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ABSTRACT

We assess the performance of generic text summarization algorithms applied to films and documen-
taries, using extracts from news articles produced by reference models of extractive summarization.
We use three datasets: (i) news articles, (ii) film scripts and subtitles, and (iii) documentary subtitles.
Standard ROUGE metrics are used for comparing generated summaries against news abstracts, plot
summaries, and synopses. We show that the best performing algorithms are LSA, for news articles
and documentaries, and LexRank and Support Sets, for films. Despite the different nature of films and
documentaries, their relative behavior is in accordance with that obtained for news articles.

c© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Input media for automatic summarization has varied from text [18, 5] to speech [21, 39, 34] and video [1], but the application

domain has been, in general, restricted to informative sources: news [2, 30, 33, 11], meetings [26, 8], or lectures [7]. Nevertheless,

application areas within the entertainment industry are gaining attention: e.g. summarization of literary short stories [12], music

summarization [31], summarization of books [24], or inclusion of character analyses in movie summaries [36]. We follow this

direction, creating extractive, text-driven video summaries for films and documentaries.

Documentaries started as cinematic portrayals of reality [10]. Today, they continue to portray historical events, argumentation,

and research. They are commonly understood as capturing reality and therefore, seen as inherently non-fictional. Films, in contrast,

are usually associated with fiction. However, films and documentaries do not fundamentally differ: many of the strategies and

narrative structures employed in films are also used in documentaries [27].

∗Corresponding author
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In the context of our work, films (fictional) tell stories based on fictive events, whereas documentaries (non-fictional) address,

mostly, scientific subjects. We study the parallelism between the information carried in subtitles and scripts of both films and

documentaries. Extractive summarization methods have been extensively explored for news documents [16, 22, 37, 29, 30, 23].

Our main goal is to understand the quality of automatic summaries, produced for films and documentaries, using the well-known

behavior of news articles as reference. Generated summaries are evaluated against manual abstracts using ROUGE metrics, which

correlate with human judgements [15, 17].

This article is organized as follows: Section 2 presents the summarization algorithms; Section 3 presents the collected datasets;

Section 4 presents the evaluation setup; Section 5 discusses our results; Section 6 presents conclusions and directions for future

work.

2. Generic Summarization

Six text-based summarization approaches were used to summarize newspaper articles, subtitles, and scripts. They are described

in the following sections.

2.1. Maximal Marginal Relevance (MMR)

MMR is a query-based summarization method [4]. It iteratively selects sentences via Equation 1 (Q is a query; Sim1 and

Sim2 are similarity metrics; Si and Sj are non-selected and previously selected sentences, respectively). λ balances relevance and

novelty. MMR can generate generic summaries by considering the input sentences centroid as a query [25, 38].

arg max
Si

[
λSim1 (Si, Q)− (1− λ) max

Sj

Sim2 (Si, Sj)

]
(1)

2.2. LexRank

LexRank [6] is a centrality-based method based on Google’s PageRank [3]. A graph is built using sentences, represented by

TF-IDF vectors, as vertexes. Edges are created when the cosine similarity exceeds a threshold. Equation 2 is computed at each

vertex until the error rate between two successive iterations is lower than a certain value. In this equation, d is a damping factor to
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ensure the method’s convergence, N is the number of vertexes, and S (Vi) is the score of the ith vertex.

S (Vi) =
(1− d)

N
+ d×

∑
Vj∈adj[Vi]

Sim (Vi, Vj)∑
Vk∈adj[Vj ]

Sim (Vj , Vk)
S (Vj) (2)

2.3. Latent Semantic Analysis (LSA)

LSA infers contextual usage of text based on word co-occurrence [13, 14]. Important topics are determined without the need

for external lexical resources [9]: each word’s occurrence context provides information concerning its meaning, producing rela-

tions between words and sentences that correlate with the way humans make associations. Singular Value Decomposition (SVD)

is applied to each document, represented by a t × n term-by-sentences matrix A, resulting in its decomposition UΣV T . Summa-

rization consists of choosing the k highest singular values from Σ, giving Σk. U and V T are reduced to Uk and V T
k , respectively,

approximating A by Ak = UkΣkV
T
k . The most important sentences are selected from V T

k .

2.4. Support Sets

Documents are typically composed by a mixture of subjects, involving a main and various minor themes. Support sets are

defined based on this observation [35]. Important content is determined by creating a support set for each passage, by comparing

it with all others. The most semantically-related passages, determined via geometric proximity, are included in the support set.

Summaries are composed by selecting the most relevant passages, i.e., the ones present in the largest number of support sets. For a

segmented information source I , p1, p2, . . . , pN , support sets Si for each passage pi are defined by Equation 3, where Sim is a

similarity function, and εi is a threshold. The most important passages are selected by Equation 4.

Si , {s ∈ I : Sim(s, pi) > εi ∧ s 6= pi} (3)

arg max
s∈Un

i=1Si

|{Si : s ∈ Si}| (4)

2.5. Key Phrase-based Centrality (KP-Centrality)

Ribeiro et al. [32] proposed an extension of the centrality algorithm described in Section 2.4, which uses a two-stage important

passage retrieval method. The first stage consists of a feature-rich supervised key phrase extraction step, using the MAUI toolkit

with additional semantic features: the detection of rhetorical signals, the number of Named Entities, Part-Of-Speech (POS) tags,
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and 4 n-gram domain model probabilities [20, 19]. The second stage consists of the extraction of the most important passages,

where key phrases are considered regular passages.

2.6. Graph Random-walk with Absorbing StateS that HOPs among PEaks for Ranking (GRASSHOPPER)

GRASSHOPPER [40] is a re-ranking algorithm that maximizes diversity and minimizes redundancy. It takes a weighted graph

W (n×n: n vertexes representing sentences; weights are defined by a similarity measure), a probability distribution r (representing

a prior ranking), and λ ∈ [0, 1], that balances the relative importance of W and r. If there is no prior ranking, a uniform distribution

can be used. Sentences are ranked by applying the teleporting random walks method in an absorbing Markov chain, based on the

n× n transition matrix P̃ (calculated by normalizing the rows of W ), i.e., P = λP̃ + (1− λ) 1r>. The first sentence to be scored

is the one with the highest stationary probability arg maxn
i=1 πi according to the stationary distribution of P : π = P>π. Already

selected sentences may never be visited again, by defining Pgg = 1 and Pgi = 0,∀i 6= g. The expected number of visits is given by

matrix N = (I −Q)
−1 (where Nij is the expected number of visits to the sentence j, if the random walker began at sentence i).

We obtain the average of all possible starting sentences to get the expected number of visits to the jth sentence, vj . The sentence to

be selected is the one that satisfies arg maxn
i=|G|+1 vi.

3. Datasets

We use three datasets: newspaper articles (baseline data), films, and documentaries. Film data consists of subtitles and scripts,

containing scene descriptions and dialog. Documentary data consists of subtitles containing mostly monologue. Reference data

consists of manual abstracts (for newspaper articles), plot summaries (for films and documentaries), and synopses (for films). Plot

summaries are concise descriptions, sufficient for the reader to get a sense of what happens in the film or documentary. Synopses

are much longer and may contain important details concerning the turn of events in the story. All datasets were normalized by

removing punctuation inside sentences and timestamps from subtitles.

3.1. Newspaper Articles

TeMário [28] is composed by 100 newspaper articles in Brazilian Portuguese (Table 1), covering domains such as “world”,

“politics”, and “foreign affairs”. Each article has a human-made reference summary (abstract).
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Table 1: TeMário corpus properties.

AVG MIN MAX

#Sentences
News Story 29 12 68

Summary 9 5 18

#Words
News Story 608 421 1315

Summary 192 120 345

3.2. Films

We collected 100 films, with an average of 4 plot summaries (minimum of 1, maximum of 7) and 1 plot synopsis per film

(Table 2). Table 3 presents the properties of the subtitles, scripts, and the concatenation of both. Not all the information present in

the scripts was used: dialogs were removed in order to make them more similar to plot summaries.

Table 2: Properties of plot summaries and synopses.

AVG MIN MAX

#Sentences
Plot Summaries 5 1 29

Plot Synopses 89 6 399

#Words
Plot Summaries 107 14 600

Plot Synopses 1677 221 7110

Table 3: Properties of subtitles and scripts.

AVG MIN MAX

#Sentences

Subtitles 1573 309 4065

Script 1367 281 3720

Script + Subtitles 2787 1167 5388

#Words

Subtitles 10460 1592 27800

Script 14560 3493 34700

Script + Subtitles 24640 11690 47140

3.3. Documentaries

We collected 98 documentaries. Table 4 presents the properties of their subtitles: note that the number of sentences is smaller

than in films, influencing ROUGE (recall-based) scores.
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Table 4: Properties of documentaries subtitles.

AVG MIN MAX

#Sentences 340 212 656

#Words 5864 3961 10490

We collected 223 manual plot summaries and divided them into four classes (Table 5): 143 “Informative”, 63 “Interrogative”, 9

“Inviting”, and 8 “Challenge”. “Informative” summaries contain factual information about the program; “Interrogative” summaries

contain questions that arouse viewer curiosity, e.g. “What is the meaning of life?”; “Inviting” are invitations, e.g. “Got time for

a 24 year vacation?”; and, “Challenge” entice viewers on a personal basis, e.g. “are you ready for...?”. We chose “Informative”

summaries due to their resemblance to the sentences extracted by the summarization algorithms. On average, there are 2 informative

plot summaries per documentary (minimum of 1, maximum of 3).

Table 5: Properties of the documentary plot summaries.

AVG MIN MAX

#Sentences

Informative 4 1 18

Interrogative 4 1 19

Inviting 6 2 11

Challenge 5 2 9

#Words

Informative 82 26 384

Interrogative 103 40 377

Inviting 146 63 234

Challenge 104 59 192

4. Experimental Setup

For news articles, summaries were generated with the average size of the manual abstracts (≈ 31% of their size).

For each film, two summaries were generated, by selecting a number of sentences equal to (i) the average length of its manual

plot summaries, and (ii) the length of its synopsis. In contrast with news articles and documentaries, three types of input were

considered: script, subtitles, script+subtitles.

For each documentary, a summary was generated with the same average number of sentences of its manual plot summaries

(≈ 1% of the documentary’s size).
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Content quality of summaries is based on word overlap (as defined by ROUGE) between generated summaries and their ref-

erences. ROUGE-N computes the fraction of selected words that are correctly identified by the summarization algorithms (cf.

Equation 5: RS are reference summaries, gramn is the n-gram length, and countmatch(gramn) is the maximum number of n-grams

of a candidate summary that co-occur with a set of reference summaries). ROUGE-SU measures the overlap of skip-bigrams (any

pair of words in their sentence order, with the addition of unigrams as counting unit). ROUGE-SU4 limits the maximum gap length

of skip-bigrams to 4.

ROUGE-N =

∑
S∈RS

∑
gramn∈S

countmatch(gramn)∑
S∈RS

∑
gramn∈S

count(gramn)
(5)

5. Results and Discussion

Subtitles and scripts were evaluated against manual plot summaries and synopses to define an optimal performance reference.

The following sections present averaged ROUGE-1, ROUGE-2, and ROUGE-SU4 scores (henceforth R-1, R-2, and R-SU4), and

the performance of each summarization algorithm, as a ratio between the score of the generated summaries and this reference

(relative performance). Several parametrizations of the algorithms were used (we present only the best results). Concerning MMR,

we found that the best λ corresponds to a higher average number of words per summary. Concerning GRASSHOPPER, we used

the uniform distribution as prior.

5.1. Newspaper Articles (TeMário)

Table 6 presents the scores for each summarization algorithm. LSA achieved the best scores for R-1, R-2, and R-SU4. Figure 1

shows the relative performance results.
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Table 6: ROUGE scores for generated summaries and original documents against manual references. For MMR, λ = 0.50; Support Sets used Manhattan distance

and Support Set Cardinality = 2; KP-Centrality used 10 key phrases.

R-1 R-2 R-SU4 AVG #Words

MMR 0.43 0.15 0.18 195

Support Sets 0.52 0.19 0.23 254

KP 0.54 0.20 0.24 268

LSA 0.56 0.20 0.24 297

GRASSH. 0.54 0.19 0.23 270

LexRank 0.55 0.20 0.24 277

Original Docs 0.75 0.34 0.38 608

Fig. 1: Relative performance for news articles. For MMR, λ = 0.50; Support Sets used Manhattan distance and Support Set Cardinality = 2; KP-Centrality used

10 key phrases.

5.2. Films

Table 7 presents the scores for the film data combinations against plot summaries. Overall, Support Sets capture the most

relevant sentences for plot summaries. Nevertheless, LSA has comparable behavior according to R-2. It would be expected, for

algorithms such as GRASSHOPPER and MMR, that maximize diversity, to perform well in this context, because plot summaries
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are relatively small and focus on the more important aspects of the film, ideally, without redundant content. However, our results

show otherwise. For scripts, LSA and LexRank are the best approaches in terms of R-1 and R-SU4.

Table 7: ROUGE scores for generated summaries for subtitles, scripts, and scripts concatenated with subtitles, against plot summaries. For MMR, λ = 0.50;

Support Sets used the cosine distance and threshold = 50%; KP-Centrality used 50 key phrases.

R-1 R-2 R-SU4 AVG #Words

MMR

Subtitles 0.07 0.01 0.02 52

Script 0.14 0.01 0.03 53

Script + Subtitles 0.12 0.01 0.03 71

Support Sets

Subtitles 0.23 0.02 0.06 150

Script 0.25 0.02 0.07 133

Script + Subtitles 0.29 0.03 0.09 195

KP

Subtitles 0.22 0.02 0.06 144

Script 0.24 0.02 0.07 123

Script + Subtitles 0.28 0.02 0.08 184

LSA

Subtitles 0.22 0.02 0.06 167

Script 0.28 0.03 0.08 190

Script + Subtitles 0.28 0.03 0.08 219

GRASSH.

Subtitles 0.17 0.01 0.04 135

Script 0.21 0.02 0.06 121

Script + Subtitles 0.22 0.02 0.06 118

LexRank

Subtitles 0.24 0.02 0.06 177

Script 0.29 0.02 0.09 168

Script + Subtitles 0.30 0.02 0.08 217

Original

Docs

Subtitles 0.77 0.21 0.34 10460

Script 0.74 0.23 0.36 14560

Script + Subtitles 0.83 0.31 0.43 24640
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Table 8: ROUGE scores for generated summaries for subtitles, scripts, and scripts+subtitles, against plot synopses. For MMR, λ = 0.50; Support Sets used the

cosine distance and threshold = 50%; KP-Centrality used 50 key phrases.

R-1 R-2 R-SU4 AVG #Words

MMR

Subtitles 0.08 0.01 0.02 435

Script 0.16 0.03 0.06 745

Script + Subtitles 0.11 0.01 0.03 498

Support

Sets

Subtitles 0.25 0.04 0.08 1033

Script 0.37 0.07 0.15 1536

Script + Subtitles 0.42 0.08 0.16 1736

KP

Subtitles 0.24 0.04 0.08 952

Script 0.36 0.07 0.14 1419

Script + Subtitles 0.40 0.08 0.16 1580

LSA

Subtitles 0.31 0.06 0.11 1303

Script 0.42 0.09 0.17 1934

Script + Subtitles 0.45 0.10 0.18 2065

GRASSH.

Subtitles 0.34 0.06 0.12 1553

Script 0.44 0.09 0.18 1946

Script + Subtitles 0.47 0.10 0.19 1768

LexRank

Subtitles 0.34 0.06 0.12 1585

Script 0.45 0.10 0.18 1975

Script + Subtitles 0.48 0.10 0.19 2222

Original

Docs

Subtitles 0.70 0.18 0.30 10460

Script 0.73 0.24 0.37 14560

Script + Subtitles 0.83 0.32 0.44 24640

Table 8 presents the scores for the film data combinations against plot synopses. The size of synopses is very different from

that of plot summaries. Although synopses also focus on the major events of the story, their larger size allows for a more refined

description of film events. Additionally, because summaries are created with the same number of sentences of the corresponding

synopsis, higher scores are expected. From all algorithms, LexRank clearly stands out with the highest scores for all metrics (except

for R-SU4, for scripts).

The script+subtitles combination was used in order to determine whether the inclusion of redundant content would improve

the scores, over the separate use of scripts and subtitles. However, in most cases (Figure 4), script+subtitles leads to worse scores,

except for Support Sets for R-1. For plot synopses, the best scores are achieved by LexRank and GRASSHOPPER, while, for

plot summaries, the best scores are achieved by LexRank and LSA. By inspection of the summaries produced by each algorithm,

we observed that MMR chooses sentences with fewer words in comparison with all other algorithms (normally, leading to lower
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scores). Overall, the algorithms behave similarly for both subtitles and scripts.

5.3. Documentaries

From all algorithms (Table 9), LSA achieved the best results for R-1 and R-SU4, along with LexRank for R-1. KP-Centrality

achieved the best results for R-2. It is important to notice that LSA also produces the summaries with the highest word count

(favoring recall). Figure 2 shows the relative performance results: LSA outperformed all other algorithms for R-1 and R-SU4,

and KP-Centrality for R-2; Support Sets and KP-Centrality performed closely to LSA for R-SU4; the best MMR results were

consistently worse across all metrics (MMR summaries have the lowest word count).

Table 9: ROUGE scores for generated summaries and original subtitles against human-made plot summaries. For MMR, λ = 0.75; Support Sets used the cosine

distance and threshold = 50%; KP-Centrality used 50 key phrases.

R-1 R-2 R-SU4 AVG #Words

MMR 0.17 0.01 0.04 78

Support Sets 0.37 0.06 0.12 158

KP 0.37 0.07 0.12 149

LSA 0.38 0.06 0.13 199

GRASSH. 0.31 0.04 0.10 150

LexRank 0.38 0.05 0.12 183

Original Docs 0.83 0.37 0.46 5864

Fig. 2: Relative performance for documentaries against plot summaries. For MMR, λ = 0.75; Support Sets used cosine distance and threshold=50%; KP-Centrality

used 50 key phrases.



12

5.4. Discussion

News articles intend to answer basic questions about a particular event: who, what, when, where, why, and often, how. Their

structure is sometimes referred to as “inverted pyramid”, where the most essential information comes first. Typically, the first

sentences provide a good overview of the entire article and are more likely to be chosen when composing the final summary.

Although documentaries follow a narrative structure similar to films, they can be seen as more closely related to news than films,

especially regarding their intrinsic informative nature. In spite of their different natures, however, summaries created by humans

produce similar scores for all of them. It is possible to observe this behavior in Figure 3. Note that documentaries achieve higher

scores than news articles or films, when using the original subtitles documents against the corresponding manual plot summaries.

Fig. 3: ROUGE scores for news articles, films, and documentaries against manual references, plot summaries and synopses, and plot summaries, respectively.

Figure 4 presents an overview of the performance of each summarization algorithm across all domains. The results concerning

news articles were the best out of all three datasets for all experiments. However, summaries for this dataset preserve, approxi-
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mately, 31% of the original articles, in terms of sentences, which is significantly higher than for films and documentaries (which

preserve less than 1%), necessarily leading to higher scores. Nonetheless, we can observe the differences in behavior between these

domains. Notably, documentaries achieve the best results for plot summaries, in comparison with films, using scripts, subtitles, or

the combination of both. The relative scores on the films dataset are influenced by two major aspects: the short sentences found

in the films dialogs; and, since the generated summaries are extracts from subtitles and scripts, they are not able to represent the

film as a whole, in contrast with what happens with plot summaries or synopses. Additionally, the experiments conducted for

script+subtitles for films, in general, do not improve scores above those of scripts alone, except for Support Sets for R-1. Overall,

LSA performed consistently better for news articles and documentaries. Similar relatively good behavior had already been observed

for meeting recordings, where the best summarizer was also LSA [26]. One possible reason for these results is that LSA tries to

capture the relation between words in sentences. By inferring contextual usage of text based on these relations, high scores, apart

from R-1, are produced for R-2 and R-SU4. For films, LexRank was the best performing algorithm for subtitles, scripts and the

combination of both, using plot synopses, followed by LSA and Support Sets for plot summaries. MMR has the lowest scores for

all metrics and all datasets. We observed that sentences closer to the centroid typically contain very few words, thus leading to

shorter summaries and the corresponding low scores.

Interestingly, by observing the average of R-1, R-2, and R-SU4, it is possible to notice that it follows very closely the values of

R-SU4. These results suggest that R-SU4 adequately reflects the scores of both R-1 and R-2, capturing the concepts derived from

both unigrams and bigrams.

Overall, considering plot summaries, documentaries achieved higher results in comparison with films. However, in general, the

highest score for these two domains is achieved using films scripts against plot synopses. Note that synopses have a significant

difference in terms of sentences in comparison with plot summaries. The average synopsis has 120 sentences, while plot summaries

have, on average, 5 sentences for films, and 4 for documentaries. This gives synopses a clear advantage in terms of ROUGE

(recall-based) scores, due to the high count of words.
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6. Conclusions and Future Work

We analyzed the impact of the six summarization algorithms on three datasets. The newspaper articles dataset was used as

a reference. The other two datasets, consisting of films and documentaries, were evaluated against plot summaries, for films and

documentaries, and synopses, for films. Despite the different nature of these domains, the abstractive summaries created by humans,

used for evaluation, share similar scores across metrics.

The best performing algorithms are LSA, for news and documentaries, and LexRank and Support Sets, for films. Moreover,

we conducted experiments combining scripts and subtitles for films, in order to assess the performance of generic algorithms by

inclusion of redundant content. Our results suggest that this combination is unfavorable. Additionally, it is possible to observe that

all algorithms behave similarly for both subtitles and scripts. As previously mentioned, the average of the scores follows closely

the values of R-SU4, suggesting that R-SU4 is able to capture concepts derived from both unigrams and bigrams.

We plan to use subtitles as a starting point to perform video summaries of films and documentaries. For films, the results

from our experiments using plot summaries show that the summarization of scripts only marginally improved performance, in

comparison with subtitles. This suggests that subtitles are a viable approach for text-driven film and documentary summarization.

This positive aspect is compounded by their being broadly available, as opposed to scripts.
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