f o r c e /2 , f o r c e) ;

pos . y += (−destY − pos . y) ∗ ofRandom (f o r c e /2 , f o r c e) ;

pos . z += (destZ − pos . z) ∗ ofRandom (f o r c e /2 , f o r c e) ;

}

t ime += dt ;

i f (t ime >= l i f eT im e)

96

Appendix B. Source Code Snippets

l i v e = f a l s e ;

}

}

testApp.cpp:

ofFbo _fbo ;

f l o a t _time0 ;

f l o a t t r a i l ;

Params param ;

deque<Pa r t i c l e > p a r t i c l e s ;

v o i d tes tApp : : s e tup (){

ofSetFrameRate (6 0) ;

i n t w = ofGetWindowWidth () ;

i n t h = ofGetWindowHeight () ;

_fbo . a l l o c a t e (w, h , GL_RGB32F_ARB) ;

_fbo . beg in () ;

o fBackground (10 , 1 0 , 1 0) ;

_fbo . end () ;

_time0 = ofGetE lapsedT ime f () ;

destX = ofGetWidth () / 2 ;

destY = −o fGe tHe igh t () / 2 ;

destZ = 1 ;

param . s e tup () ;

t r a i l = 0 . 7 ;

}

vo i d tes tApp : : update (){

f l o a t t ime = ofGetE lapsedT ime f () ;

f l o a t dt = ofClamp (t ime − _time0 , 0 , 0 . 1) ;

_time0 = t ime ;

i n t i = 0 ;

i n t bornN = 0 ;

wh i l e (i < p a r t i c l e s . s i z e ()) {

i f (! p a r t i c l e s [i] . l i v e)

p a r t i c l e s . e r a s e (p a r t i c l e s . b eg i n ()+ i) ;

e l s e

i ++;

}

param . bornCount += dt ∗ param . bornRate ;

i f (param . bornCount >= 1){

97

Appendix B. Source Code Snippets

bornN = i n t (param . bornCount) ;

param . bornCount −= bornN ;

f o r (i n t i = 0 ; i < bornN ; i ++){

P a r t i c l e newP ;

newP . s e tup () ;

p a r t i c l e s . push_back (newP) ;

}

}

f o r (i n t = 0 ; p a r t i c l e s . s i z e () ; i++)

p a r t i c l e s [i] . update (dt , mouseX , mouseY , 1) ;

}

vo i d tes tApp : : draw (){

f l o a t a lpha = 0 ;

o fBackg roundGrad i en t (o fCo l o r : : gray , o fCo l o r (_co l o rP i c k e r . g e tCo l o r 1 ()) ,

OF_GRADIENT_CIRCULAR) ;

//1 . Drawing to b u f f e r

_fbo . beg in () ;

o fEnab l eA lphaB l end i ng () ;

a l pha = (1 − t r a i l) ∗ 255 ;

o f S e tCo l o r (255 , 255 , 255 , a l pha) ;

o f F i l l () ;

o fRec t (0 , 0 , o fGetScreenWidth () , o fGe tSc r e enHe i gh t ()) ;

o fD i s a b l eA l phaB l e nd i n g () ;

//Draw the p a r t i c l e s

o f F i l l () ;

f o r (i n t i = 0 ; i < p a r t i c l e s . s i z e () ; i++)

p a r t i c l e s [i] . draw (o fCo l o r : : b lue , o fCo l o r : : r ed) ;

_fbo . end () ;

//2 . Draw the b u f f e r on the s c r e e n

o f S e tCo l o r (255 , 255 , 255) ;

_fbo . draw (0 , 0) ;

//3 . Draw the i n t e r f a c e on the s c r e e n

i n t e r f . s e tup () ;

i n t e r f . a d dS l i d e r (" Force " , ¶m . f o r c e , 0 . 0 , 0 . 1) ;

i n t e r f . a d dS l i d e r (" P a r t i c l e s S i z e " , ¶m . s i z e , 0 , 3 0) ;

i n t e r f . a d dS l i d e r (" L i f e Time " , ¶m . l i f eT ime , 0 , 30) ;

i n t e r f . a d dS l i d e r (" H i s t o r y " , &h i s t o r y , 0 , 1) ;

i n t e r f . a d dS l i d e r (" P a r t i c l e s Rate " , ¶m . bornRate , 0 , 500) ;

i n t e r f . a d dS l i d e r (" Emi t t e r Rad ius " , ¶m . eRad , 0 , 500) ;

i n t e r f . a d dS l i d e r ("Max . I n i t . V e l o c i t y " , ¶m . velRad , 0 , 400) ;

i n t e r f . a d dS l i d e r (" Ro ta t i on " , ¶m . r o t a t e , −500, 500) ;

98

Appendix B. Source Code Snippets

d r aw I n t e r f a c e = t r u e ;

}

B.4 Joints Draw

Params.cpp:

vo i d Params : : s e tup (){

size_JD = 20 ;

speed = 0 . 1 ;

l i feTime_JD = 50 . 0 ;

drawing = t r u e ;

}

testApp.cpp:

vo i d tes tApp : : s e tup (){}

\\ Setup Params and I n t e r f a c e

. . .

// Set up b ru sh e s

f l o a t nBrushes = 15 ;

f o r (i n t i = 0 ; i< nBrushes ; i ++){

Brush newB ;

newB . s e tup () ;

_brushes . push_back (newB) ;

cout << " Created brush no . " << i << "\n " ;

}

// Setup NiTE

. . .

}

vo i d tes tApp : : update (){

// Gather j o i n t s p o s i t i o n data through NiTE a l g o r i t hm s

. . .

f o r (i n t i = 0 ; i < _brushes . s i z e () ; i ++){

sw i t ch (_brushes [i] . g e tTa r g e t J o i n t ()) {

ca se 0 :

destX = headPos . x ;

destY = −headPos . y ;

destZ = headPos . z ;

b reak ;

. . .

99

Appendix B. Source Code Snippets

ca se 14 :

destX = footRPos . x ;

destY = −footRPos . y ;

destZ = footRPos . z ;

b reak ;

}

_brushes [i] . update (dt , destX , destY , destZ) ;

}

}

100

Bibliography

[1] Cinder. http://libcinder.org/, 2015. [Online; accessed 19-January-2015].

[2] Developing with Kinect. https://www.microsoft.com/en-us/

kinectforwindows/develop/default.aspx, 2015. [Online; accessed

26-August-2015].

[3] Digital Art Museum. http://digitalartmuseum.org/history/, 2015. [On-

line; accessed 19-January-2015].

[4] Hack the Art World. http://hacktheartworld.com/, 2015. [Online; ac-

cessed 19-January-2015].

[5] Max is a visual programming language for media « Cycling 74. https://

cycling74.com/products/max/, 2015. [Online; accessed 19-January-2015].

[6] Microsoft Kinect. http://www.xbox.com/kinect, 2015. [Online; accessed

25-August-2015].

[7] Mind the Dots! - Preparing for live on Vimeo. https://vimeo.com/

28374769, 2015. [Online; accessed 21-September-2015].

[8] NiTE 2.2.0.11 | OpenNI. http://openni.ru/files/nite/, 2015. [Online;

accessed 27-August-2015].

[9] openFrameworks. http://www.openframeworks.cc/, 2015. [Online; ac-

cessed 19-January-2015].

101

http://libcinder.org/
https://www.microsoft.com/en-us/kinectforwindows/develop/default.aspx
https://www.microsoft.com/en-us/kinectforwindows/develop/default.aspx
http://digitalartmuseum.org/history/
http://hacktheartworld.com/
https://cycling74.com/products/max/
https://cycling74.com/products/max/
http://www.xbox.com/kinect
https://vimeo.com/28374769
https://vimeo.com/28374769
http://openni.ru/files/nite/
http://www.openframeworks.cc/

References

[10] OpenNI Programmer’s Guide. http://com.occipital.openni.s3.

amazonaws.com/OpenNI_Programmers_Guide.pdf, 2015. [Online; accessed

27-August-2015].

[11] Pixel - extrains on Vimeo. https://vimeo.com/114767889, 2015. [Online;

accessed 21-September-2015].

[12] Processing.org. https://processing.org/, 2015. [Online; accessed 19-

January-2015].

[13] What is Live? Learn more about Ableton’s music making software | Able-

ton. https://www.ableton.com/en/live/, 2015. [Online; accessed 29-

September-2015].

[14] Reza Ali. ofxUI: A User Interface Addon for OF - REZA ALI. http://www.

syedrezaali.com/ofxui/, 2015. [Online; accessed 29-August-2015].

[15] Jordan Backhus. Dancer Bends Light in Stun-

ning Projection-Mapped Performance | The Creators

Project. http://thecreatorsproject.vice.com/blog/

dancer-bends-light-in-stunning-projection-mapped-performance?

utm_source=tcpfbus, 2015. [Online; accessed 21-September-2015].

[16] Helen Bailey, James Hewison, and Martin Turner. Choreographic morpholo-

gies: digital visualization and spatio-temporal structure in dance and the

implications for performance and documentation. In Proceedings of the In-

ternational Events in Visual Arts (EVA Conference), London, pages 9–18,

2008.

[17] Joey Bargsten. Gesture and Performance with Kinect, Quartz Composer,

and PureData. http://fau3711.pbworks.com/w/file/fetch/76805993/

Gesture_and_Performance_with_Kinect_Quartz_and_PD.pdf, 2013. [On-

line; accessed 19-January-2015].

[18] Tamara Berg, Debaleena Chattopadhyay, Margaret Schedel, and Timothy

Vallier. Interactive music: Human motion initiated music generation using

102

http://com.occipital.openni.s3.amazonaws.com/OpenNI_Programmers_Guide.pdf
http://com.occipital.openni.s3.amazonaws.com/OpenNI_Programmers_Guide.pdf
https://vimeo.com/114767889
https://processing.org/
https://www.ableton.com/en/live/
http://www.syedrezaali.com/ofxui/
http://www.syedrezaali.com/ofxui/
http://thecreatorsproject.vice.com/blog/dancer-bends-light-in-stunning-projection-mapped-performance?utm_source=tcpfbus
http://thecreatorsproject.vice.com/blog/dancer-bends-light-in-stunning-projection-mapped-performance?utm_source=tcpfbus
http://thecreatorsproject.vice.com/blog/dancer-bends-light-in-stunning-projection-mapped-performance?utm_source=tcpfbus
http://fau3711.pbworks.com/w/file/fetch/76805993/Gesture_and_Performance_with_Kinect_Quartz_and_PD.pdf
http://fau3711.pbworks.com/w/file/fetch/76805993/Gesture_and_Performance_with_Kinect_Quartz_and_PD.pdf

References

skeletal tracking by kinect. In Proc. Conf. Soc. Electro-Acoustic Music United

States, 2012.

[19] John Charles Butcher. The numerical analysis of ordinary differential equa-

tions: Runge-Kutta and general linear methods. Wiley-Interscience, 1987.

[20] Edwin Catmull. How Pixar fosters collective creativity. Harvard Business

School Publishing, 2008.

[21] Jonathan Deutscher, Andrew Blake, and Ian Reid. Articulated body mo-

tion capture by annealed particle filtering. In Proceedings of the IEEE on

Computer Vision and Pattern Recognition, volume 2, pages 126–133. IEEE,

2000.

[22] Benjamin Glover. Real Time Interactive Technology in Dance us-

ing Kinect. http://benglover.net/wp-content/uploads/2014/03/

Interactive-Technology-in-Dance-Project-Report-by-Ben-Glover.

pdf, 2013. [Online; accessed 19-January-2015].

[23] Berto Gonzalez, Erin Carroll, and Celine Latulipe. Dance-inspired technology,

technology-inspired dance. In Proceedings of the 7th Nordic Conference on

Human-Computer Interaction: Making Sense Through Design, pages 398–407.

ACM, 2012.

[24] Pete Hellicar and Joel Gethin Lewis. Divided By Zero, Hellicar and Lewis

Ltd. http://www.hellicarandlewis.com/divide-by-zero/, 2015. [Online;

accessed 19-January-2015].

[25] Sultanullah Jadoon, Salman Faiz Solehria, and Mubashir Qayum. Optimized

selection sort algorithm is faster than insertion sort algorithm: a compara-

tive study. International Journal of Electrical & Computer Sciences IJECS-

IJENS, 11(02):19–24, 2011.

[26] Doris Jung, Marie Hermo Jensen, Simon Laing, and Jeremy Mayall. . cyclic.:

an interactive performance combining dance, graphics, music and kinect-

technology. In Proceedings of the 13th International Conference of the NZ

103

 http://benglover.net/wp-content/uploads/2014/03/Interactive-Technology-in-Dance-Project-Report-by-Ben-Glover.pdf
 http://benglover.net/wp-content/uploads/2014/03/Interactive-Technology-in-Dance-Project-Report-by-Ben-Glover.pdf
 http://benglover.net/wp-content/uploads/2014/03/Interactive-Technology-in-Dance-Project-Report-by-Ben-Glover.pdf
http://www.hellicarandlewis.com/divide-by-zero/

References

Chapter of the ACM’s Special Interest Group on Human-Computer Interac-

tion, pages 36–43. ACM, 2012.

[27] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and resolution of

kinect depth data for indoor mapping applications. Sensors, 12(2):1437–1454,

2012.

[28] Gene Kogan. genekogan/ofxSecondWindow - GitHub. https://github.com/

genekogan/ofxSecondWindow, 2015. [Online; accessed 29-August-2015].

[29] Celine Latulipe and Sybil Huskey. Dance. draw: exquisite interaction. In

Proceedings of the 22nd British HCI Group Annual Conference on People and

Computers: Culture, Creativity, Interaction-Volume 2, pages 47–51. British

Computer Society, 2008.

[30] W Scott Meador, Eric M Kurt, and Kevin R O’Neal. Virtual performance

and collaboration with improvisational dance. In ACM SIGGRAPH 2003

Sketches & Applications, pages 1–1. ACM, 2003.

[31] W Scott Meador, Timothy J Rogers, Kevin O’Neal, Eric Kurt, and Carol Cun-

ningham. Mixing dance realities: collaborative development of live-motion

capture in a performing arts environment. Computers in Entertainment

(CIE), 2(2):12–12, 2004.

[32] Kyle Orland. Microsoft Announces Windows Kinect SDK For Spring Release.

http://www.gamasutra.com/view/news/33136/Microsoft_Announces_

Windows_Kinect_SDK_For_Spring_Release.php, 2011. [Online; accessed

25-August-2015].

[33] Denis Perevalov. Mastering openFrameworks: Creative Coding Demystified.

Packt Publishing Ltd, 2013.

[34] Alex Pham. E3: Microsoft shows off gesture control technology for

xbox 360. http://latimesblogs.latimes.com/technology/2009/06/

microsofte3.html, 2009. [Online; accessed 25-August-2015].

104

https://github.com/genekogan/ofxSecondWindow
https://github.com/genekogan/ofxSecondWindow
http://www.gamasutra.com/view/news/33136/Microsoft_Announces_Windows_Kinect_SDK_For_Spring_Release.php
http://www.gamasutra.com/view/news/33136/Microsoft_Announces_Windows_Kinect_SDK_For_Spring_Release.php
http://latimesblogs.latimes.com/technology/2009/06/microsofte3.html
http://latimesblogs.latimes.com/technology/2009/06/microsofte3.html

References

[35] Danilo Gasques Rodrigues, Emily Grenader, Fernando da Silva Nos, Marcel

de Sena Dall’Agnol, Troels E Hansen, and Nadir Weibel. Motiondraw: a

tool for enhancing art and performance using kinect. In CHI’13 Extended

Abstracts on Human Factors in Computing Systems, pages 1197–1202. ACM,

2013.

[36] Anna Trifonova, Letizia Jaccheri, and Kristin Bergaust. Software engineer-

ing issues in interactive installation art. International Journal of Arts and

Technology, 1(1):43–65, 2008.

[37] R Hevner von Alan, Salvatore T March, Jinsoo Park, and Sudha Ram. Design

science in information systems research. MIS quarterly, 28(1):75–105, 2004.

[38] Zhengyou Zhang. Microsoft kinect sensor and its effect. MultiMedia, IEEE,

19(2):4–10, 2012.

105

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Research Questions
	1.4 Objectives
	1.5 Research Method
	1.6 Document Structure

	2 Literature Survey
	2.1 Depth-Cameras Based Systems
	2.2 Interactive Projections
	2.2.1 Graphical Interactivity
	2.2.2 Sound Interactivity

	2.3 Tools for Creating Interactive Audiovisual Art

	3 System Overview
	3.1 User Interface
	3.2 Hardware Setup
	3.2.1 Kinect sensor

	3.3 Software Setup
	3.3.1 openFrameworks
	3.3.2 OpenNI & NiTE middleware
	3.3.3 openFrameworks Add-ons

	4 Development and Implementation
	4.1 Editing Studio
	4.1.1 Scenes Parameterizations
	4.1.2 Previewing the Projection Sequence
	4.1.3 Displaying the Scenes
	4.1.4 Projecting the Sequence

	4.2 Interactive Graphical Scenes
	4.2.1 Scenes Editing GUI
	4.2.2 Motion Capture Algorithms
	4.2.3 Particle System
	4.2.4 Drawing With Joints

	4.3 Interactive Audio

	5 Evaluation and Discussion
	5.1 Evaluation Method
	5.2 Results

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Appendices
	A GUI Design Sketches
	A.1 Editing Studio
	A.2 Interactive Scenes

	B Source Code Snippets
	B.1 Interactive Scenes GUI
	B.2 NiTE
	B.3 Particle System
	B.4 Joints Draw

	Bibliography

