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"The only source of knowledge is experience"

Albert Einstein





Resumo

O desenvolvimento de software requer a utilização de Application Programming
Interfaces (APIs) externas com o objectivo de reutilizar bibliotecas e frameworks.
Muitas vezes, os programadores têm dificuldade em utilizar APIs desconhecidas,
devido à falta de recursos ou desenho fora do comum. Essas dificuldades provo-
cam inúmeras vezes sequências incorrectas de chamadas às APIs que poderão não
produzir o resultado desejado. Os modelos de língua mostraram-se capazes de
capturar regularidades em texto, bem como em código.

Neste trabalho é explorada a utilização de modelos de língua de n-gramas e a sua
capacidade de capturar regularidades na utilização de APIs, através de uma avali-
ação intrínseca e extrínseca destes modelos em algumas das APIs mais utilizadas
na linguagem de programação Java. Para alcançar este objectivo, vários mode-
los foram treinados sobre repositórios de código do GitHub, contendo centenas
de projectos Java que utilizam estas APIs. Com o objectivo de ter uma avali-
ação completa do desempenho dos modelos de língua, foram seleccionadas APIs
de múltiplos domínios e tamanhos de vocabulário.

Este trabalho permite concluir que os modelos de língua de n-gramas são capazes
de capturar padrões de utilização de APIs devido aos seus baixos valores de per-
plexidade e a sua alta cobertura, chegando a atingir 100% em alguns casos, o
que levou à criação de uma ferramenta de code completion para guiar os progra-
madores na utilização de uma API desconhecida, mas mantendo a possibilidade
de a explorar.

Palavras-chave: N -gram Language Models, Usabilidade das APIs, Perplexidade,
Code Completion.
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Abstract

Software development requires the use of external Application Programming In-
terfaces (APIs) in order to reuse libraries and frameworks. Programmers often
struggle with unfamiliar APIs due to their lack of resources or less common de-
sign. Such difficulties often lead to an incorrect sequences of API calls that may
not produce the desired outcome. Language models have shown the ability to
capture regularities in text as well as in code.

In this work we explore the use of n-gram language models and their ability to
capture regularities in API usage through an intrinsic and extrinsic evaluation of
these models on some of the most widely used APIs for the Java programming
language. To achieve this, several language models were trained over a source
code corpora containing several hundreds of GitHub Java projects that use the
desired APIs. In order to fully assess the performance of the language models, we
have selected APIs from multiple domains and vocabulary sizes.

This work allowed us to conclude that n-gram language models are able to capture
the API usage patterns due to their low perplexity values and their high overall
coverage, going up to 100% in some cases, which encouraged us to create a code
completion tool to help programmers stay in the right path when using unknown
APIs while allowing for some exploration.

Keywords: N -gram Language Models, API usability, Perplexity, Code Comple-
tion.
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Chapter 1

Introduction

1.1 Context

Modern software development requires the use of several thousands of classes and

methods distributed along library or framework components, that provide func-

tionalities to implement certain features. These components provide an interface

commonly referred to as Application Programming Interface (API) that abstracts

implementation details, and is used by developers to interact with these compo-

nents, with the objective of reusing code in order to increase developers’ produc-

tivity and diminish coding errors.

An Integrated Development Environment (IDE), like Eclipse1, is a software appli-

cation that provides programmers certain functionalities, like an intelligent code

completion system, that facilitate software development. These code completion

systems assist on API usage by showing possible interactions to the program-

mer through context pop-up panes. These interactions on the Eclipse’s default

code completion system are limited to method calls and variables (see Figure 1.1).

There are however some approaches that increase these system’s potential by im-

plementing other features like relevance-ordered method calls as seen in Figure 1.2.
1www.eclipse.org

1

www.eclipse.org


Chapter 1. Introduction

Figure 1.1: Eclipse standard code
completion system.

Figure 1.2: Code Recommenders
code completion system [8].

Figure 1.1 presents Eclipse’s standard code completion system, that orders all

method calls alphabetically. This approach although it shows every possible in-

teraction with the object, it might hinder the programmer’s task since he/she has

to search for relevant methods from a possibly long list that can exceed 100 dif-

ferent methods. In Figure 1.2, method calls are shown by their relevance which

advices the programmer, on what he/she might be looking when using a new API,

increasing the usability of the IDE and consequently the developer’s productivity.

1.2 Motivation

According to Robillard [33], when developers are learning how to use an API, the

major obstacle are its resources, that are often inadequate or absent, which may

result in an inefficient API use or atrocious code structure. Often, the documen-

tation to learn how to use a new API is unclear or incomplete, which results in

usability flaws [27]. Examples can also be an obstacle if there is a mismatch be-

tween their purpose and the developer’s goal. Regarding API design, developers

often experience difficulties they cannot answer like the relationship between two

types, how an object of a certain type can be created without a public construc-

tor, and the existence of a helper-type to manipulate a certain object [12]. Even

when the API provides factories to instantiate objects, this is significantly more

time consuming than using a constructor [13]. These case studies show the lack

of code recommendation tools that assist programmers overcoming API usability

2



Chapter 1. Introduction

hurdles. Enhanced code completion systems are a possible solution to help miti-

gate these obstacles consequently reducing programmers’ learning curve, since it

requires them less time browsing documentation or searching code examples.

1.3 Approach

There are several components and stakeholders involved in our approach (see Fig-

ure 1.3). Providing a recommendation system for a given API requires mining

source code repositories where the API is used. Several processes have to be

carried out for achieving robust and accurate recommendations. Namely, deter-

mining the API vocabulary in order to extract API sentences from source code

repositories, building the API language model using the extracted information,

and integrating the model in a code completion system that is able to recommend

proposals of API usage that take into account the code that is being edited as

context.

API developers write and maintain libraries and frameworks, whose API is used

by several projects that are developed by a programmer community. Each project

that uses the API is a candidate for being part of the source code corpora that is

used to build the API sentence model. The broader the source code corpora is in

terms of API coverage, the more complete the language model will be. The API

Sentence
Extractor

Model 
Builder

API 
sentences

Eclipse + APISTA

API sentence 
model

t0
t1
...
tn-1

Recommender

Source 
code

corpora

context

tn API user

code

Programmer
community API

developers

API 
x produces yx y
x uses yx y

Figure 1.3: Overview of components and stakeholders involved in our ap-
proach. The three main components are depicted in gray. The recommender

component is a plugin to an IDE.
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Chapter 1. Introduction

source is used to determine its boundaries, in terms of which types belong to the

API when mining the repositories.

There are two core processes for setting up our recommendation system for a

particular API. The sentence extractor component mines a set of API sentences

from the source code corpora. The model builder component uses the sentences

set to build an API sentence model, which is based on n-gram language models.

Moreover, the model is used by a recommender component in an IDE in order to

assist API users with proposals that augment the API sentence that is being written

in the code editor. The recommender is integrated with the code completion

system of Eclipse, using the available facilities as the means to present the API

usage proposals. When requesting code completion, the context in which the API

user is writing code is given as input to the recommender, namely the tokens

contained in the lines of code that precede the line where code completion is

requested. API usage assistance is provided in a stepwise manner, through single-

token proposals to augment the context.

1.4 Research Questions

This work was conducted around the following research questions that focus on en-

hancing IDE usability with the objective of decreasing the difficulties experienced

by the programmers when learning and using an unfamiliar API.

1. How statistical language models for analysing source code corpora can be

used to assist programmers in a step by step API usage through code com-

pletion proposals?

2. Which models best fit each API in order to produce the most accurate code

completion proposals?

3. Which cases of API usage assistance cannot be effectively addressed by (1)?

4
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1.5 Objectives

With this work, we intend to increase programmers productivity and decrease er-

ror insertion in code, due to the lack of knowledge, on the use of unknown APIs, by

recommending valuable instructions in the programmer’s context. To achieve this,

a code recommendation prototype was implemented but with a different approach

from the ones described in the related work. The prototype uses n-gram language

models, created from the analysis of source code acquired from repositories, to ob-

tain the recommendations according to the programmer’s context. The models are

intrinsically evaluated with a common measurement named perplexity. Regarding

the performance, the models are evaluated with a cross-validation scheme in order

to assess its assistance’s quality and coverage by testing its proposals against the

code found in the repositories. This evaluation will give us useful information on

the prototype’s performance and how its models can be tuned in order to pro-

vide better recommendations as well as information about how well it performs

compared to other approaches.

1.6 Research Method

The Design Science Research method [15] is a problem solving process with dif-

ferent models of approach. The model [26] that will be used, is divided in the

following steps:

1. Problem identification and motivation

2. Objectives of a solution

3. Design and development

4. Demonstration

5. Evaluation

6. Communication

5
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The first three steps are briefly described in this Chapter in Sections 1.1, 1.2 and 1.5

respectively, and show the importance of this area of research and which problems

this approach will address. The next steps consist of designing and implementing

a solution based on a code completion system and evaluating how it answers the

research questions. Finally, the communication will be addressed with a paper [30]

and this dissertation.

1.7 Document Structure

This document provides more detailed information on each part of the approach

and is divided as follows:

• Chapter 2 provides background information regarding our approach, namely

n-gram language models and respective smoothing techniques and an overview

of the existing tools, with a comparison and an explanation on how they dif-

fer from our approach;

• Chapter 3 formally describes how the API calls are represented in the lan-

guage models, in the form of tokens and sentences as well as the source code

extraction process and its importance when used with n-gram language mod-

els;

• Chapter 4 intrinsically evaluates the language models and discusses and com-

pares the results;

• Chapter 5 extrinsically evaluates these models, as well as a discussion re-

garding the relation with the previous evaluation;

• Chapter 6 shows an example of how these language models can be applied

in code completion systems;

• Chapter 7 concludes this work and proposes future directions.

6



Chapter 2

Related Work

Similarly to our approach, most of the tools presented in this chapter are built on

top of the following three pillars (see Figure 2.1): (1) Source code miner to extract

relevant code from the repository; (2) Source code analyser that analyses and orga-

nizes the extracted code in a way to be processed into relevant recommendations;

(3) Recommendation system that ranks and displays the most relevant suggestions

to the programmers, a feature typically implemented as an IDE extension.

Figure 2.1: Recommendation systems for code completion.

Between the different approaches what changes is the implementation and detail

of each one of the steps previously presented. The next section provides some

background knowledge on n-gram language models, since some of the tools de-

scribed in this chapter (as well as our approach), use these models to organize the

extracted examples. Sections 2.2, 2.3 and 2.4 describe and aggregate the tools by

their general goals.

7



Chapter 2. Related Work

2.1 N-Gram Language Models

Language models are widely used on several written and spoken language process-

ing tasks, such as speech recognition [32], spell-checking and correction [28] and

machine-translation [6]. These models allow the computation of the probability

of a sentence or the estimation of how likely a history of tokens will be followed

by a certain token. These probabilities are described as the product of a set of

conditional probabilities. Hence, the probability of a sentence ω = (t0, t1, · · · , tn)

is given by:

P (ω) = P (t0)P (t1|t0)P (t2|t0t1) · · ·P (tn|t0t1 · · · tn−1) (2.1)

Equation 2.1 represents a chain of conditional probabilities P (t|h), where t is

the token and h is the history or the previously written tokens. The maximum

likelihood estimate is used to compute these probabilities, where C() is the number

of times the sequence appears in the training set (Equation 2.2).

P (tn|t0t1 · · · tn−1) =
C(t0t1 · · · tn)

C(t0t1 · · · tn−1)
(2.2)

Since it is not reliable to estimate probabilities for long histories, it is common to

set a limit N for these long histories using the Markov assumption. The probabil-

ities are then computed as follows:

P (tn|tn−N+1 · · · tn−1) =
C(tn−N+1 · · · tn)

C(tn−N+1 · · · tn−1)
(2.3)

N -gram language models are some of the several existing statistical models and

have been previously used to capture regularities in source code in general [16].

Our intuition was that n-gram language models would work well for API client

code, since APIs usually have common usage patterns or regularities with relatively

small histories, which can be captured with these models.

8



Chapter 2. Related Work

2.1.1 Smoothing techniques

Language models suffer from a problem called data sparseness. This problem es-

pecially arises when the corpora is too small and does not contain all possible

sentences, which will result in a zero probability for those sentences when query-

ing the model, due to the nature of the maximum likelihood estimate. Smoothing

techniques are used to address this problem by producing more accurate probabil-

ities. This is done by adjusting the maximum likelihood estimate of probabilities

[10] by attempting to increase the lowest probabilities (such as zero) and decrease

the highest ones resulting on a more uniform probability distribution, and hence,

producing a more accurate model. The SRILM toolkit [36] supports the smoothing

techniques that we have experimented in our evaluation, namely the Witten-Bell

and Kneser-Ney methods.

2.1.1.1 Witten-Bell

If a given n-gram occurs in the training set, it is reasonable to assume that we

should use the highest order n-gram in order to calculate the probability of the

next token. The model in this situation will be much more accurate than using the

lower order ones that may recommend a larger set of possible tokens. However,

when the n-gram does not appear in the training set, we can backoff to the lower

order ones. Equation 2.4 shows how the Witten-Bell smoothing addresses this

problem.

PWB(ti|ti−1
i−n+1) = λti−1

i−n+1
P (ti|ti−1

i−n+1) + (1− λti−1
i−n+1

)PWB(ti|ti−1
i−n+2) (2.4)

This equation is based on a linear interpolation between the maximum likelihood

estimate of the n-order model and the (n− 1)-order smoothed model. The weight

λ given to the lower order models is proportional to the probability of having

an unknown word with the current history (in our experiments, this value was

estimated by the SRILM toolkit).

9
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2.1.1.2 Kneser-Ney

A very frequent token tj would be represented in the model with a very high

unigram probability. However, if this token is only observed after another token

tk in the training set, it is very unlikely it will appear after another token tl. A

smoothed probability estimate may be high if the unigram probability of tj is

taken into account when backing-off. Equation 2.5 shows how the Kneser-Ney

[20] smoothing technique addresses this problem, where D is a constant given by

Equation 2.6 (n1 and n2 are the total number of n-grams with exactly one and two

counts) that is subtracted to the n-gram count, when computing the discounted

probability and γ(ti−1
i−n+1) is used to make the distribution sum to 1 [11]1.

PKN(ti|ti−1
i−n+1) =


max{C(ti−1

i−n+1)−D,0}∑
ti C(ti−1

i−n+1)
if C(ti−1

i−n+1) > 0

γ(ti−1
i−n+1)PKN(ti|ti−1

i−n+2) if C(ti−1
i−n+1) = 0

(2.5)

D = n1/(n1 + 2 ∗ n2) (2.6)

This method consists of taking into account the number of different tokens that

precede a token tj to calculate the unigram probabilities, and not only the number

of occurrences of that token.

While learning an unknown API, programmers tend to search for resources in

order to complete a task. If most of the programmers use a certain example, that

pattern will have a very high probability in the model. However, when executing a

more specific task, programmers might use some uncommon operations, that will

be reflected in the model with a low probability, since they will occur less often

in the source code corpora. A code recommendation tool based on this type of

models will keep the programmer on the correct path, but would allow for some

exploration of the API by providing some of the uncommon operations.
1For more details on the computation of these values see http://www.speech.sri.com/

projects/srilm/manpages/ngram-discount.7.html
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2.2 Method Call Recommenders

The code completion system developed by Marcel Bruch et al. [9], uses a modi-

fied k-nearest-neighbours [5] called “Best Matching Neighbour”, that recommends

method calls for particular objects, by extracting the context of the variable,

searching the codebase for similar situations and synthesize method recommenda-

tions. Figure 2.2 gives an example of the “Call Completion” feature.

This code completion system led to an industry-level Eclipse Project named Code

Recommenders [8], along with some extra features like “Override Completion” that

recommends which methods are usually overridden when extending a certain API

class, “Chain Completion” suggests chains of method calls that return the desired

type and “Adaptive Template Completion” that recommends multiple methods

that frequently occur together on an object. Being this tool the most complete we

have found and although the system provides several different recommendations

programmers usually need with a certain object, it does not assist the programmer

with the next object he might need in order to correctly interact with the API,

which limits the tool because the programmer must know at least which classes

exist in the API. This is also a problem if the documentation is unclear.

Hindle et al. [16] apply language models to code and try to find evidence that

software is far more regular than, for example, English, and that these techniques

can be applied to code completion systems. To test this, they implemented a

Figure 2.2: Call completion feature example, on the Code Recommenders
intelligent code completion [1].

11
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system called “corpus-based n-gram models suggestion engine” that tries to guess

the next token based on a static corpus of source code. Their approach differs from

ours in the aspect that we focus only on creating models that can represent the API

usage, which is much more restrict and regular than source code in general, thus

allowing to produce more accurate recommendations. Although their work also

measures the models’ perplexity, we argue that an extrinsic evaluation is required

in order to fully assess the prototype. Nevertheless, it was one of the approaches

that motivated the use of n-gram language models on our approach.

Better Code Completion (BCC) [19, 29] sorts, filters, and groups API methods.

Sorting has two options; the first is a type-hierarchy-based sorting, which proposes

the methods from the declared type before its super type, which is very useful since

in certain contexts methods like wait() are never used; the second is a popularity-

based sorting, that sorts the recommendations based on the frequency of a method

call, similar to our and other approaches. Figures 2.3 and 2.4 show how the sorting

feature works [19].

Their approach also allows to manually filter API methods, i.e. define context-

sensitive filters since certain methods have to be public because the sub-classes that

invoke them are located outside the package. BCC allows developers to configure

groups of methods that will be displayed together in the code completion pane.

Figure 2.3: The BCC tool sorts
the available methods by declara-
tion type first and by hierarchy type

secondly.

Figure 2.4: The available meth-
ods are sorted by popularity.

12
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Again, this approach is limited to the methods of a certain object and does not

provide any extra knowledge on how to use the API.

There are two types of relevant information available in a callgraph [35]. The

relation between the functionality of two functions, and that a certain degree of

layering exists. The FRAN algorithm consists of two phases. The first is based

on a query function, it provides a set of related functions and then orders the

result based on the relevance of each function. Although this might be useful, an

important sequence of method calls might not be structurally related and still be

important to the developer in order to interact correctly with the API. There is also

the FRIAR algorithm developed by the same authors that mines sets of functions

that are commonly called together in order to recommend functions related to

a particular query function. With this, the developer might get an appropriate

sequence of method calls, however, it might not make sense if the code that the

programmer wrote is not taken into account, which may result in an inappropriate

use of the API.

Another approach is RASCAL [24, 23] which is a tool that recommends a set of

task-relevant methods, by trying to predict the next method the programmer will

call. To do this, the authors employed a Collaborative Filtering algorithm using

the Vector Space Model and compare that approach with another technique called

Latent Semantic Indexing. Figure 2.5 shows how to interact with the tool.

These tools are the ones we consider most related to our goals, but none of them

has a stepwise instruction recommendation. These tools, as stated before, can be

difficult to use properly if the programmer has no knowledge about the API, or its

resources are unclear or absent, which will decrease the programmer’s productivity

since he/she will have to look for examples. As stated in Section 1.2, these exam-

ples sometimes hinder the programming task if they mismatch the developer’s goal

and may lead to an inefficient or incorrect use of the API, consequently decreasing

code quality. Nevertheless, developers often rely on examples and try to adapt

them to their tasks. However, it is important to show the benefits of example

recommendation tools like the ones that follow.

13
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Figure 2.5: RASCAL prototype overview [24].

2.3 Snippet/Sequence Recommenders

Recently, a tool called SLANG used n-gram language models and recurrent neural

networks to fill holes in partial programs that use a certain API. Figure 2.6 shows

a partial program with holes to be filled with the tool as in Figure 2.7 [31].

Even though our work only focuses on the language models, we intend to achieve a

stepwise assistance tool based on a code completion system that adapts and helps

the programmer using and discovering the API and not by filling holes in partial

programs. This may require the programmer to know where those holes are, which

can be a difficult task if there are no apparent compilation or execution errors.

Software developers often search for examples when using an unfamiliar API which

can usually be found in its documentation or on the web. XSnippet [34] is a

code assistant tool that allows programmers to query repositories for relevant

code snippets according to their context without having to explicitly formulate a

query. Although this approach abstracts the developer from the query formulation,

14
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void exampleMediaRecorder ( )
throws IOException {
Camera camera = Camera . open ( ) ;
camera . s e tD i sp l ayOr i en ta t i on ( . . . ) ;
? // (H1)
Sur faceHolder ho lder = getHolder ( ) ;
ho lder . addCallback ( . . . ) ;
ho lder . setType ( . . . ) ;
MediaRecorder rec = new MediaRecorder ( ) ;
? // (H2)
rec . setAudioSource ( . . . ) ;
r e c . setVideoSource ( . . . ) ;
r e c . setOutputFormat ( . . . ) ;
? { rec } // (H3)
rec . setOutputFi l e ( . . . ) ;
r e c . setPrev iewDisp lay ( . . . ) ;
r e c . s e tOr i en ta t i onHint ( . . . ) ;
r e c . prepare ( ) ;
? { rec } // (H4)
}

Figure 2.6: Partial program using
multiple APIs.

void exampleMediaRecorder ( )
throws IOException {
Camera camera = Camera . open ( ) ;
camera . s e tD i sp l ayOr i en ta t i on ( . . . ) ;
camera . unlock ( ) ;
Sur faceHolder ho lder = getHolder ( ) ;
ho lder . addCallback ( . . . ) ;
ho lder . setType ( . . . ) ;
r e c = new MediaRecorder ( ) ;
rec . setCamera(camera ) ;
r ec . setAudioSource ( . . . ) ;
r e c . setVideoSource ( . . . ) ;
r e c . setOutputFormat ( . . . ) ;
rec . setAudioEncoder (1) ;
rec . setVideoEncoder (3) ;
r ec . setOutputFi l e ( . . . ) ;
r e c . se tPrev iewDisp lay ( . . . ) ;
r e c . s e tOr i en ta t i onHint ( . . . ) ;
r e c . prepare ( ) ;
rec . start ( ) ;
}

Figure 2.7: Holes automatically
replaced with SLANG’s proposals.

programmers still need to know what to search for which implies some knowledge

about the API.

The Strathcona [18, 17] is an example recommendation tool to help programmers

locate source code examples by formulating a query based on the code’s structural

context. The drawback of this approach is the necessity of having some knowledge

of where to start writing code before querying an example, which could be obtained

by some documentation. Furthermore, if the resources are absent, the tool would

be unusable.

MAPO is another tool [41, 40] used to mine API usage patterns to recommend as-

sociated code snippets (see Figure 2.8). Their approach differs from ours, since it

returns code snippets based on the class and method the programmer is implement-

ing, i.e., the code’s actual structure and not on the instructions the programmer

has written. Although snippets show interactions with different objects, if they

mismatch the developer’s goal, it can become an obstacle [33].

Selene [37] is a code recommendation system that uses the editing code as a search

query to look for similar program fragments from an example repository. This,

again, requires the developer to write some code and have a starting point to make

a query. However, this approach has a similarity to ours since it takes into account

the editing code, i.e., the code the programmer has written. Although the code’s

structural context is very important, we argue that the previously written code
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Figure 2.8: Overview on the recommender component of the MAPO tool [41].

should also be taken into account to recommend more relevant instructions, since

that code is more likely to influence the next instruction the programmer might

want than the structural context of the code. Nevertheless, a combination of both

structural and local contexts should be a plus.

Although the snippet matching also recommends the next instruction, in the ap-

proaches that we analysed, they recommend a set of method calls for the same

object, or multiple objects but the developer always needs to have some knowledge

about where to start which is a drawback of these approaches.

As stated in Section 1.2, one of the biggest difficulties programmers have to face

is the creation of an object that does not own a public constructor. The tools

presented in following section were created in order to mitigate this problem.
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2.4 Recommenders for a desired object type

The Prospector tool [22] helps programmers by returning code snippets to obtain

a certain type given another type the programmer already has through a chain of

objects and methods calls. That is referred to as a jungloid.

Thummalapenta and Xie [38] developed a tool that allows programmers to for-

mulate queries by providing a source and destination object type. The tool,

PARSEWeb, will use this query to suggest chain calls of methods that will re-

turn the destination type from the source type. Their approach uses a code search

engine to gather code samples and then analyse it statically to return the relevant

method sequences. Figure 2.9 presents the interface of PARSEWeb.

Figure 2.9: PARSEWeb tool interface.

Another alternative is RECOS [4], which consists of an object-instantiation and

recommendation system, i.e., it composes a chain of method calls that returns

a certain type, given an input type. Moreover, this system does not require a

repository of sample code to mine snippets nor a source code search engine and it

takes into account not only the structural context but the local context as well.

The drawback these tools have in common is the requirement of having some

knowledge about the API in order to be able to query the system, i.e., the program-

mer has to know which object type to input and which one to expect, otherwise

the tools are unusable.
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2.5 Summary

In order to summarize, all the tools were generalized into five different categories

according to their purpose (one tool can fit more than one category) as seen in

Table 2.1.
Tools Snippet/Sequence

Recommendation
Method Call Rec-
ommendation

Return Desired
Object Type

Structural Con-
text Sensitive

Local Context
Sensitive

Code Recom-
menders

x x x x x

Better Code
Completion

x

Corpus-based n-
gram,models sug-
gestion engine

x

FRAN algorithm x x
FRIAR algorithm x x
RASCAL x x
SLANG x x
XSnippet x x x
Strathcona x x
MAPO x x
Selene x x
Prospector x
PARSEWeb x x
RECOS x x x x

Table 2.1: Tool categorization table.

The first category, "Snippet/Sequence Recommendation" is assigned to the tools

that recommend examples or sequence of instructions with one or multiple objects.

The tools categorized with "Method Call Recommendation" are the one’s that

filter the available methods for a given object by ranking the most relevant. The

third category "Return Desired Object Type" is assigned to the tools that, given an

expected output type, show the chain of method calls that return that expected

type. The last two categories are used on the tools that take into account the

code’s structural or local context. For our approach it is important to emphasize

the fact that most of the tools are local context sensitive. We believe that this has

to do with their goal since they require a query mechanism or the suggestions are

based on previous written code they need to have this level of sensitivity in order

to suggest in the best way possible. However, structural context sensitivity can

also be important since some suggestions might be unusable inside a certain class

and that can be taken into account in order to filter the proposed suggestions.
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API Sentence Models

Typically, APIs have regular usage patterns that describe valid sequences of API

calls. N -gram language models provide a simple and efficient way of capturing

these regularities. However, these instructions need to be abstracted in order to

have a simple representation in the model. SLAMC [25] is a statistical semantic

language model for source code, where Nguyen et al. introduce semantic informa-

tion into language models. This additional information helps to predict the next

token using the global context of source files. Tu et al. [39], however, argue that

code tokenization is enough for n-gram language models. On the one hand this

supports our decision regarding the abstraction of the API calls. On the other

hand, this simple representation causes other limitations (see Section 3.5).

3.1 Tokens

Within the realm of an API, we refer to token as a possible code instruction that

involves a public API type and a public operation therein, considering both static

operations and constructors as operations too. Tokens are semantic “chunks” that

abstract the representation of code instructions. Currently, method overloading

is not handled, and therefore, there is no distinction amongst methods of the

same class whose name is equal but their parameters differ. The same applies to
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alternative public constructors of the same class. A token is uniquely identifiable

by a tuple formed by an API type and an operation of that type. We consider

the API vocabulary to be formed by a set containing all the possible tokens of the

API1, denoted by V :

V = t0, t1, . . . , tn : ∀t ∈ V , t = 〈type, operation〉

The extraction process considers three kinds of tokens involving invocations on

constructors, static operations, and instance operations. Constructor invocation

is in fact a static operation, but it has to have special treatment in Java and we

use the keyword “new” to name the operation. Table 3.1 summarizes the kinds of

tokens that are considered when extracting sentences.

Invocation Token type Token operation
Class constructor owner class “new”
Static operation owner class operation name
Instance operation target expression type operation name

Table 3.1: Token kinds in API sentences.

Tokens are extracted from assignment statements and expressions. The token is

considered as part if its type is part of the API, whereas all other tokens are

ignored. The API boundaries are given by the API source code that takes part as

input in the extraction process.

3.2 Sentences

The projects that are considered for building the language model are mined to

extract API sentences that are used to build an API sentence model. An API

sentence is a sequence of tokens of V , whose instructions are related. A sentence

consists of an observation (ω) and is treated as a vector of tokens from the vocab-

ulary:
1A member of a vocabulary is normally referred to as type, but such terminology is not

adopted here to avoid confusion with the types of the API.
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ω = t0, t1, . . . , tn : ∀t ∈ ω, t ∈ V

The extracted sentences are mined by parsing every method instruction block

found in the source code corpora. For instance, the following method would result

in the extraction of the sentence below.

vo i d method ( . . . ) {

Labe l l a b e l = new Labe l ( . . . ) ;

S t r i n g s = . . . ;

l a b e l . s e tTex t ( s ) ;

}

Extracted sentence:

ω = (〈Label, new〉, 〈Label, setText〉)

The instantiation of Label was considered as an API token, the String assignment

was ignored, and the operation Label.setText was also identified as a token.

3.3 Extraction Process

The degree of robustness in the process of extracting API sentences from source

code corpora affects the quality and accuracy of the recommendations. Poorly ex-

tracted snippets result in highly noisy data, which in turn will lead to less accurate

language models. Therefore, the extraction process is handled with special care

using different tactics for sentence extraction. We developed a sentence extractor,

which is in essence a parser of Java source files based on the infrastructure of

Eclipse’s Java Development Tools.

3.3.1 Composite expressions

Instructions may contain composite expressions that involve API tokens. Given

that our goal is to capture sentences in terms of their semantics, rather than how
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they are expressed syntactically, we treat composite expressions so that the ex-

tracted sentences are decomposed as if having separate instructions. For instance,

the two following code snippets result in the same extracted sentence.

Composite compos i t e = new Composite ( . . . ) ;

compos i t e . s e tLayou t ( new Gr idLayout ( . . . ) ) ;

Composite compos i t e = new Composite ( . . . ) ;

G r idLayout l a y o u t = new Gr idLayout ( . . . ) ;

compos i t e . s e tLayou t ( l a y o u t ) ;

Extracted sentence:

ω = (〈Composite, new〉, 〈GridLayout, new〉, 〈Composite, setLayout〉)

The token order reflects the execution order, namely, the instantiation of GridLayout

occurs prior to the invocation of setLayout(...).

Analogously, when having chained invocations, the expression is separated into

different instructions. The following code snippet illustrates this case, where the

two cases also result in the same extracted sentence.

new Labe l ( . . . ) . g e tPa r en t ( ) . g e tPa r en t ( ) ;

Labe l l a b e l = new Labe l ( . . . ) ;

Composite pa r en t = l a b e l . g e tPa r en t ( ) ;

Composite pa r en tPa r en t = pa r en t . g e tPa r en t ( ) ;

Extracted sentence:

ω = (〈Label, new〉, 〈Label, getParent〉, 〈Composite, getParent〉)

As with the previous case, the token order reflects the execution order.

3.3.2 Token dependencies

API calls are normally interleaved with other instructions that do not relate to

the API, while unrelated API sentences might also be interleaved. The criteria for

relating the tokens that form a sentence is based on dependency graphs between

instructions. An instruction a is considered to depend on another instruction b in

the following cases:
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input : block : ∀t ∈ block, t ∈ VΩ

(a list of block instructions)

output: out ⊆ SV
(a set of unrelated sentences)

out← ∅
foreach t : block do

sv ← s ∈ out : variables(s) ∩ variables(i) 6= ∅
if sv.isEmpty() then

sentences.add(new Sentence(t))
end
else if sv.size() = 1 then

sv.get(0).append(t)
end
else

out.removeAll(sv)
s← merge(sv)
s.append(t)
out.add(s)

end
end

Algorithm 1: Algorithm to compute a set of unrelated sentences contained in an
instruction block.

1. b is an assignment and a uses the assigned variable;

2. a is an invocation and b is used in its arguments.

Algorithm 1 describes in pseudo-code how the instruction blocks are processed

with respect to token dependencies. Each instruction block will result in a set

of sentences (possibly empty, if no API tokens are found therein). We start with

an empty set of sentences. For every instruction of the block, the variables used

therein are obtained and the sentences where at least one of those variables is

used is computed (sv). If there are no matching sentences in the set, then a

new sentence containing the instruction is created and added to the set. If there

is only one matching sentence, then the instruction is appended to the end of

that sentence. Finally, if there are more than one matching sentence, these are

considered related and merged into a new sentence, using the instruction order.

The merged sentences are removed from the set and the new sentence is added.
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Consider the following example, where we have two unrelated sentences in a block.

The instructions that form the two Composite objects are unrelated because the

variables that are involved do not overlap, and hence, two sentences are extracted

from the block.

Composite compos i te1 = new Composite ( . . . ) ;

compos i te1 . s e tLayou t ( new RowLayout ( ) ) ;

Composite compos i te2 = new Composite ( . . . ) ;

compos i te2 . s e tLayou t ( new F i l l L a y o u t ( ) ) ;

Button button = new Button ( compos i te1 , . . . ) ;

Text t e x t = new Text ( compos i te2 , . . . ) ;

but ton . s e tTex t ( . . . ) ;

t e x t . s e tTex t ( . . . ) ;

Extracted sentences:

ω1 = (〈Composite, new〉, 〈RowLayout, new〉, 〈Composite, setLayout〉, 〈Button, new〉, 〈Button, setText〉)

ω2 = (〈Composite, new〉, 〈FillLayout, new〉, 〈Composite, setLayout〉, 〈Text, new〉, 〈Text, setText〉)

3.3.3 Selections and loops

Selections (if-else blocks) are treated so that a sentence is extracted for each

possible branch, using a similar strategy to the MAPO tool [41]. Once again,

the extracted sentences follow the execution order, but in this case, with alter-

native execution sequences. Loops are treated in the same way as if they were

conditionals, preserving the possible execution sequences, but ignoring repetition.

Consider the following code snippet with an if-else block to illustrate this case.

Given that there are two possible executions of the block, two sentences are ex-

tracted.

i f ( compos i t e . i s V i s i b l e ( ) ) {

compos i t e . s e tFocu s ( ) ;

}

e l s e {

compos i t e . s e t V i s i b l e ( . . . ) ;

compos i t e . redraw ( ) ;

}

compos i t e . l a y o u t ( ) ;
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Extracted sentences:

ω1 = (〈Composite, isV isible〉, 〈Composite, setFocus〉, 〈Composite, layout〉)

ω2 = (〈Composite, isV isible〉, 〈Composite, setV isible〉, 〈Composite, redraw〉, 〈Composite, layout〉)

3.3.4 Sentence sample vocabulary

Consider SV as the set of all possible sentences using vocabulary V , i.e. the sample

space. The set of extracted sentences is denoted by Ω, consisting of a sample of

observations that is a subset of the possible sentences (Ω ⊆ SV).

Ω = (ω0, ω1, . . . , ωn) : ∀ω ∈ Ω, ω ∈ SV

Given that the sentences of the sample may not use every token of the vocabulary,

the vocabulary of the extracted sentences VΩ is a subset of the API vocabulary

(VΩ ⊆ V). VΩ is used to build the language model, and the accuracy of the latter

depends on the quality of the former.

3.4 Definition of API Sentence Models

Formally, an API Sentence model is an n-gram language model built from a set

of extracted API sentences Ω from the source code corpora, which are composed

by tokens from a subset of the API’s vocabulary VΩ. Consider the examples on

Figures 3.2 that illustrate how a sample of observations Ω containing the extracted

sentences ω0, ω1, ω2 would be organized on an API Sentence Model with order

n = 2 with their respective probabilities.

3.5 Limitations

As stated before, this simple representation of the instructions and respective

sentences creates a number of limitations namely:
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〈Composite, new〉 1/3
2/3

〈RowLayout, new〉 1/1
〈Composite, setLaytout〉 2/3

1/3
〈Button, new〉 2/2

〈Button, setText〉
〈FillLayout, new〉 2/2

〈Text, new〉 1/1
〈Text, setText〉

Figure 3.1: API Sentence model based on n-gram language models with n = 2.

ω0 = (〈Composite, new〉, 〈RowLayout, new〉, 〈Composite, setLayout〉, 〈Button, new〉, 〈Button, setText〉)
ω1 = (〈Composite, new〉, 〈FillLayout, new〉, 〈Composite, setLayout〉, 〈Text, new〉, 〈Text, setText〉)
ω2 = (〈Composite, new〉, 〈FillLayout, new〉, 〈Composite, setLayout〉, 〈Button, new〉, 〈Button, setText〉)

Figure 3.2: Sample of observations Ω = (ω0, ω1, ω2).

Tokenization ignoring overloading. Our tokenization of API sentences does

not take into account method and constructor overloading. Our intuition was

that abstracting overloaded methods and constructors into a single token would

not have a significant impact on the results. However, we are aware that making

the distinction in certain cases could yield value.

Long-distance relations among tokens. The ability to recommend useful

API tokens is constrained by a relatively small number of previous of tokens (e.g.,

previous 4 tokens using a 5-gram model). This limitation is inherent to n-gram

models [7]. The downside is that some recommendations could benefit from tokens

written far back in the context, i.e. distance greater that the order of the n-gram.
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Chapter 4

Measuring API Perplexity

To evaluate the performance and nature of n-gram language models, we produced

a model for each API and measured its perplexity. This measurement is one of

the most common methods for evaluating language models. Equation 4.1 formally

describes how the perplexity is computed, where p(T ) is the probability assigned

to a test set T with a length WT (number of tokens).

P (T ) = 2
− 1

WT
log2p(T ) (4.1)

This technique is an intrinsic evaluation approach since it provides information

about the models’ nature and behaviour. Moreover, it provides information such

as the average number of choices for each word [14], which is very important

since we want the developer to stay in the right path but also allow for some

API exploration. Furthermore, it allows us to determine which N value and which

smoothing technique best fits each API, consequently producing the most accurate

model.
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Chapter 4. Measuring API Perplexity

4.1 Setup

Allamanis and Sutton [3] collected a large corpus from GitHub, containing thou-

sands of Java projects that were filtered according to the Github’s social fork sys-

tem, in order to assume an adequate code quality level, since low quality projects

are rarely forked. Posteriorly, we made a second filter in order to obtain only the

projects that contain references to the APIs that we wanted to evaluate. In or-

der to accomplish this task, we searched for import statements and fully qualified

names that contain the APIs’ root package in all the projects’ source files. The

ones that do not contain a reference to the desired API, do not use it, therefore we

can ignore them, since they would not produce any API sentences and would in-

crease the time required to extract the sentences. After determining which projects

contain these references, we used the method described in Chapter 3 to extract the

API sentences. To perform a 5-fold cross-validation scheme [21], the set with the

extracted API sentences was divided into 5 subsets (containing both training and

test sets). Note that sometimes each subset may contain more or less tokens, since

the size of the sentences may vary from one subset to another. After this process,

the SRILM toolkit was used to build the n-gram language models from each sub-

set of the extracted API sentences and apply the different smoothing techniques

available, as well as to evaluate the models’ performance.

In order to evaluate the performance of language models, we have chosen APIs

addressing both similar and different domains, with small and large corpus sizes,

and finally, with different vocabulary sizes in order to compare results and fully

assess the usage of n-gram language models on capturing usage patterns from

different APIs. Table 4.1 shows the APIs that were evaluated, the number of

projects containing at least one reference to the API’s root package, the total

number of sentences extracted from those projects, and finally, the size of the

API’s vocabulary, which will help us to draw some conclusions from the results

obtained.

The performance evaluation for each API was made with both the Witten-Bell

and Kneser-Ney smoothing methods, as well as without any smoothing method,
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API Projects Sentences Vocabulary
SWT 501 105,718 4,085
Swing 2,294 160,961 8,105
JFreeChart 248 22,948 3,788
JSoup 115 1,508 370
JDBC Driver 559 1,666 176
Jackson-core 71 9,306 253

Table 4.1: APIs under analysis: number of client projects, number of extracted
sentences, and vocabulary size.

in order to evaluate how differently the model performs1.

There are some words in the test set that are not found in training sets, which

are called Out Of Vocabulary (OOV) words. When the perplexity values are

computed, these words are not taken into account. For this we need to use a

special token, <unk>, representing the OOV words.

In our case, the interpolate option is used only when using a smoothing method,

Witten-Bell and Kneser-Ney. This option interpolates the n-order estimates with

the lower order ones, which, in general, are more accurate.

After computing the results, we concluded that the interpolation option alone,

produces better results in 80% of the cases. The baseline was the perplexity

without any smoothing methods, compared with the Witten-Bell and Kneser-Ney

smoothing methods with the interpolation option. Also, we do not show the results

for unigrams since they do not support the existence of an history when estimating

the probabilities of the next token. The results presented are the averages of the

5-fold cross validation scheme.
1In SRILM, for each of the smoothing methods, there are 4 different options (no options,

-unk, -interpolate and -interpolate -unk).

29



Chapter 4. Measuring API Perplexity

4.2 SWT API

SWT2 is a cross-platform library to develop graphical user interfaces. There are

several examples on the web on how to interact with its API. Even though the

interface highly depends on the application and might differ a lot from one another,

some of the method calls must always be performed in order to correctly build and

customize the user interface.
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Figure 4.1: Perplexity values for the SWT API.

Figure 4.1 shows that as we increase the value of n, the perplexity decreases and

stabilizes at n = 6. Thereon it decreases less than 0.2 in total. We can also

see that the Kneser-Ney smoothing performs slightly better than all the others.

Although the SWT library is used to produce graphical user interfaces, it shows

a relatively low perplexity value, with an average of 6 different recommendations

for each history of length 5 or higher.

4.3 Swing API

Similarly to the SWT, the Swing library is also used to create graphical user

interfaces, however it produces a more similar appearance independently of the

operating system in use. Again, the graphical user interfaces are very customizable,

and there are several different widgets and components the developer can use,

which produces a larger number of recommendations for the same history.
2Standard Widget Toolkit: Graphical User Interface library developed and used by Eclipse

— www.eclipse.org/swt
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Figure 4.2: Perplexity values for the Swing API.

Regarding the objective, it is reasonable to assume that the Swing API is similar

to the SWT API. This API may be used for the same domain as the previous one,

and although the perplexity values are somehow similar (see Figure 4.2), they are

slightly higher. Nevertheless, the values stabilize at n=6, and the Kneser-Ney

smoothing is also the best method as with the SWT API.

4.4 JFreeChart API

The JFreeChart library3 allows developers to create and customize different kinds

of charts in a graphical application. Although the library allows programmers to

customize charts, it is not as flexible as the previous ones.
3http://www.jfree.org/
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Figure 4.3: Perplexity values for the JFreeChart API.
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As expected, and since the JFreeChart API is much more regular and has a lot

less different paths to follow on each word, the perplexity values are much lower

than the ones obtained on the previous APIs. Figure 4.3 shows that the perplexity

values range from 1.97 to 2.34. Although the Kneser-Ney smoothing still achieves

the best results, in this case the difference is not significant in comparison with

the Witten-Bell method.

4.5 JSoup

The JSoup4 library is used to fetch and parse HTML, manipulate and extract data

from it, and clean it in order to prevent XSS attacks. It was expected that the

JSoup API would have a relatively low perplexity in comparison with the APIs

for creating graphical user interfaces.
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Figure 4.4: Perplexity values for the JSoup API.

The high perplexity values (see Figure 4.4) have to do with the fact that it does

not require a very predictable way to be interacted with. We can also observe that

without applying a smoothing technique, with n ≥ 5, the perplexity values tend

to increase. This is where the smoothing techniques take advantage and produce

more accurate models, as we can see by the perplexity values achieved with the

Witten-Bell and Kneser-Ney methods.
4http://jsoup.org/
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4.6 JDBC Driver for MySQL

MySQL5 provides drivers in several programming languages to make connections

and execute statements in a database, enabling developers to integrate their ap-

plications with the MySQL databases.
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Figure 4.5: Perplexity values for the JDBC Driver API.

Our intuition is that the low perplexity values (see Figure 4.5) are explained with

the relatively simple usage of the API, since in most of the cases it basically requires

to open a connection (with more or less properties), execute an SQL statement,

and iterate over the results.

4.7 Jackson-core

This library6 is used to process JSON data format. Its core contains a parser and

an abstract generator used by its data processor.

Again, a low perplexity (see Figure 4.6) was expected due to its simple usage, that

mainly requires a factory or a mapper, and a parser to read and a generator to

write. In this API the smoothing methods did not improve accuracy significantly.
5http://dev.mysql.com/downloads/connector/j/
6http://wiki.fasterxml.com/JacksonHome
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Figure 4.6: Perplexity values for the Jackson-core API.

4.8 Discussion

We now compare and discuss the obtained results in order to draw some conclu-

sions regarding the language models and their applicability in the domain of the

APIs. Since in most of the cases the Kneser-Ney smoothing technique produced

better perplexity values, Figure 4.7 compares those values across all the analyzed

APIs.

Regarding the perplexity, it is reasonable to conclude that APIs have a similar

nature, i.e., as we increase the value of n, the perplexity decreases and stabilizes
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Figure 4.7: Perplexity values comparison for all the APIs.
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at n=6 in most cases. Even though these APIs may have very different purposes,

this perplexity decrease was expected since as history increases in the n-gram

models, there are less options for each history, but with more accurate estimates

for that history.

Figure 4.8 presents the relation between the API’s vocabulary size and the ob-

tained perplexity values. Even though there are some outliers in this chart, the
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Figure 4.8: Relation between vocabulary size and perplexity.

trendline suggests that as the size of the API’s vocabulary increases, in general,

the perplexity tends to increase as well. These results are not very surprising, be-

cause as the size of the API increases there may be more possible usage patterns.

Nevertheless, this is not true in all the cases: the JFreeChart API, which has a

vocabulary size similar to the SWT API, achieves a lower perplexity. This has to

do with the nature of the API, which has a relatively simple usage, and with the

fact that the corpora may not cover a considerable part of the API.

N -gram language models achieve a perplexity that goes from 50 to 1000 on English

text. Hindle et al. [16] obtained perplexity values that vary from approximately 3

to 32 for Java source code in general. These results are very encouraging because

they show that API usage is far more regular than source code in general, which

motivated us to create a tool to help programmers find the next token they need

to correctly interact with the API.
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One of the main threats to the use of n-gram language models is the size of the

training corpus, which may not contain all the possible sentences to populate the

model. Although the smoothing techniques help mitigate this question, the model

will not be accurate when predicting sentences that do not occur in the training

corpus. This is one of the most important factors that impact the generation of

more accurate language models, and consequently better recommendations to the

programmer.

It is a fact that the API’s vocabulary is not as extensive as for example the English

vocabulary. Even though the source code corpora might not include all the possible

tokens, we argue that it contains enough to create models that will help introduce

the programmer to the API and still allow for some extra exploration.

Programmers often look for examples to learn an unknown API. These usually

represent possible usage patterns and are often required to correctly interact with

it [2]. When the resources are ill-formed, programmers might not correctly use the

proper constructs of these patterns in their code, and even if the code compiles,

and apparently does what it is supposed to, internally it might work incorrectly,

thus being more likely to produce errors in the future. There is no viable way

of manually filtering out these patterns from the source code corpora, but an

adequate dimension of the corpora helps to mitigate this question. This point is

related to the previous one in the sense that in order to allow for some exploration,

the uncommon patterns must be taken into account. Just because they are not

common, does not mean they are not correct. Smoothing techniques produce a

more uniform probability distribution in language models, i.e., they will increase

the probability of rare tokens and decrease the probability of the very common

ones.
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Recommendations Evaluation

The intrinsic evaluation described in Chapter 4 only provides information about

the model’s nature. Even though the relatively low perplexity values hint that

the models will achieve good coverage and accuracy values, a deeper and extrinsic

evaluation is required in order to fully assess this question. To perform this task

we evaluate the coverage and average proposal hit ranks of the recommendations

provided by the model, for the top 20 proposals. The models evaluated are the

same of the previous chapter in order to produce a full evaluation over the models’

performance and maintain consistency throughout the whole process. The follow-

ing sections describe the evaluation method, present the most relevant results (see

the Appendices for more information) and discuss the results obtained.

5.1 Method

In order to extrinsically evaluate the models, we have built a system1 that allows

to import the models produced by the SRILM tool. To proceed with the necessary

evaluation, the models are loaded into the system. Recall that a 6-gram model

requires a 5-gram model to be loaded which in turn requires a 4-gram model and
1https://github.com/andre-santos-pt/apista
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Chapter 5. Recomendations Evaluation

so on. We do not load the 1-gram models since it is not possible to query them

with a history. After this, the test set is loaded into the system.

To evaluate the proposals generated by the models, the tokens of each sentence in

the test set are iteratively accumulated and used as context to query the model

with the number of tokens required by the n-gram model. For example, a 3-

gram model would require two tokens to be used as context (history), where the

third would be the recommendation to be considered. However, if the size of the

context is smaller than the size required by the model, we backoff to the correct

n-order model, in order to be able to query it. For example, assuming that we are

evaluating 6-gram models, this would require five tokens to be used as context.

Since the tokens are iteratively accumulated, there are situations where the context

does not have the correct size to query the model. To overcome this issue, higher

order models can be filled with multiple copies of “start sentence” tokens (also

represented as <s>) which would allow the model to be queried with a smaller

context. However, the models do not contain these tokens and instead, a backoff

mechanism is used to overcome this issue similarly to the SRILM tool. If the token

in the sentences that follows the context is found among the predictions generated

by the model, its proposal index is analysed in order to understand how good the

prediction was. On the other hand, if the token that follows the context is not

found in the predictions it may be due to multiple reasons: (a) the token did not

appear in the training set, which explains why the model would not be able to

recommend it; (b) the token did appear in the training set, but the context that

precedes it is not the same; (c) the token was recommended by the model, but not

in the top 20 proposals.

The following section provides information about:

• The overall coverage of the proposals, that show the percentage of recom-

mended tokens that the model was able to propose correctly in the top 20

ranks.
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• The average hit index allows to understand the quality of the recommenda-

tions generated by the model by providing an average of the index where the

correctly recommended token was found in the proposals.

5.2 Results

Since the perplexity values presented in 4 tend to stabilize at n = 6, in order

to simplify and show only the most relevant results, this section only provides

information for n-grams with 2 ≤ n ≤ 6. In order to reduce the amount of charts

presented, and since all the APIs have a similar behaviour, one should refer to

Appendix A for more details regarding other APIs. Nevertheless, there may be

references to those APIs when it is relevant. The results presented are the average

of a 5-fold cross validation scheme.

Figures 5.1 and 5.2 present the overall coverage of expected tokens for the SWT

API for both Kneser-Ney and Witten-Bell smoothing techniques for the different

hit ranks and values of n.
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Figure 5.1: N -gram overall cover-
age for the SWT API with Kneser-

Ney smoothing.
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Figure 5.2: N -gram overall cover-
age for the SWT API with Witten-

Bell smoothing.
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The first hit rank shows a relatively low coverage that ranges from approximately

37% (Kneser-Ney) to 45% (Witten-Bell) of correct hits with n = 2. The low

coverage obtained with n = 2 may be explained by the fact that some of the

proposals may no be found in the top 20 ranks, since this n order has the highest

amount of proposals. As the order of n increases, the model is much more accurate

recommending, which results on an increase of the overall coverage, achieving

approximately 68% in the first rank.

If we look at the top-5 hit ranks, the coverage increases and ranges from approx-

imately 73% to 87%, since it is possible to gather more recommendations. As

the number of proposals increases we can achieve values that range from approx-

imately 86% to 95% of correct recommendations in the top 20 hit ranks. As a

side note, it is important to emphasize that although as the order of n increases

the model is more accurate in the first ranks, it has a lower overall coverage since

the model is much more constrained, thus not being able to generate tokens for

long histories. Moreover, the Witten-Bell smoothing provides a higher coverage in

most cases.

This evaluation allows us to draw some conclusions regarding the coverage of the

recommendations on the top-20 ranks of the proposals for each value of n. Clearly,

the best model would recommend the next token in the first rank, however this is

hard to achieve, since there are multiple valid choices that may appear for the same

context. Therefore, Figures 5.3 and 5.4 show more detailed information regarding

the accuracy of the recommendations where the predicted token is found (tokens

that were not found are discarded, since they do not have an hit rank). The

median value is represented in the middle of the box with the respective upper

and lower quartiles and the minimum and maximum values in the whiskers.
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Figure 5.3: Average proposal rank
for each n-gram with the Kneser-
Ney smoothing for the SWT API.
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Figure 5.4: Average proposal rank
for each n-gram with the Witten-
Bell smoothing for the SWT API.

Again, it is possible to observe that as the order of n increases, the model is much

more accurate, thus being more likely to recommend the next token in the first hit

ranks. With n = 2 the median value ranges from 4 to 4.4 for the Kneser-Ney and

Witten-Bell smoothing techniques. With n = 3 the median achieves a value of 2.32

and decreases until 1.89 (n = 6) with the Witten-Bell smoothing. Although the

median value (and the quartiles) decreases as the order of n increases resulting in

more accurate recommendations, it is important to note that the overall coverage

decreases. We argue that there should be a balance between the coverage and

precision in order to keep the programmer in the right path while maintaining

good quality recommendations.

Nevertheless these values are good and very encouraging since that a programmer

requesting a recommendation, would most likely have a correct proposal in the

top 20 ranks, thus not being required to browse for the correct instruction from

the whole documentation of an unknown API.

5.3 Discussion

In this section we discuss the values obtained for the overall coverage as well as

the average hit index and correlate them with the perplexity values obtained in
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Figure 5.5: N -gram overall cover-
age for the Swing API with Kneser-

Ney smoothing.
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Figure 5.6: N -gram overall cover-
age for the Swing API with Witten-

Bell smoothing.

Chapter 4. As stated before, the perplexity measure provides information about

the average number of choices for each token, which is very important in the

context of code recommendations since we want the programmer to be able to

access the most relevant instructions in the top ranks.

The SWT API models have an approximate perplexity value of 6 for n = 6. There-

fore, a maximum of 6 proposals should be enough for most of the recommendations

on the SWT API. If we assume that a system is able to recommend 10 instructions

in a code completion menu without the need for scrolling, from Figures 5.1 and

5.2 we can see that the increase in the overall coverage of the models is minimal

above 10 proposals and still achieves overall coverage values of more than 80%.

As observed in the previous chapter, the nature of the Swing API is similar to the

SWT API. When comparing these two APIs, we can see that the coverage (Figures

5.5 and 5.6) is lower for the Swing API, however, the overall coverage results are

still acceptable and range from approximately 82% (n = 6) to 94%(n = 2).

This may be due to the fact that the Swing API models have a slightly higher

perplexity than the SWT API. Since the Swing API has more possibilities for each

token, this may explain the decrease on accuracy and overall coverage in the first
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Figure 5.7: Average proposal rank
for each n-gram with the Kneser-
Ney smoothing for the Swing API.

2 3 4 5 6
0

5

10

15

20

25

N -gram order

Av
er
ag

e
pr
op

os
al

hi
t
ra
nk

Figure 5.8: Average proposal rank
for each n-gram with the Witten-
Bell smoothing for the Swing API.
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Figure 5.9: N -gram overall cov-
erage for the JFreeChart API with

Kneser-Ney smoothing.

0 5 10 15 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposal hit rank

C
ov
er
ag
e
of

ex
pe

ct
ed

to
ke
ns

(%
)

2-gram
3-gram
4-gram
5-gram
6-gram

Figure 5.10: N -gram overall cov-
erage for the JFreeChart API with

Witten-Bell smoothing.

ranks, due to the fact that it will be more difficult for the models to correctly

predict the next token.

Recalling the perplexity values of the JFreeChart API, that ranges from 1.97 to

2.34, a high overall coverage (up to 99% as observed in Figures 5.9 and 5.10) as

well as a low average hit index (Figures 5.11 and 5.12) were expected due to the

small number of different choices for each token. The difference between both

smoothing techniques is also significant going over 10% with n = 2. Although the
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Figure 5.11: Average proposal
rank for each n-gram with the
Kneser-Ney smoothing for the

JFreeChart API.
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Figure 5.12: Average proposal
rank for each n-gram with the
Witten-Bell smoothing for the

JFreeChart API.
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Figure 5.13: N -gram overall cov-
erage for the JSoup API with

Kneser-Ney smoothing.
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Figure 5.14: N -gram overall cov-
erage for the JSoup API with

Witten-Bell smoothing.

average hit index can go up to 20, the median values range from 1 to 3, which is

in accordance with the perplexity values previously obtained.

This relation between the perplexity values and the accuracy/coverage of the rec-

ommendations is extended to the JSoup API. Figures 5.13 and 5.14, show the

results obtained for the JSoup API. This API had the highest perplexity values,

ranging from approximately 9.5 (n = 6) to 17 (n = 2).
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Figure 5.15: Average proposal
rank for each n-gram with the
Kneser-Ney smoothing for the

JSoup API.
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Figure 5.16: Average proposal
rank for each n-gram with the
Witten-Bell smoothing for the

JSoup API.

Even though the overall coverage exceeds 95% in the top 20 ranks for the 2-grams,

the accuracy is lower than any other API, going below 80% in some cases. However,

the average hit index (Figures 5.15 and 5.16) is not higher than, for example, the

Swing API (see Figures 5.7 and 5.8). The absence of a relation between both

evaluations may be due to the corpus, which may not be large enough to represent

the API usage correctly.

Regarding the other APIs (one should refer to Appendix A for more details),

their low perplexity values explain the results obtained that achieve 100% overall

coverage in some cases, as well as a low average hit index. These APIs have small

vocabularies which may explain these low average hit indexes, since the model

is able to correctly capture the usage patterns. Nevertheless a repetitive usage

pattern and a small corpus might be influence these results as well.

Similarly to evaluation in Chapter 4, it is possible to make a relation between

the values obtained and model’s perplexity. Since the difference between the per-

plexity values for both smoothing techniques is minimal, this is reflected with a

minimal difference in the model’s accuracy, e.g. the Witten-Bell smoothing has

a lower perplexity which is reflected with a lower median value for the proposals

hit rank. As the order of n is increased, the accuracy increases (proposal hit rank

decreases), however, the minimum and maximum values stay constant in most
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cases independently of the value of n. This is due to the nature of the API which

contains, in some cases, several different options for the same context.

The obtained results are interesting and hint that a code completion tool would

help programmers to correctly interact with the API, while allowing some explo-

ration. However, it is important to note some threats that may be influencing

these results. Assuming that the corpus is extracted from projects with a rela-

tively good code quality [3], it is still one of the biggest threats. For example, if

the API is mostly used for specific and repetitive tasks, the corpus will contain

very few different patterns with a high probability. Since the models are being

tested over the same corpus (even though it is a cross-validation scheme), it will

most likely recommend the next instruction correctly, thus resulting in a very high

overall coverage and very low average hit indexes. Another important threat may

be the size of the training corpus which in some cases might no be enough to

represent the whole API.
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Stepwise Code Completion tool

This chapter describes an application of n-gram language models on a recommen-

dation system for stepwise API usage assistance through code completion, based

on an API sentence model built from source code corpora. We implemented the

proposed approach for Java and the recommendation system was developed as a

plugin to the Eclipse IDE. The plugin makes use of the available code completion

facilities, namely the pop-up menus that are available when writing code in the

editor. Figure 6.1 presents a usage scenario of our APISTA tool1 where we can

see that the code completion proposals adapt to the context, suggesting the use of

related API types. Notice that as the context changes, proposals are progressively

adapted to the previously written instructions (steps 1 to 3 in the figure). In addi-

tion to this kind of recommendations, our system is also suitable for recommending

operation calls on a type given its variable (steps 4 and 5 in the figure).

6.1 Recommendation (APISTA Tool)

IDEs typically offer facilities for code completion, commonly through pop-up

menus in code editors containing proposals that the user may select. The se-

lection of a code completion proposal inserts code at the caret position where the
1APISTA stands for API Sentence Token Assistance
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1

2

3

4

5

Figure 6.1: Stepwise API usage assistance for writing API sentences using the
code completion proposals of our APISTA tool in Eclipse.

developer is typing, as well as additional code elsewhere in some cases (e.g., adding

required import statements). An IDE such as Eclipse allows third-party plugins

to contribute with code completion proposal engines. Using this mechanism, we

extended Eclipse with code completion proposals provided by our API sentence

model in a tool that we refer to as APISTA.
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6.2 User interface

Figure 6.2 presents the user interface of our APISTA tool integrated with the code

completion menu of Eclipse. As illustrated, the proposals are adapted to the con-

text variables. Each proposal is accompanied by the JavaDoc documentation text,

as in regular settings, in order to help the user to select among the available pro-

posals. We believe that having proposals that are adapted to the context variables

helps the user to realize how the API objects are composed, besides accelerating

code typing. For convenience, import statements are also automatically inserted

if necessary, as in other IDE automatization features. We extract the lines of the

block in which the user is writing code that precede the line where code comple-

tion is requested. Depending on the n order of the trained n-gram models that

are being used, different context tail lengths will be used to query the model. A

list of context variables is also extracted in terms of identifier and type so that this

information can be used to adapt the code completion proposals to match them

when possible.

In addition to the illustrated usage mode, another possible way of using the recom-

mendations is through the existing code completion menu of Eclipse for displaying

the available operations of a type given a variable (recall Figure 6.1, steps 4 and

5). We sort the Eclipse-provided results according to the ranking of our recom-

mendations, as in Code Recommenders. The same ranking is used as in the other

recommendation model, but only the hits pertaining to types that are compatible

with the object are considered.

JavaDoc

Context

Proposals

API icon

Button&b&=&new&Button(c,&style);

Figure 6.2: User interaction with the APISTA tool. Parameters are matched
with context variables (for instance, c). Unmatched parameters have to be

completed manually (for instance, parameter style).

49



Chapter 6. Applications

The most common situation is that a software project makes use of several APIs.

Therefore, it is relevant to consider that the proposals of different APIs have to

coexist in the IDE. In our solution for Eclipse, the support for each API can be

plugged independently, defining a proposal category for each API with its own icon

(as illustrated with SWT). The activation/deactivation of the proposal categories

is managed by the IDE. Given that the proposals for each API are determined by

the context, if the latter has no tokens of a certain API there will be no proposals

with respect to that API.

6.3 Integration in software development

The described process for building an API language model is always targeted at a

well-defined API. We envision that it should be a responsibility of the API devel-

opers to build a sentence model for it, and possibly package the model together

with the libraries of that API (for instance, included as part of the JAR files of

the libraries). Another option could be based on independent extensions that are

installed separately. In either case, the owners of a software artifact should in

principle have a good notion of which projects to select for building a model for

their API. Although we currently have not yet designed a well-defined format for

serializing the API model, this would be straightforward to achieve. The most im-

portant aspect is to have a serialized model that is IDE-agnostic, so that different

IDEs could seamlessly make use of the same artifact. As with our APISTA tool

for Eclipse, a recommender component that is specific to an IDE has to load the

model and implement the necessary behaviour to query the model correctly. The

recommender component has to extract the context of the code editor to a token

format that is compatible with the model’s vocabulary.
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6.4 Limitations

We expect that our approach will aid programmers in the use of unknown APIs

through the recommendation of the most likely token the programmer might need.

However, there are other obstacles that programmers often face that our approach

cannot help with namely:

Structural context. As opposed to other approaches (e.g., [17, 41, 9]), ours does

not take into account the structural context in which the code is being written.

For instance, if the programmer is overriding a certain method of a particular

class. We argue that using the structural context is relevant when facing the

API of a framework, which requires specialization through inheritance or interface

realization, as opposed to a library.

Parameter values. Although our system may match parameters of the context

whose type belongs to the API vocabulary, it is not able to provide example values

for parameters of other types. We believe that one of the strengths of snippet

matching recommenders (e.g., [17, 34, 41]) relies on this aspect, given that some

parameter values might not be obvious to find.
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Conclusions and Future Work

This work presents an approach that exploits n-gram language models, widely used

in natural language processing, in the context of API usage, in order to produce

recommendations for a stepwise API usage assistance tool. Despite the existence

of several recommendation tools, to our knowledge, this is the first that allows a

stepwise assistance. The objective of this tool is to guide the programmer through

the use of an API, even when using an unknown one, by adapting to the previously

written code, thus producing the most accurate recommendations.

The results allow us to conclude that the n-gram language models are able to

capture the regularities for any kind of APIs, whether they are used to create user

interfaces or to parse HTML. The models can accurately recommend in over 90% of

the cases in the top 20 proposals, which is a very encouraging result. Nevertheless,

these models have some limitations that when overcome, will produce much more

accurate recommendations.

Despite the existence of several tools, code recommendation is a relatively under-

developed area and there is still a lot of room for improvement regarding both the

tool’s usability as well as the recommendation systems. Regarding our approach,

future work and improvements are as follows:

Model tuning. Although n-gram language models perform well, there are several

other modelling techniques that may be interesting to explore.
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Fine-grained tokenization. A possible future development could be to extract

parameter information from the source code repository, so that overloaded meth-

ods and constructors have a distinct token. We argue that the significance of this

issue relates to the design of a particular API. In some APIs, for instance SWT,

where overloading is not much used, improvements should not be significant. On

the other hand, given an API with many overloaded methods or constructors the

situation might be different.

Code completion system usability. A user study through a controlled ex-

periment is necessary to evaluate the usability of our code completion system.

The effectiveness of the mechanism from a human-centered perspective may re-

veal other shortcomings that we did not anticipate, as well as give rise to new

ways of improvement. For example, if the results of a user study would reveal

that dealing with parameter values consists of a significant hurdle, the sentence

extractor process could be enhanced to collect common parameter values, in order

to use them in the proposals.
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Appendix A

Overall Coverage and Average Hit

Index Results

A.1 JDBC Driver for MySQL
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Figure A.1: N -gram overall
coverage for the JDBC Driver
for MySQL API with Kneser-Ney

smoothing.
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Figure A.2: N -gram overall
coverage for the JDBC Driver
for MySQL API with Witten-Bell

smoothing.
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Figure A.3: Average proposal
rank for each n-gram with the
Kneser-Ney smoothing for the

JDBC Driver API.
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Figure A.4: Average proposal
rank for each n-gram with the
Witten-Bell smoothing for the

JDBC Driver API.

A.2 Jackson-core
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Figure A.5: N -gram overall cov-
erage for the Jackson API with

Kneser-Ney smoothing.
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Figure A.6: N -gram overall cov-
erage for the Jackson API with

Witten-Bell smoothing.
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Figure A.7: Average proposal
rank for each n-gram with the
Kneser-Ney smoothing for the Jack-

son API.
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Figure A.8: Average proposal
rank for each n-gram with the
Witten-Bell smoothing for the Jack-

son API.
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