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Abstract. Collisionless shocks occur in various fields of physics. In the context of

space and astrophysics they have been investigated for many decades. However, a

thorough understanding of shock formation and particle acceleration is still missing.

Collisionless shocks can be distinguished into electromagnetic and electrostatic shocks.

Electromagnetic shocks are of importance mainly in astrophysical environments and

they are mediated by the Weibel or filamentation instability. In such shocks,

charged particles gain energy by diffusive shock acceleration. Electrostatic shocks are

characterized by a strong electrostatic field, which leads to electron trapping. Ions are

accelerated by reflection from the electrostatic potential. Shock formation and particle

acceleration will be discussed in theory and simulations.

1. Introduction

Collisionless shocks show interesting features for particle acceleration, which is why they

are of importance in many fields of physics [1]-[7]. They are generated by the interaction

of charged particles with the surrounding self-generated fields – in contrast to collision-

dominated shocks, where two-particle interactions determine the physical behaviour.

In a simple setup of two interpenetrating plasma slabs, either a strong electrostatic

field [8] is generated due to the two-stream instability [9], or an electromagnetic field

due to Weibel-like instabilities [10, 11]. The feedback of such fields mediates the shock

formation process.

http://arxiv.org/abs/1509.05384v1
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The Weibel or filamentation instability generate a turbulent field in which the

charged particles are deflected. Parallel momentum is transferred into perpendicular

momentum, and thus the particles are accumulated and the plasma slabs are compressed.

In relativistic initially unmagnetised plasmas, the density compression is three times the

initial density [12]. The time scales of the shock formation are determined by the time

scales of the electromagnetic instability [13]. The details are given in Sec. 3.

Electrostatic (ES) shocks form in plasmas with different components of electrons

and (heavy) ions. A high mass and temperature difference is favourable for the

generation of these shocks. An electrostatic potential is built-up which traps electrons

in the downstream region and the electron distribution function is widened in parallel

direction. The perpendicular components are less affected. This temperature anisotropy

gives rise to the electromagnetic Weibel instability. The time scales of the formation of

such electromagnetic modes are calculated in Sec. 4 and compared against the time scales

of shock formation in order to determine their relevance during the shock formation

process. We perform the analysis for plasmas with relativistic temperatures and fluid

velocities. Laser-generated plasmas in the laboratory are now entering the relativistic

regime, which is why it is important to explore the physics also in this parameter range.

2. Initial setup for shock formation

We study shock formation in a simple symmetric setup (see Fig. 1). Let us consider

two charge-neutral counterstreaming beams of electrons and positrons or ions with

bulk velocities ±v0, temperatures Te, Ti and thermal parameter µ = mc2/kBT . The

overlapping region turns unstable due to collisionless plasma instabilities (Phase 1),

which will mediate two shocks propagating into the upstream regions (Phase 2).

Figure 1. Shock formation from the interaction of two counterstreaming beams.

In Phase 1 the overlapping region becomes unstable. In Phase 2 two shocks are

propagating into the upstream regions.
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The collisionless shock is of electromagnetic or electrostatic nature, depending on

the initial parameters for the velocities and temperatures. We will discuss these details

in the following sections.

3. Shock formation in electromagnetic shocks

Electromagnetic shocks develop if electromagnetic instabilities dominate in the

overlapping region. In such a symmetric setup, the electromagnetic filamentation

(Weibel) instability is the fastest mode for cold beams Te ≈ Ti ≈ 0 and relativistic

velocities v0/c ≈ 1. The growth rate of the cold filamentation instability is given by

δa =
√

2/γ0β0 ωpa with β0 = v0/c, Lorentz factor γ0 = (1−β2
0)

−1/2 and plasma frequency

of species a being ωpa = 4πn0q
2
a/ma. The saturation time of this instability

τs,a =
1

2δa
ln

(

B2
f

B2
i

)

(1)

is a function of the initial and final magnetic field strengths. The initial magnetic field

strength Bi is obtained from the evaluation of the spectra of spontaneous magnetic

fluctuations, while the final field Bf ≃
√

8πγ0n0mc2 results from a trapping condition

in the magnetic field structure [14]. The saturation time in electron-positron shocks can

then be expressed as

τs,eωpe =

√
γ0

2
√
2
ln

(

4

15

√

6

π
n0

(

c

ωpe

)3

µ
√
γ0

)

. (2)

For electron-positron pair shocks, the shock formation time is simply twice the saturation

time of the instability in two dimensions, τf,e = 2τs,e, and a factor 3 in three dimensions,

τf,e = 3τs,e [15].

For electron-ion shocks the theory has to be extended by an extra term for the

merging time of the filaments. At the saturation time of the filamentation modes in

electron-positron plasmas, the transverse size of the filaments is already large enough

in order to deflect particles strongly enough for efficient accumulation of particles. On

the other hand, in electron-ion plasmas, the filaments are still on the electron scale. An

additional merging time

τm ωpi =
23/2

ln 2
γ
1/2
0 ln(mi/me) (3)

is required in order to bring the filaments to the required size to significantly deflect the

ions [13]. The total shock formation time in electron-ion shocks is thus given by

τf,i ωpi = (τs,i + τm)ωpi = 4.43 d γ
1/2
0 ln(mi/me) (4)

with τs,i the saturation time of the cold ion filamentation instability and d the number of

dimensions. The predicted scaling is broadly consistent with particle-in-cell simulation

results.
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4. Shock formation in electrostatic shocks

Electrostatic shocks require a mass and temperature difference between ions and

electrons. The electrostatic two-stream instability is dominant in the overlapping region,

which is fast for low streaming velocities. A strong electrostatic potential is generated in

the downstream region which can trap electrons (see Fig. 2), which can be approximated

as a flat-top distribution. In the non-relativistic case, we follow Ref.[16] for a steady-

state solution of the shock and describe the electron distribution by a population of

free streaming and a population of trapped electrons. If we introduce normalisations

for the velocity, β = v/c, and the electrostatic potential, ϕ = eφ/mec
2, electrons are

free streaming if the condition |βx| >
√
ϕ is fulfilled and trapped otherwise. The non-

relativistic distribution of the electrons is then given by [16]

fe = C0

( µ

2π

)3/2

e−µ(β2
y
+β2

z
)/2















exp{−µ(
√

β2
x − 2ϕ+ β0)

2/2} βx < −√
2ϕ

exp{−µβ2
0/2} |βx| ≤

√
2ϕ

exp{−µ(
√

β2
x − 2ϕ− β0)

2/2} βx >
√
2ϕ

(5)

with the normalisation constant C0 =
[

eµϕerfc
√
µϕ+ 2

√

µϕ/πe−µβ2

0
/2
]−1

. Fig. 2

demonstrates the ES shock configuration with an oscillatory potential in the shock

downstream region.

Figure 2. An electrostatic shock forms in the interaction region of two counter

propagating plasma slabs. The electrostatic potential ϕ increases monotonously from 0

in the upstream (a), a monotonous increase in the transition region (b) to its maximum

ϕmax in the downstream (c).

4.1. Relativistic generalisation of the distribution function

For the relativistic generalisation of the electron distribution eq. (5), we start with a

Maxwell-Jüttner distribution in the mean rest frame (subscript R)

fR
re = CR exp (−µRγR) , (6)

with the Lorentz factor always defined as γ = (1 − β2)−1/2, and perform a Lorentz

transformation with γ0 into the moving (= laboratory) frame (subscript L) in ±x
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directions. Thus, with γR = γ0γL(1± β0βL,x) we obtain the relativistic distribution

in the laboratory frame

fL
re = CL exp (−µLγL (1± β0βL,x)) (7)

with µL = µRγ0. CR and CL are normalisation constants in the mean rest frame and in

the laboratory frame, respectively.

We now introduce the dependency on the electrostatic potential ϕ. From energy

conservation, we obtain a balance between the kinetic energy in the upstream, where

the bulk is moving with γL, and the total energy in the shock transition region, where

kinetic energy is transformed into potential energy. The bulk Lorentz factor is reduced

to γ′
L. This is expressed by

mec
2(γL − 1) = mec

2(γ′
L − 1)− eφ (8)

or simply γL = γ′
L − ϕ. Electrostatic shocks are mainly one-dimensional, which is why

we assume that the longitudinal and transverse processes can be separated. Introducing

the dimensionless momentum u = βγ, we approximate uL,x ≈
√

(
√

1 + u′2
L,x − ϕ)2 − 1.

We can then write the relativistic generalisation of the electron distribution in eq. (5),

if we replace γL and βL,x in eq. (7) by their ϕ dependent terms and with γ := γ′
L and

ux := u′
L,x we obtain

fre(u) = Cr0



























exp

{

−µ

[

γ0 (γ − ϕ)− 1 + u0

√

(
√

1 + u2
x − ϕ)2 − 1

]}

ux < −uc

exp {−µ [γ0γ⊥ − 1]} |ux| ≤ uc

exp

{

−µ

[

γ0 (γ − ϕ)− 1− u0

√

(
√

1 + u2
x − ϕ)2 − 1

]}

ux > uc

(9)

with the definitions γ = γ(u) =
√
1 + u2 and γ⊥ =

√

1 + u2
⊥. The definition of the

trapping velocity uc is derived from the balance of electrostatic and kinetic energy in

eq. (8) for γL = 1 which gives γ = γc := 1 + ϕ and uc =
√

γ2
c − 1. The non-relativistic

approximation of this trapping velocity agrees with the non-relativistic definition in eq.

(5) for uc → βc =
√
2ϕ for βc ≪ 1.

The normalisation constant Cr0 is obtained from
∫

d3u fre(u) = 1 (10)

with

Cr0 =
γ2
0µ

2

2πeµ

[

2uc(1 + γ0µ)e
−µγ0 + eµγ0ϕ

∑

±

∫ ∞

gc

dγ
γ(1 + µγ0γ)
√

γ2 − 1
e[−µ(γ0γ±u0

√
(γ−ϕ)2−1)]

]−1

.(11)

Eqs. (5) and (9) describe the electron distribution in the quasi-steady ES shock.

In fig. 3 we show the change of the distribution function from the initial Maxwell

distribution for ϕ = 0 to a flat-top distribution for ϕ > 0 for u0 = β0γ0 = 0.01

and µ = 50, corresponding to kBTe = 10 keV. The relativistic expression eq. (9) is

also compared against the non-relativistic expression eq. (5). In the far upstream,
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the distribution is Maxwellian, see fig. 3a. In the shock transition region, where

0 < ϕ ≤ ϕmax, the distribution f(ux) broadens and becomes flat-top. ϕmax denotes

the saturation value of the electrostatic potential in the far downstream which can be

obtained by solving numerically the differential equation 1
2

(

∂ϕ
∂x

)2
+ Ψ(ϕ) = 0 with the

Sagdeev potential Ψ(ϕ) [17, 18]. Fig. 3b shows the distribution function at the ion

reflection condition, where the kinetic energy of the ions equals the electrostatic energy.

In normalised quantities, this is given by ϕ = ϕrefl := (γ0 − 1)mi/me. In the far

downstream, for ϕ = ϕmax the non-relativistic description breaks since ϕmax > 1.

-0.10 -0.05 0.00 0.05 0.10

0.8

0.9

1.0

u
x

f(
u

x
)

(a)

-1.0 -0.5 0.0 0.5 1.0
10-3

10-2

10-1

100

u
x

f(
u

x
)

(b) (c)

u
x

f(
u

x
)

6 4 2 0 2 4 6
10-3

10-2

10-1

100

Figure 3. Electron distributions for ϕ = 0 (a), ϕrefl = 0.09 (b) and ϕmax = 4.58 (c)

for u0 = 0.01 and µ = 50 obtained from the relativistic expression eq. (9) given in

blue and the non-relativistic approximation eq. (5) in dashed black.

In this configuration, the electrons are usually treated kinetically, while the higher

inertia ions are described with a fluid model. In the following section, we summarise

the initial conditions for which an ES shock forms.

4.2. Conditions for ES shock formation

Here, we summarise the results on ES shock formation conditions. In Refs. [19, 20]

a condition for the maximum Mach number was found as 1 < Mmax . 3.1, with

the Mach number M defined as the ratio of the upstream velocity in the shock rest

frame to the ion sound speed, M = v′0/cs = (v0 + vsh)/cs. The shock velocity in

the laboratory frame can be approximated from the shock jump conditions as vsh/c =√
γad − 1

√

(γ0 − 1)/(γ0 + 1) with the ideal gas adiabatic constant γad [12]. The ion

sound speed is given by cs =
√

kBTe/mi. This can be generalised for relativistic plasmas

with the relativistic Mach number M = u′
0/us, where u′

0 = β ′
0γ

′
0 is the dimensionless

momentum in the shock rest frame and us = βsγs with βs =
√

kBTe/mic2 [19, 21]. This

imposes a condition for the upstream fluid velocity and electron temperature

1 < u′
0

√

mi

me

√
µ ≤ 3.1. (12)

5. Calculation of unstable modes

During the early stage of ES shock formation the broadening of the electron distribution,

which we observed in the previous section, occurs mainly in the longitudinal direction.

The transverse directions stay almost unaffected. This has also been observed by
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particle-in-cell simulations [22]. The generated temperature anisotropy in the electron

distribution gives rise to electromagnetic modes.

We develop now a model to describe the growth rate of the electromagnetic modes

in such a setup. Later, we will compare them to the shock formation time scales and

the growth rate of the cold ion-ion instability in order to determine their relevance.

5.1. Dispersion relation of EM waves in relativistic plasmas

We start from the electron distribution in eq. (9) in order to evaluate the dispersion

relation of electromagnetic waves in plasma

k2c2 − ω2 − ω2
pe(U + V ) = 0, (13)

with

U =

∫ ∞

−∞

d3u
ux

γ

∂f

∂ux

(14)

and

V =

∫ ∞

−∞

d3u
u2
x

γ
(

γ ω
kc

− uz

)

∂f

∂uz
. (15)

We consider only fluctuations k = kez perpendicular to the fluid velocity u0 = u0ex in

order to simplify the geometry. An evaluation of the integrals leads to

U = − Cr02πµe
µ(γ0ϕ+1)

∑

±

∫ ∞

γc

√

γ2 − 1e∓µu0

√
(γ−ϕ)2−1

×
[

γ0γΓ (0, µγ0γ)±
β0

µ

γ − ϕ
√

(γ − ϕ)2 − 1
e−µγ0γ

]

(16)

and

V = Cr04µγ0

∫ ∞

0

duzu
2
z

∫ ∞

0

duy

[

2

γ⊥
e−µ(γ0γ⊥−1)

∫ uc

0

dux
u2
x

γ(γ2y2 + u2
z)

+
∑

±

eµ(γ0ϕ+1)

∫ ∞

uc

u2
x

γ2(γ2y2 + u2
z)
e−µ(γ0γ±u0

√

(
√

1+u2
x−ϕ)2−1)

]

(17)

where the last integrations have to be done numerically for the general case.

We use eqs. (16) and (17) to solve the dispersion relation (13) numerically to obtain

the growth rate σ(k) := ℑ(ω(k)). In Figs. 4a and b we plot the maximum growth rate

σmax := max(σ(k)) for different values of µ and u0. The maximum growth rate was

evaluated at the ion reflection condition ϕrefl = (γ0−1)mi/me. The role of the potential

will be discussed in sec. 5.3.

σmax shows a maximum as a function of the velocity. The higher the electron

temperature, i.e. the lower µ ∝ T−1
e , the higher the velocity at which the maximum

of σmax appears (fig. 4a). On the other hand, σmax increases with µ. For an easier

interpretation, we plotted the dependence of σmax against the electron temperature in

Fig. 4b. The higher the initial electron temperature, the lower is the growth rate σmax.
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Figure 4. Maximum growth rate σmax vs. u0 (a) and kBTe (b) obtained from

dispersion relation eq. (13) with relativistic expressions eqs. (16) and (17).

5.2. Dispersion relation of EM waves in non-relativistic plasmas

In order to further discuss the properties of this model and to check the consistency with

previous models, dispersion relation (13) is approximated for non-relativistic velocities,

i.e. β0 ≪ 1 and µ ≫ 1. We obtain Un ≈ −1 and

Vn ≈ C0

[

1 +
ω

kc

√

µ

2
Z

(

ω

kc

√

µ

2

)]

{

eµϕerfc
√
µϕ+ 2

√

µϕ

π
+

4

3

√

µ3ϕ3

π
e−µβ2

0
/2

}

.(18)

For zero beam velocity and ϕ = 0, this is exactly the well-known solution of the Weibel

instability [11]. For small frequencies ω ≪ kc, the plasma dispersion function Z can be

further approximated and we get

Ve ≈ C0

[

1 +
ıω

kc

√

µπ

2
− µ

ω2

k2c2

]

{

eµϕerfc
√
µϕ+ 2

√

µϕ

π
+

4

3

√

µ3ϕ3

π
e−µβ2

0
/2

}

.(19)

The dispersion relation then reads

k2c2 − ω2 + ω2
pe

[

1− V (ϕ)

(

1 + ı
ω

kc

√

πµ

2

)]

= 0 (20)

with V (ϕ) = C0

{

eµϕerfc
√
µϕ+ 2

√

µϕ
π
+ 4

3

√

µ3ϕ3

π
e−µβ2

0
/2

}

. The solution of the

dispersion relation can now be derived analytically, which is given by

σ(k) = ℑ(ω(k)) ≈
√

2

µπ
kc

[

1−
k2c2 + ω2

pe

ω2
peV (ϕ)

]

(21)

with k2
0c

2 = ω2
pe(V (ϕ) − 1)/3 the location of the maximum and the maximum growth

rate

σmax ≈
√

1

πµ

ωpe

V (ϕ)

(

2

3
(V (ϕ)− 1)

)3/2

. (22)

For comparison, fig. 5 shows the relativistically correct solution of the dispersion relation,

obtained from eqs. (16) and (17), and the non-relativistic approximations from eqs. (20)

and (21). The parameters used are β0 = 0.01, µ = 100 and ϕ = 0.05 (γ0−1)mi/me. The

maximum growth rate matches with the approximation in eq. (22), σmax = 2.0×10−3ωpe

and the location of the maximum at k0 = 0.25ωpe/c.
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0.000
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ω

pe
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 /  ω

p
e

Figure 5. Numerical solution of the dispersion relation for the relativistically correct

eq. (18) in blue, the non-relativistic approximations from eq. (20) in black and from

eq. (21) in red for β0 = 0.01, µ = 100 and ϕ = 0.05 (γ0 − 1)mi/me.

5.3. The role of the electrostatic potential

The electrostatic potential ϕ is quickly built up during the electrostatic shock formation.

Nevertheless, the electromagnetic growth rate σ(k) depends on ϕ and thus, the

dependence should be investigated. We calculate the growth rate numerically for values

0 ≤ ϕ ≤ ϕrefl, which are plotted in fig. 6.

0.1 1
10-6

10-4

10-2

100

ϕ
 
/
 
ϕ

refl

σ
m

a
x
 /  ω

p
i

Figure 6. Maximum growth rate for u0 = 0.01 and µ = 100 (yellow), 10 (orange),

1 (red), 0.1 (brown) and u0 = 0.1 and µ = 1 (light blue), 0.1 (dark blue) with

ϕ ∈ [0, ϕrefl].

We find a power-law dependence of the growth rate on the electrostatic potential,

which gives

σmax ∝ ϕα (23)

with α > 0. This ϕ dependence can be interpreted as the changing growth rate across

the steady-state shock. If we assume, as a simple approach, that the potential grows

linear in time, we can connect the growth rate σmax with time, which will be further

discussed in the next section.
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6. Comparison of different time scales

In order to determine the relevance of the electromagnetic electron Weibel modes during

the ES shock formation process, we compare the growth rate given by eq. (13), which

we label from now on σEM,ee, with other processes.

6.1. ES Shock formation time

The time scales of ES shock formation are determined by the growth rate of the ion-ion

electrostatic instability which is given by [9]

σES,ii =
1

2γ
3/2
0

ωpi. (24)

Estimating the shock formation time with 5 times the inverse maximum growth rate,

we obtain tsf = 10γ
−3/2
0 mi/me ω

−1
pe , which was confirmed in simulations (see [23]).

6.2. Growth rate of the electromagnetic cold ion-ion instability

Another competing process in ES shocks is the cold ion-ion filamentation instability,

which has a growth rate [24]

σEM,ii = β0

√

2

γ0
ωpi. (25)

The EM mode of the ion-ion instability (25) grows faster than the ES mode (24) for

fluid velocities v0/c > 1/3. In the parameter range v0/c ≤ 0.1, which we looked on in

this paper, the ion-ion EM modes can be neglected.

6.3. Dominant regimes

A comparison of the ES shock formation time scales with the EM modes makes it

possible to determine parameter regimes, for which a shock stays electrostatic. For

this, we compare the growth rate from eq. (13) with eq. (24) for different electron

temperatures, expressed by kBTe/mec
2, and fluid velocities, given by u0 = β0γ0. For

simplicity, we choose an electrostatic potential ϕ = ϕrefl.

In the dark green region in fig. 7 the growth rate of the EM electron instability

σEM,ee is smaller than the ES ion-ion growth rate σES,ii. We label this domain the

purely ES domain. In contrast, in the light green region, an ES shock will turn EM

since σES,ii < σEM,ee. In the white region (EM), no electrostatic shock develops because

condition (12) is not fulfilled. This regime is electromagnetically dominated from the

beginning, with shock formation according to section 3.

A more detailed analysis of the scenario in fig. 7 has been done in fig. 8 for different

values of the electrostatic potential ϕ. For different fluid velocities u0 and temperature

parameters µ = mec
2/kBTe, the maximum growth rate σmax is calculated as in fig. 6.

The characteristic time is then calculated as tchar ≈ 5/σmax and plotted against the

time of shock formation, where we assumed that the potential grows linearly as ϕ ∝ t.
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Figure 7. Determination of dominant regimes as a function of dimensionless

momentum u = β0γ0 and electron temperature in keV, cf. Ref. [23].

Figure 8. Characteristic time tchar ≈ 5/σmax against time during shock formation

t ∈ [0, 10γ
−3/2
0

ω−1

pi ] with same colour coding as in fig. 6. The grey region shows

tchar ≤ t, where EM modes are important during ES shock formation.

The grey area in fig. 8 shows the region, where EM modes develop faster than the

ES shock, which is the case e.g. for u0 = 0.01 for µ & 10 (. 51 keV) or for u0 = 0.1

for µ & 0.1 (. 5 MeV). Fig. 8 also shows that a detailed analysis of the growth rate is

not necessary, since the characteristic time tchar quickly saturates. The rough estimate

in fig. 6 is thus sufficient for a qualitative determination of the regimes.

7. Summary and conclusions

Electromagnetic and electrostatic shocks can both develop from the same simple

symmetric setup of counterstreaming beams. The choice of the initial plasma parameters

determines the final shock character.

Electromagnetic shocks develop in plasmas with large beam velocities and low
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temperatures where the electromagnetic filamentation instability is the fastest mode. In

electron-positron pair plasmas, the shock formation time is simply twice the saturation

time of the instability in 2D. In electron-ion plasmas an extra merging time is necessary

in order to obtain the right scale of the filaments to efficiently scatter the ions. Thus,

the shock formation in electron-ion plasmas is delayed by almost a factor 3 compared

with the pair shock, τf,iωpi ≈ 3τf,eωpe.

Electrostatic shocks form in electron-ion plasmas with small beam velocities and

large electron temperatures. Here, the electrostatic two-stream instability dominates.

An electrostatic potential is generated in which electrons are trapped. The subsequent

deformation of the electron distribution gives rise to electromagnetic Weibel modes

which can destroy the electrostatic shock features.
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