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Abstract Spatially targeted communication allows a mes-

sage sender to choose message recipients based on their

location in space. Currently, spatially targeted communica-

tion in multirobot systems is limited to centralized systems.

In this paper, we propose a novel communication protocol

that enables spatially targeted communication in decentral-

ized multirobot systems. The proposed protocol dispenses

with the many aspects that underpin previous approaches,

including external tracking infrastructure, a priori knowl-

edge, global information, dedicated communication devices

or unique robot IDs. We show how off-the-shelf hardware

components such as cameras and LEDs can be used to es-

tablish ad-hoc spatially targeted communication links be-

tween robots. We present a Markov chain model for each

of the two constituent parts of our proposed protocol and

we show, using both model-based analysis and experimen-

tation, that the proposed protocol is highly scalable. We also

present the results of extensive experiments carried out on

an autonomous, heterogeneous multirobot system composed
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of one aerial robot and numerous ground-based robots. Fi-

nally, two real-world application scenarios are presented in

which we show how spatial coordination can be achieved in

a decentralized multirobot system through spatially targeted

communication.

Keywords Decentralized multirobot systems · Robot
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1 Introduction

Communication often plays an integral role in multirobot

systems that require spatial coordination among the robots.

In such systems, the type of messages that can be transmit-

ted, and hence the kind of coordination that can take place,

fully depends on the modality of communication available

to the system. One important axis of variation in communi-

cation technologies involves the extent to which transmitted

messages include information about the spatial positioning

of communicating robots. In many technologies, the spatial

location of communication partners is largely unavailable.

Robots using wireless Ethernet, for example, are not aware

of the location of their communication partners. By contrast,

situated communication (Støy, 2001) modalities allow the

recipient of a message to locate the sender in space within

its own frame of reference. An example of situated commu-

nication would be for a robot to send a message by illumi-

nating its LEDs in a particular color, and for nearby robots

to use their cameras to detect the message while also com-

puting their position relative to the message sending robot.

Situated communication increases the spatial coordination

capability of a robotic system by making messages of the

type “come to me” or “stay away from here” immediately

meaningful.
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Situated communication modalities are, however, insuf-

ficient for spatial coordination in certain tasks as messages

of the type “reverse direction – the three of you are about

to fall off a cliff!” cannot be communicated. Such messages

need to be delivered to particular message recipients based

on their spatial location to be meaningful (as opposed to

situated communication where the location and the num-

ber of message recipients cannot be controlled by the mes-

sage sender). We coin the term spatially targeted commu-

nication (or STC) to describe this communication modality

where messages are targeted at particular robots based on

their location in the environment. STC is particularly useful

(but not limited) to heterogeneous systems where spatial co-

operation is required between different robot types that have

different views of the environment and/or operate in differ-

ent parts of the environment. In Fig. 1, for example, aerial

robots are able to detect objects of interest on the ground to

instruct nearby ground-based robots accordingly.

In existing multirobot research, STC is limited to sys-

tems that either rely on centralized solutions or consider

robots that have a global view of the system. For instance,

some systems (Vaughan et al, 2000; Stentz et al, 2002;

Kushleyev et al, 2013) use external tracking infrastructure

in conjunction with global information or centralized con-

trol to enable communication between robots based on their

location. Alternatively, robots may use dedicated on-board

hardware suited for situated communication (Gutiérrez et al,

2008; Pugh et al, 2009; Roberts et al, 2012) to identify them-

selves by broadcasting centrally provisioned unique IDs,

so that, in a second step, favorably located communication

partners can be determined based on unique IDs and associ-

ated relative positions. Such centralized solutions are, how-

ever, unsuitable for certain types of multirobot systems, in

particular for systems with large numbers of robots (Dorigo

et al, 2014) or systems that need to operate in a priori

unknown environments. External tracking infrastructure is

potentially disadvantageous as it either requires access to

satellite-based localization such as GPS or an a priori mod-

ified environment. Satellite-based solutions are not practi-

cal indoors or for tasks that require higher position resolu-

tion than that provided by such systems. Dedicated commu-

nication hardware is potentially disadvantageous for three

reasons. Firstly, the cost of dedicated hardware can become

prohibitive as the numbers of robots in the system increases.

Secondly, the use of dedicated hardware means that hetero-

geneous systems can only be composed of robots that have

been explicitly designed a priori to communicate with each

other (Dorigo et al, 2013). Thirdly, using dedicated hard-

ware for situated communication can impose extra compu-

tational overheads in the form of sensor fusion — in Fig. 1,

for instance, an aerial robot using dedicated communication

hardware would have to map coordinates used by its com-

munication device into the coordinates of whatever other

Fig. 1 An illustration of spatially targeted communication. The over-

lays show the ad-hoc communication links the aerial robots establish to

communicate with specific robots on the ground that are situated next

to the objects of interest

sensor it was using to query the environment for interesting

features (Kumar and Michael, 2012).

To the best of our knowledge, there has been no pro-

posal tabled for STC in decentralized multirobot systems

to date. The protocol presented in this paper is the first

of its kind to provide STC to decentralized systems as it

does not require external tracking infrastructure, global in-

formation, centralized control, dedicated hardware, or the

exchange of unique IDs. The core idea of our approach is to

leverage existing situated communication modalities to es-

tablish ad-hoc communication links between robots based

on their relative positions. Our approach assumes a situated

communication modality capable of sending and receiving

at least three distinguishable situated signals that are broad-

cast within a limited communication range. The protocol

we propose is based around an iterative elimination process

that results in a dedicated communication link being estab-

lished between the robot initiating communication (hence-

forth the “initiator robot”) and the desired communication

target (henceforth the “target robot”). In this process, the

initiator robot iteratively eliminates robots within commu-

nication range (henceforth the “potential recipient robots”)

it does not wish to communicate with until only the target

robot is left. Further communication links to robots neigh-

boring the target robot (henceforth the “target group”) can

be established through an iterative growth process.

Our approach has a number of advantages. Firstly, the

protocol we propose can be implemented using standard,

low-cost components. In our experimentation, we use off-

the-shelf cameras and LEDs in combination with wireless

Ethernet. Secondly, our approach can be accurately mod-

eled with Markov chains. We present separate models for

the elimination process and the growth process. Thirdly, our

approach is highly scalable: both model-based analysis and

experimentation confirm that the elimination process at the

heart of our approach scales logarithmically with respect to

the number of potential recipient robots, while the growth
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process scales logarithmically with respect to the size of the

target group. We present real-robot experiments with a het-

erogeneous robotic system, composed of up to 10 ground-

based robots named marXbots (Bonani et al, 2010), that we

use as potential recipient robots, and one aerial robot named

AR.Drone (Bristeau et al, 2011), that we use as an initiator

robot.1 Our experiments show that our protocol can be suc-

cessfully implemented on real robotic hardware, and that it

can be used to achieve spatial coordination between robots

in a decentralized multirobot system.

2 Communication and spatial coordination in

multirobot systems

Multirobot systems employ a number of different wire-

less communication technologies to achieve spatial coordi-

nation. Wireless Ethernet (IEEE 802.11) is a widely used

medium for inter-robot communication. Many systems that

use the wireless Ethernet medium consider “tightly coupled”

coordination (Chaimowicz et al, 2001; Gerkey and Mataric,

2002; Parker et al, 2004; Zhang and Parker, 2013) to direct

broadcast messages from message sending robots to mes-

sage receiving robots. In tightly coupled systems, message

sending robots share their perceptual or computational ca-

pabilities with peer robots using broadcast messages while

identifying themselves and their capabilities in the mes-

sages. The robots that process a certain message are often

predetermined or are determined by the internal state of each

robot. Stentz et al. (Stentz et al, 2002) as well as Vaughan

et al. (Vaughan et al, 2000) use wireless Ethernet to coordi-

nate a team composed of aerial and ground-based robots by

combining GPS with environment maps or georeferenced

coordinates. Kushleyev et al. (Kushleyev et al, 2013) use

ZigBee technology (IEEE 802.15.4) to coordinate a team of

micro quadrotors to fly formations in 3D space. They use

an external motion capture system connected to a central

base station to compute and control each team member’s po-

sition. Other researchers have proposed decentralized solu-

tions based on Bluetooth to allow simultaneous communica-

tion between pairs of robots (Barnhard et al, 2004; McClain

et al, 2004). In these studies, robot localization is determined

using landmarks distributed in the environment and thus re-

quire a priori knowledge of the environment.

Many authors focus on the coordination of robots by

considering onboard relative localization systems. While

Franchi et al. (Franchi et al, 2010) proposed a probabilistic

framework, other researchers developed ultrasound-based

1 Note that this is the allocation of roles used in the experiments pre-

sented in this paper; it is not a requirement of our protocol. For exam-

ple, in previous work we showed the protocol working where both the

initiator and potential recipient robots were both ground based (Math-

ews et al, 2010a).

hardware systems (Grabowski and Khosla, 2001; Rivard

et al, 2008) to enable relative localization in multirobot

systems. Pugh and Martinoli (Pugh et al, 2009) presented

an infrared-based technology that allows for simultaneous

localization and communication (hence situated commu-

nication) between neighboring robots. Today, derivations

based on this work are available for a variety of platforms

(Gutiérrez et al, 2008; Roberts et al, 2012). Although not ex-

plicitly designed for the purpose, such devices can be used

by robots to enable spatially targeted communication by first

exchanging robot IDs and then following up with communi-

cation data marked with addressee IDs.

Vision-based systems often use unique identifiers such

as markers (Parker et al, 2004; Zhang and Parker, 2013) or

barcodes (Bolla et al, 2011) mounted on the robots to iden-

tify individual robots. Recently, Stegagno et al. (Stegagno

et al, 2013) presented a system in which an aerial robot used

its camera to identify ground-based peer robots and com-

pute their relative location w.r.t. each other. Although there

are several adverse conditions (such as occlusion, low illu-

mination, etc.) under which the identification may not be

feasible or reliable, systems that consider the exchange of

robot IDs and support simultaneous robot localization have

the potential to engage in spatially targeted communication

by employing a wireless communication technology to ad-

dress interestingly located peers directly. Other vision-based

systems use a combination of cameras and LEDs to detect

neighboring robots (without detecting their identities) and

to enable robots to communicate with each other using dif-

ferently colored LEDs. Camera and LED-based communi-

cation has been successfully applied to study a series of

tasks that require spatial coordination such as path forma-

tion (Nouyan et al, 2008), collective transport (Campo et al,

2006), and morphology control (Christensen et al, 2007).

In our previous work (Mathews et al, 2010a), we have

shown that a ground-based robot can use situated communi-

cation to initiate and establish STC links with peer robots in

a homogeneous multirobot system composed of five ground-

based robots. In simulation, we have also studied the ben-

efits of cooperation through STC (Mathews et al, 2010b).

In (Mathews et al, 2012a,b), we presented potential appli-

cations of STC. Our current work differs from our previ-

ous works in that it is a comprehensive work in which (i)

we extend our real robot experiments to a heterogeneous

robotic system composed of ground-based robots and one

aerial robot, (ii) we combine cameras and LEDs-based com-

munication with the high throughput medium of wireless

Ethernet to enable high-level coordination between com-

municating robots while also establishing STC links much

faster, (iii) we test the approach extensively on a real robotic

hardware, (iv) we formulate two Markov chain models that

characterize the performance of the processes used to estab-

lish STC links, and (v) we show two examples of real world
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applications that benefit from spatial coordination achieved

through STC.

3 Experimental platforms

Our heterogeneous multirobot testbed is composed of

the two different robot platforms shown in Fig. 2. The

AR.Drone 1.0 (Bristeau et al, 2011) is a commercially avail-

able quadcopter that can fly at speeds up to 18 km/h (Fig. 2

top). It has an autonomy of up to 12 minutes and a maximum

flight weight of 420 g. It consists of a central plastic body

housing a sensor and control board, one front-facing and

another downward-pointing camera, a carbon-fiber crossbar

connecting four brushless motors, and one removable indoor

and another outdoor hull. The sensory equipment also in-

cludes a 6-DoF inertial measurement unit and an ultrasound

altimeter. The API provided by the manufacturer gives ac-

cess to sensory information, such as the altitude, battery

level, and images from the cameras, and allows communi-

cation with the AR.Drone at 30 Hz via an ad-hoc wireless

Ethernet network. An ARM9 processor running at 468 MHz

with 128 MB of DDR RAM is the platform’s main compu-

tational unit.

The marXbot (Bonani et al, 2010) is a ground-based

modular robot that has a circular chassis with a 17 cm diam-

eter (Fig. 2 bottom). A variety of hardware modules can be

successively mounted on the base module. The base mod-

ule offers electrical power from a removable battery to all

modules and simultaneously provides the robot with differ-

ential drive capabilities. The configuration used in this study

also includes an attachment module that enables marXbots

to physically attach to one another. Multiple marXbots can

thus self-assemble into larger physical structures (Groß and

Dorigo, 2008). Additionally, 12 RGB-colored LEDs are dis-

tributed around the attachment module. A range and bear-

ing module provides high-speed communication (1 Mbps)

and relative range and bearing estimates to neighboring

marXbots. The topmost module is the main computer mod-

ule. It features an on-board ARM 11 processor (i.MX31

clocked at 533 MHz with 128 MB RAM) running a Linux-

based operating system. This module also supports wireless

Ethernet and is equipped with an upward-pointing camera

and an omnidirectional camera with a resolution of 3 MP

each.

The AR.Drone communicates with the marXbots using

broadcasts over wireless Ethernet. Each signal broadcast

by the AR.Drone is received by all marXbots at all times.

Note that this is due to the wireless Ethernet-based broad-

cast communication we have chosen for the aerial robot in

this particular study and not a general requirement of the

presented protocol. The marXbots use their LEDs to lo-

cally broadcast situated signals by displaying different col-

ors. LED signals displayed by the marXbot can be detected

Fig. 2 Our heterogeneous multirobot testbed consists of one AR.Drone

(on the top) and multiple marXbots (on the bottom). RGB colors dis-

played by the marXbots can be detected by the AR.Drone using its

downward-pointing camera. Signal transmission to the marXbots oc-

curs over wireless Ethernet

both by the AR.Drone (using its downward-pointing cam-

era) and by other marXbots (using their omnidirectional

camera). LED signal detection on both platforms is accom-

plished by detecting color blobs in the captured images.

In our experiments, we use one AR.Drone and up to 10

marXbots. For safety reasons, we use a colorless, transpar-

ent plexiglass platform installed at 40 cm height from the

ground to shield the ground robots from the aerial robot. Vi-

sion algorithms are not run directly on the AR.Drone, but

are executed on a remote PC with video streamed from the

AR.Drone in real time using the standard API. The same

API is used to communicate the resulting position control

data back to the AR.Drone in real-time (refer to (Krajnı́k

et al, 2011) for details). Experiments with larger number of

robots are conducted in a physics-based simulator developed

for multirobot simulation (Pinciroli et al, 2012).

4 Establishing a one-to-one STC link

In this section, we detail our proposed approach to establish

a one-to-one STC link between an initiator robot and a target

robot. We give a microscopic (i.e., a robot level) description

of the approach using finite state machines (FSMs). From
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this microscopic description, we derive a macroscopic (i.e.,

a system level) model using a time-homogeneous Markov

chain. We analyze the scalability of the approach using data

collected from physics-based simulations, real-robot exper-

iments, and predictions of the macroscopic model. We also

demonstrate how an established one-to-one STC link can be

applied to solve a real world task.

An STC link is established between an initiator and a

target robot by the means of an iterative elimination process.

We assume a set C := {c1, . . . ,cs : s ≥ 3} of distinct signals.

The set C consists of signal c1, used to start and terminate

the elimination process, and of the subset Cs := {c2, . . . ,cs}
that contains the signals used in the iterative elimination pro-

cess. In the heterogeneous multirobot system considered in

the study, RGB colors are used as signals to define the sets

C := {red,blue,green} and Cs := {blue,green}. The initia-

tor robot initializes the elimination process by emitting the

signal c1. The robots that perceive the c1 signal enter the

elimination process by acknowledging with c2. Then, the

initiator robot starts the elimination process by emitting a

matching handshake signal c2. At each iteration, robots still

in the process individually and independently choose a sig-

nal to emit from the set Cs. The initiator robot responds by

matching the signal emitted by the target robot. At the end

of the iteration, only those robots whose signal matches that

of the initiator robot remain in the process. The other (non-

matching) robots no longer emit any signal, and thus take

no further part in the selection process. The elimination pro-

cess continues until the target robot is the only robot remain-

ing. At this point, the initiator robot indicates the termination

of the elimination process by repeating c1. The target robot

acknowledges the termination by signaling c1. The initiator

robot has now established an STC link to the target robot.

In our experiments, robots are controlled by the

behavior-based controllers shown in Fig 3. The controller

for the initiator robot is executed by the AR.Drone and the

controller for the potential recipient robots by the marXbots.

Both controllers are autonomous and are implemented as

FSMs with C := {red,blue,green}.

4.1 Microscopic description of the elimination process

The FSM running on the AR.Drone, shown in Fig. 3a, con-

sists of three states: STA (start); EP (elimination process);

and LE (link established). When the AR.Drone needs to es-

tablish an STC link with a particular marXbot, it enters the

STA state and transmits the signal red (c1) to start the elimi-

nation process. The transition ta1 is triggered if at least the

target robot acknowledges the STA signal. This guarantees

that the target robot is available for the elimination process

and is not currently occupied with a different task. While in

state EP, the AR.Drone continuously takes the transition ta2

(a)

(b)

Fig. 3 Establishing a one-to-one STC link: FSMs running on (a) the

AR.Drone, and (b) the marXbots. , , and stand for the RGB

color signals emitted in the respective states

and matches the color displayed by the target robot. How-

ever, if the target robot is the only robot displaying a color

because all other robots have been eliminated, the transition

ta3 is taken to enter the state LE. The signal red is transmit-

ted to confirm an established STC link to the target robot.

The controller executed by the marXbots is shown in

Fig. 3b. Three states compose this FSM: ACK (acknowl-

edge); EP (elimination process); LE (link established). When

the signal red is received from the AR.Drone, a marXbot

enters the ACK state by taking transition tm1. The color blue

(c2) is displayed to acknowledge the marXbot’s availabil-

ity to enter the elimination process. The transition tm2 is

triggered as soon as the AR.Drone matches the color blue.

When entering the state EP, a marXbot randomly displays

either green or blue. Simultaneously, it starts incrementing

an internal counter t. Whenever t exceeds a fixed threshold

τ , the marXbot examines the most recent color transmitted

by the AR.Drone. If this color matches that displayed by the

marXbot, it remains in the process by taking tm3. Other-

wise, the marXbot terminates the behavior by taking tm5 as

a result of mismatching colors. Because all marXbots enter

the state EP at the same time, and because they all use the

same τ , their actions remain synchronised. The value of τ

is chosen such that the AR.Drone has sufficient time to per-

ceive, process, and respond to the colors displayed by the

marXbots. If a marXbot still in the elimination process re-

ceives the signal red from the AR.Drone, it knows that all

other robots have been eliminated and that it is indeed the

target of the AR.Drone. In this case, the transition tm4 is

triggered and the marXbot confirms the termination of the

elimination process by displaying the color red.

4.2 Macroscopic model of the elimination process

For a given number of robots N in the communication range

of the initiator robot, we are interested in the number of it-

erations necessary to establish a one-to-one STC link with a

target robot. In our model, each time step n corresponds to
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one iteration in the iterative elimination process. An iteration

ends when all remaining robots in the elimination process

(i) have chosen and emitted a random signal, and (ii) have

detected the match or mismatch of this signal with the one

emitted by the initiator robot. Note that each iteration has

a cost (i.e., duration of each iteration) that is independent

of the number of robots in the system as the computation is

done by each robot in parallel.

The iterative elimination process as described so far is a

memory-less process. At each iteration, a potential recipient

robot acts only on the basis of its current state and the current

signal emitted by the initiator robot. Hence, the future state

of the robot is independent of its past, fulfilling the Markov

assumption (Kemeny and Snell, 1976). Moreover, the syn-

chronization provided by the timer mechanism described in

the previous section allows us to consider the potential re-

cipient robots from a macroscopic point of view. That is, we

abstract from the states of individual robots and, instead, we

focus on groups of robots that are in the same state simulta-

neously. As a consequence, we employ a time-homogeneous

Markov chain to define a macroscopic model of the itera-

tive elimination process. In particular, we use an absorbing

Markov chain characterized by a set of transient states and

one absorbing state. While the transient states represent all

intermediate states of the iterative elimination process, the

existence of an absorbing state guarantees the termination

of the iterative elimination process in finite time.

We define our process as a Markov chain {Xn,n ∈ N}

with N + 1 states. The random variable X = x ∈ Ω :=
{1, . . . ,N +1} represents the state of the process. Each state

is characterized by the number ηx = N+1−x of robots that

are still part of the elimination process. All the states of the

chain are transients except for X =N+1 which is an absorb-

ing state. In state X = N +1, the number of robots involved

in the process is ηx = 0, which corresponds to the comple-

tion of the elimination process. At time step n, the process

will move from state Xn = i to the next state Xn+1 = j with

probability πi j. We define the stochastic transition matrix

Π := (πi j : i, j ∈ Ω) of the Markov chain as











πi j =C
η j−1

ηi−1 pη j−1(1− p)ηi−η j ,for i < N, i 6 j 6 N, (1a)

πi j = 1, for i > N, j = N +1, (1b)

πi j = 0, otherwise. (1c)

Case 1a defines the transition probability between tran-

sient states by providing the probability πi j that ηi − η j

robots will leave the elimination process during the transi-

tion i → j. This probability follows a binomial distribution

with parameters ηi − 1, the number of robots that are still

part of the elimination process without considering the target

robot, and p= 1/|CS|, the probability for one of them to emit

the same signal as the target robot. Case 1b has a twofold

significance. On the one hand, it states that the transition

from the state Xn =N to the absorbing state Xn+1 =N+1 oc-

curs with probability πi j = 1. This deterministic step models

the final handshake between the initiator and the target robot

at the last iteration. On the other hand, it defines the state

X = N +1 as an absorbing state. Finally, Case 1c states that

transitions not covered by previous conditions will never oc-

cur.

4.3 Model analysis

The stochastic transition matrix Π formally describes the

dynamics of the iterative elimination process. Such a for-

mal description allows us to predict the performance of the

process. In what follows, we validate the accuracy of our

macroscopic model by comparing model predictions with

data acquired from physics-based simulations and real robot

experiments. We use the model to analyze the scalability of

the iterative elimination process. We first define the random

variable ϑ as the number of iterations necessary to estab-

lish a one-to-one STC link to the target robot. Second, to

study the distribution of ϑ , we consider the matrices Γ and

Σ of the canonical decomposition of Π (Kemeny and Snell,

1976). Γ provides the transition probabilities between tran-

sient states. The fundamental matrix Σ , given by (I −Γ )−1

with I representing the identity matrix, gives the expected

number of visits to each transient state.

4.3.1 Model validation

We validate the accuracy of the model’s predictions by com-

paring the distribution of ϑ with the empirical data acquired

from simulation-based experiments. The cumulative distri-

bution function F(ϑ) = P(ϑ 6 n,x0) can be obtained for a

given initial state X0 = x0 as the infinite series

Fn(ϑ) = 1− ∑
j∈Ω

Γ n
x0, j

. (2)

The subcomponent ∑ j∈Ω Γ n
x0, j

of Eq. 2 gives the probability

that the process will be in a transient state at iteration n.

The complement of this value provides the probability of

entering the absorbing state prior to iteration n.

Figure 4a shows the cumulative distribution function

F(ϑ) provided by the model together with the empirical

distribution function F̂(ϑ) obtained from 1000 simulation

runs for N = 50 and different values of |Cs|. The predic-

tions of the model are shown to closely match the empiri-

cal observations for each value of |Cs|. Also the probability

mass function f (ϑ) =P(ϑ = n,x0) shows a close agreement

between the two data sets (see Fig. 4b), indicating reliable

model predictions. The probability mass function is right-

skewed. This implies the possibility of long executions of
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Fig. 4 (a) Cumulative distribution function F(ϑ) and (b) probability

mass function f (ϑ) plotted against their empirical counterparts ac-

quired from simulation: F̂(ϑ) and f̂ (ϑ), respectively. Full symbols

represent model predictions, empty symbols show the outcome of 1000

simulation runs where N = 50

the elimination process. However, by increasing the num-

ber |Cs| of signals available to the elimination process, the

variance of ϑ shrinks considerably reducing the probability

mass under the right tail, and thus, the occurrence of long

executions.

4.3.2 Real robot experiments

We carried out experiments with one AR.Drone placed on

a plexiglass platform, and N ∈ {2,4,6,8,10} marXbots dis-

tributed in a 1 m x 1.5 m arena with |CS| = 2 colors. For

each value of N, we executed 30 runs resulting in a to-

tal of 150 runs. In each run, the marXbots were placed in

the arena with random orientations and positions together

with a light source embodying the object of interest to the

AR.Drone. The AR.Drone identifies the marXbot closest to

the object of interest as the target robot. The marXbots re-

main static while they execute the controller described in

Fig. 5 Snapshots from a real robot experiment. Left: an AR.Drone and

four marXbots executing the one-to-one behavior. Right: the AR.Drone

establishes an STC link to the marXbot closest to the object of interest

Sect. 4.1. The AR.Drone, on the other hand, executes the

following behavior: (i) it elevates to a height of approxi-

mately 1.4 m above the plexiglass platform (i.e., ca. 1.8 m

above ground level), (ii) hovers above the object of interest

by executing a manually tuned PID controller that continu-

ously minimizes the distance between the object of interest

and the center of the image received from the downward-

pointing camera (see Fig. 5 left), and (iii) it establishes a

one-to-one STC link to the marXbot closest to the object of

interest (see Fig. 5 right) before landing on the plexiglass

platform. While hovering, we occasionally observed lateral

drifts of the AR.Drone caused by impeded airflow in the

arena. Therefore, we introduced an additional signal for our

real robot experiments. The AR.Drone issued a freeze sig-

nal if not all marXbots in the experiment were in its field of

view due to drifting. The marXbots responded to this signal

by pausing their internal timers as long as the freeze signal

was perceivable. Hence, the freeze signal prevents the fixed

threshold τ (set to 200 ms) from being reached when the

AR.Drone is unfavorably positioned (i.e., beyond the com-

munication range of the marXbots) to continue the elimina-

tion process.2 For each considered number N of marXbots,

a video showing 10 runs can be found in the online supple-

mentary material (Mathews et al, 2013).

Figure 6 shows the results plotted as boxplots together

with predictions of the model plotted as error bars. They

show the expected value E[ϑ ] and the variance
√

V[ϑ ] of

the number of iterations necessary to establish a one-to-one

STC link. We compute E[ϑ ] and V[ϑ ] from the matrices Γ

2 We have shown in previous work (Mathews et al, 2010a) that our

approach can be implemented without the freeze signal if the initiator

robot and the potential recipient robots do not leave each others com-

munication ranges.
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Fig. 6 Empirical probability mass function f̂ (ϑ) computed from real

robot experiments (boxplots) plotted against model predictions (error

bars) for varying sizes of N and for |Cs| = 2. Each boxplot represents

30 runs while error bars correspond to E[ϑ ]±
√

V[ϑ ]

and Σ :

E[ϑ ] = ξ Σ , (3)

V[ϑ ] = (2Σ − I)E[ϑ ]−Esq[ϑ ]. (4)

The term ξ in Eq. (3) represents a column vector of all 1s.

That is, for every (transient) initial state, the expected value

of ϑ is given by the row sum of the fundamental matrix Σ .

In Eq. (4), I denotes the identity matrix and Esq[ϑ ] is E[ϑ ]
with squared entries.

By means of Eq. (3) and Eq. (4), we compare the empiri-

cal distribution of the results obtained from real robot exper-

iments with the predictions of the Markov chain model de-

fined above. The results in Fig. 6 show close agreement be-

tween the empirical observations and the theoretical predic-

tions. In particular, the median values obtained from the real

robot experiments (shown in boxplots) correspond closely

to the theoretical expectation of ϑ . However, in the case of

N ∈ {6,8,10}, the empirical observations have a larger vari-

ance than the theoretical predictions. This discrepancy can

be explained by the limited number of observations gath-

ered from real robots experiments. While the size of N in

this set of experiments was increased by a factor of 5 (i.e.,

from 2 to 10 marXbots), the average number of iterations

only experienced an increase by a factor of 1.6 (i.e., from

3.8 for 2 marXbots to 6.1 iterations for 10 marXbots). These

results, thus, give a preliminary indication that the process

scales well. Below, we further investigate scalability using

the Markov chain model.

4.3.3 Scalability

We use Eq. (3) and Eq. (4) to study how the distribution

of the expected value of ϑ scales for increasing values of

N

�[
ϑ
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±

�[
ϑ

]
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Fig. 7 Scalability study for increasing values of N and |Cs|. The shaded

areas correspond to E[ϑ ]±
√

V[ϑ ]

N and |Cs|. As the results presented in Fig. 7 show, E[ϑ ] is

characterized by a logarithmic trend that indicates high scal-

ability for increasing values of N. The same trend applies to

the variance of
√

V[ϑ ]: given a certain value for |Cs|, V[ϑ ]

grows logarithmically for increasing N.

The results also show that as |Cs| increases, the vari-

ance of ϑ decreases considerably, increasing the reliabil-

ity of the expected value as an aggregated indicator of the

performance of the process (e.g., compare the width of the

shaded areas for N = 80 between |Cs|= 2 and |Cs|= 1000 in

Fig. 7). On the one hand, when the number of available sig-

nals tends to infinity, i.e., |Cs| → ∞, the probability for a po-

tential recipient robot to randomly choose the same signal as

the target robot tends to zero. As a consequence, the iterative

elimination process approaches a deterministic behavior that

has exactly two iterations: at the first iteration all potential

recipient robots except the target robot are eliminated, while

in the second iteration the target robot performs the final

handshake with the initiator robot. On the other hand, in an

application scenario where the number of available signals

is limited, the elimination process still ends in finite time

as guaranteed by the absorbing state of the Markov chain.

The number of iterations necessary to complete the process

decreases as the number of available signals increases.

4.4 One-to-one STC application scenario

We study how a one-to-one STC link can be applied in a

real world task using one AR.Drone and six marXbots. We

consider a task that requires the AR.Drone to control mor-

phology growth (Christensen et al, 2007) of the marXbots

on the ground.

We deploy the robots on a mission towards an object of

interest represented by a light source placed on the ground.

The task consists of forming a specific morphology by mul-
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tiple marXbots next to the object of interest. The size and

shape of a suitable morphology are neither known to the

marXbots nor can be determined from their vantage point.

Hence, the marXbots rely on the AR.Drone to (i) deter-

mine a target robot to seed morphology growth, and (ii)

to send the instructions needed to create the morphology

required by the task. The AR.Drone flies to the object of

interest in advance and waits for the marXbots to arrive.

When all marXbots are in its field of view, the AR.Drone

enters the state STA and issues the signal red that brings all

marXbots on the ground to a halt. Then, the AR.Drone es-

tablishes a one-to-one STC link with the marXbot closest

to the object of interest (see Fig. 8 left). Subsequently, the

established STC link is used to transmit morphology con-

trol instructions (Christensen et al, 2008). The target robot

receives and executes the instructions to grow an arrow-like

morphology (see Fig. 8 right) using the connection forming

mechanism presented in (Mathews et al, 2011). Note that

while the instructions for this particular morphology were

preloaded on the AR.Drone, we have shown in our previous

work (Mathews et al, 2012b) that suitable task-dependent

morphologies can be determined by aerial robots based on

observed environmental features. In this particular experi-

ment, the AR.Drone was flown manually while the commu-

nication with the marXbots was entirely autonomous.

In the experiment, the STC link was established with 3

iterations of the elimination process or within 600 ms (ex-

cluding the time during which the freeze signal was issued

by the AR.Drone) as the fixed threshold τ was set to 200 ms,

and hence, 3 · 200 ms=600 ms. The successful execution of

this proof-of-concept experiment demonstrates the feasibil-

ity of spatially targeted communication on real robots. Video

footage of this experiment can be found in the online sup-

plementary material (Mathews et al, 2013).

5 Establishing a one-to-many STC link

In multirobot systems, spatially targeted messages often

need to be conveyed to groups of robots. In this section, we

present an extension to our protocol that allows an initia-

tor robot (the AR.Drone in our case) to expand an existing

one-to-one STC link to a one-to-many link. To communi-

cate with a group of co-located robots, the initiator first es-

tablishes a one-to-one STC link to a favorably located robot

and then iteratively expands the link to include more neigh-

bors. Note that we are not interested in which individual

robots are in the target group, but only in the size of the

group and its spatial cohesiveness. We validate the model

using simulation-based studies and extensive experimenta-

tion on real robots. We present the results of our scalability

studies. Finally, we present an experiment exemplifying the

usefulness of one-to-many STC in real world tasks.

Fig. 8 Two frames captured from a ceiling camera of an experiment

in which a one-to-one STC link is set up and used by the AR.Drone

to send self-assembly related data: (left) STC link established to the

marXbot closest to the object of interest; (right) the marXbot executes

the instructions received from the AR.Drone to self-assemble an arrow-

like morphology

Given a set C := {c1,c2,c3} of distinct signals, a one-

to-one STC link between an initiator and a target robot can

be expanded into a one-to-many STC link through an iter-

ative growth process. At the start of the process, the target

robot is the only member of the target group. At each iter-

ation, the initiator robot may emit the signal c3 to request a

growth of the target group. From the robots that perceive this

signal, those that have a target group member within percep-

tion range respond with signal c2. We refer to these robots as

candidate robots. Next, each candidate robot determines if

any other robot is located between itself and the closest tar-

get group member, and if so, leaves the process. We refer to

the remaining candidate robots as closest candidate robots.

As shown in Fig. 9, this exclusion mechanism amongst the

candidate robots ensures the spatial cohesiveness of the tar-

get group. The closest candidate robots communicate their

candidacies to the initiator robot by emitting c3. If the num-

ber of the closest candidate robots plus the number of current

group members (hereafter referred to as the “potential target

group size”) exceeds the target group size, the initiator robot

issues the signal c2 to request the closest candidate robots

to relinquish their candidacies probabilistically. The c2 sig-

nal is issued until the potential target group size is smaller

or equal to the target group size. Otherwise, if the potential

target group size does not exceed the target group size, the

initiator robots grants group membership to the closest can-

didate robots by emitting c1. That is, the initiator robot may

halt the growth process at an intermediate group size that is

smaller than the target group size. Subsequently, the initiator

robot restarts the growth process. This incremental growth is

repeated until the target group size is reached.
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(a) (b) (c)

Fig. 9 The exclusion mechanism executed by candidate robots to

achieve cohesive target groups. = member, = closest candidate

robot, = candidate robot, and = hibernating robot. (a) Candidate

robots within communication range of a robot already in the group. (b)

Division of perception range into eight equally sized sections visual-

ized on a candidate robot. Three candidate robots exclude themselves

and do not become closest candidate robots, as they detect another can-

didate robot closer to the target robot in a single section. (c) The target

robot and its remaining closest candidate robots

5.1 Microscopic description of the growth process

The FSM of the initiator robot (the AR.Drone) and the

FSM of the potential recipient robots (the marXbots) are

shown in Fig. 10. In what follows, we detail both robot con-

trollers under the assumption that C := {red,blue,green}.

Note that the iterative growth process requires potential re-

cipient robots to communicate with each other. To this end,

the marXbots use their LEDs and omnidirectional cameras.

Figure 10a shows the FSM implemented on the

AR.Drone. It consists of three states: HAL, to halt the growth

process; GRO to request growth of target group size; and

LEA, to request closest candidate robots to leave the process

probabilistically. The AR.Drone first enters the HAL state

and sends the signal red. If the current group size matches

the target group size, the ta1 transition is triggered and

the AR.Drone terminates the execution of the controller. By

contrast, if the current group size is smaller than the target

group size, transition ta2 is taken and the AR.Drone en-

ters the GRO state and transmits the signal green to signal a

growth of the group to the marXbots. From the state GRO,

the AR.Drone can move to two states as needed if no can-

didate robot is perceivable (i.e., there are no more ongoing

executions of the exclusion mechanism). If the potential tar-

get group size is equal or less than the target group size,

transition ta2 is taken to return to state HAL and to halt the

growth process at an intermediate group size. Alternatively,

by moving to state LEA through transition ta3 and trans-

mitting blue, excessive closest candidate robots can be re-

quested to probabilistically relinquish their candidacies. The

AR.Drone iterates in the LEA state by taking transition ta4

until the potential target group size is equal or less than the

target group size. If this condition is satisfied, the AR.Drone

triggers the transition ta5 to the HAL state to grant member-

ship to remaining closest candidate members.

(a) (b)

Fig. 10 Establishing a one-to-many STC link: FSMs running (a) on

the AR.Drone and (b) the marXbots. The RGB color signal emitted in

each state is indicated by , , or

Figure 10b shows the controller running on the

marXbots. It consists of four distinct states: HIB, hibernate;

CAN, candidate robot; CCR, closest candidate robot; and MEM,

member of the target group. The LEDs are switched off

while in state HIB, whereas the blue color is illuminated

while in state CAN, green while in state CCR, and red while

in state MEM. The controller is initiated in the HIB state.

The transition tm5 enables robots to leave the growth pro-

cess permanently when the AR.Drone indicates an excess of

closest candidate robots using the signal blue. When the sig-

nal green is received from the AR.Drone, marXbots that are

able to detect at least one target group member take the tran-

sition tm1 to enter the CAN state. In this state, the following

procedure is executed to maintain group cohesion. As shown

in the example in Fig. 9b, each candidate robot divides its

360 degree view of the environment into eight equally sized

sections with an angular range of 45 degrees each. Subse-

quently, transition tm1 is taken to leave the growth process if

another candidate robot is perceived closer than the nearest

target group member in one of the sections. Otherwise, tran-

sition tm2 is triggered to enter state CCR. When in state CCR,

a marXbot responds to a received blue signal (indicating too

many closest candidate robots) from the AR.Drone by con-

sidering the outcome of an independent Bernoulli trial with

success probability p = 0.5. In case of success, the marXbot

stays in the state CCR, otherwise it takes the transition tm3

to HIB state. In state HIB, a single bit of memory is used to

store a binary value that represents the state prior to reach-

ing HIB: CAN or CCR. This allows closest candidate robots

from previous iterations to re-enter the state CCR by taking

the transition tm3 while avoiding the CAN state entirely.3 Fi-

3 When the intermediate group size is close to the target group size,

the AR.Drone may need to repeatedly request the same set of marXbots

to candidate and withdraw candidacies probabilistically until the target

group size is reached. Storing the prior state allows robots in state HIB

that were previously in state CCR to respond to such a request by avoid-
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nally, a marXbot in state CCR triggers transition tm4 when it

receives a red signal from the AR.Drone.

5.2 Macroscopic model of the growth process

We are interested in the time required for the initiator robot

to grow a one-to-one link into a one-to-many STC link to

a target group of size D. For the same reasons presented in

Sec. 4.2, we consider time to be discrete. For clarity, we refer

to the exemplary growth process illustrated in Fig. 11 with

N = 25 and D = 12, where we conduct the analysis assum-

ing the potential recipient robots to be distributed in a square

lattice with each robot able to perceive at least the robots in

its Moore neighborhood. In Sect. 5.3, we assess the impact

of such an assumption on model predictions and discuss pos-

sible relaxations. In what follows, we detail three concepts

underlying the Markov chain model before presenting the

model: iterations, growth phases, and the interaction graph.

Iterations: we characterize the number of iterations re-

quired by the initiator robot to reach target group size D.

We define each step n in the Markov chain as an occurrence

of one of the following four state transition sequences of the

initiator robot:

HAL→GRO→HAL, HAL→GRO→LEA, LEA→LEA, LEA→HAL.

This set of state transition sequences has three important

properties. Firstly, it is complete, that is, any possible run

of the growth process (i.e., for any D and N) can be decom-

posed into a series of these state transition sequences (see

FSM-based description of growth process in Section 5.1).

Figure 11 shows a growth process decomposed into this set

of state transition sequences — in the example illustrated in

the figure, six iterations are required to reach target group

size. Secondly, all of these state transition sequences have

the same time and computation costs, making it meaningful

to analyse the number of iterations. To see why the cost is

constant, note that each state transition sequence ends with a

transition that is triggered when the number of closest can-

didate robots decreases or increases in the system. Conse-

quently, the cost of detecting an iteration by the AR.Drone

can be kept constant by applying a color-based similar-

ity matching technique (Goshtasby, 2012) of constant cost

on two consecutive images retrieved from its downward-

pointing camera. Thirdly, characterizing iterations using this

set of state transition sequences disregards candidate robots

from the modeling process entirely. The state space of our

Markov chain thus becomes simpler as it does not need to

represent the states of the candidate robots.

ing the re-execution of the exclusion mechanism and thus reduces the

wall clock time of an iteration.

Growth phases: we distinguish two distinct phases. The

first phase is deterministic and is composed of a series of

HAL→ GRO→HAL steps that occur repeatedly until the

potential target group size is greater than or equal to D. Each

of these steps is deterministic, as at each step, the num-

ber of closest robots is a priori predictable as a function

of the relative positioning of the potential recipient robots.

If the potential target group size equals D, then the pro-

cess terminates. The second phase is stochastic, and starts

if and when the potential target group size exceeds D. Each

step in this phase is an occurrence of one of the three se-

quences (HAL→GRO→ LEA, LEA→LEA, LEA→HAL).

These steps are stochastic because they each contain a prob-

abilistic response to a leave request (LEA). This stochastic

phase continues until the target group size is reached (see

iterations II–VI in Fig. 11). During the stochastic phase, the

potential target group size acts as a monotonically decreas-

ing upper bound on the number of robots involved in the

growth process. The intermediate group size always (i.e.,

also during the deterministic phase) represents a monoton-

ically increasing lower bound on the number of robots in-

volved in the growth process. The two bounds meet at the

target group size (see the opposing arrows in Fig. 11).

We model the deterministic and stochastic phases of the

iterative growth process separately. We can thus write D =

Ddet + Dsto, where Ddet is the number of robots added to

the intermediate group during the deterministic phase, and

Dsto is the number of robots added to the intermediate group

during the stochastic phase.

Interaction graph: to derive a non-spatial characterization

of the growth process, we consider an interaction graph in

which two connected nodes correspond to a target group

member and one of its closest candidate robots. Using

such an interaction graph, we further consider a sequence

{a0,a1, . . .} of which each element corresponds to the to-

tal number of closest candidate robots available at each in-

termediate group size. For the intermediate group sizes 1,

9, and 10 shown in the example in Fig. 11, the sequence

corresponds to {8,16,15}. At intermediate group size 1, for

instance, the total number of closest candidate robots is 8.

This is a result of the exclusion mechanism shown in Fig. 9

that limits a group member’s closest candidate robots to its

Moore neighborhood regardless of communication range.

5.2.1 Deterministic phase model

In an interaction graph resulting from a square lattice dis-

tribution with Moore neighborhood, each node (i.e., a tar-

get group member) is connected to 8 neighbors (i.e., has

8 closest candidate robots). The sequence of closest can-

didate robots for intermediate group sizes is thus given by

{8k,∀k ∈ N > 0} in an infinite lattice while the number of
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Fig. 11 A schematic of an iterative

growth process in a square lattice

where N = 25 and D = 12. Itera-

tion in the deterministic phase is in-

dicated by a solid arrow, and itera-

tions in the stochastic phase are indi-

cated by dashed arrows. Intermediate

group sizes (filled boxes) and potential

target group sizes (empty boxes) are

given in the bottom. The opposing ar-

rows depict confining upper and lower

bounds. = MEM, = CCN, = HIB

iterations required to exhaust the deterministic phase is

argmax
k>0

(

1+
k

∑
i=1

8i < D

)

. (5)

At the end of a deterministic phase, the target group size is

defined by D = Ddet = 1+∑
k
i=1 8i.

5.2.2 Stochastic phase model

We define a Markov chain {Yn,n ∈N} with the random vari-

able Y ∈ Ω := {1, . . . ,w} that represents the state of the

growth process and Ω that represents the state space with

w = 2(N−D)(D−Ddet)+1 states. Each state Y = y is char-

acterized by:

– ηm
y , current number of target group members;

– ηc
y , current number of closest candidate robots;

– ηc′

y , number of closest candidate robots at the previous

iteration;

– ηh
y , number of hibernating robots.

Although the growth process uses a single bit of mem-

ory, we apply the formalism of time-homogeneous Markov

chains using a chain of order 2. The memory is modeled

using the variable ηc′

y : when the memory is necessary, ηc′

y

equals the number of closest candidate robots at the previ-

ous step of the chain, when it is not necessary, ηc′

y = −1.

All states are transient with the exception of Y = y such that

ηm
y = D,ηc

y = 0,ηh
y = N −D,ηc′

y = −1 which is the only

absorbing state.

At step n, the process on the chain will move from the

current state Yn = i to the next state Yn+1 = j with probability

πi j. We define the stochastic transition matrix ΠY := (πi j :

i, j ∈ Ω) of the chain {Yn,n ∈ N} as











πi j =Cq
r pq(1− p)r, if c1.1 ∨ c1.2 ∨ c1.3, (6a)

πi j = 1, if c2 ∨ c3, (6b)

πi j = 0, otherwise, (6c)

where the adjacency conditions c1.1, c1.2, c1.3, c2, c3 be-

tween states i and j are summarized in Table 1. Case 6a

Table 1 The adjacency conditions between states i and j of the

stochastic transition matrix ΠY

ηm
j ηc

j ηh
j ηc′

j

c1.1 = ηm
i = 0 = ηc

i +ηh
i = ηc

i

c1.2 = ηm
i 6 ηc

i = ηc
i +ηh

i −ηc
j =−1

c1.3 > ηm
i = 0 — = (ηc

i +ηm
i −ηm

j )∨−1

c2 = ηm
i 6 ηc

i = ηh
i −ηc

i =−1

c3 = D = 0 = N −D =−1

corresponds to a binomial distribution where r = ηc
i , i.e., the

number of closest candidate robots withdrawing candidacies

probabilistically (in state Yn = i) with success probability p,

and q = ηc
j +ηm

i −ηm
j , i.e., the number of closest candidate

robots retaining candidacies (in state Yn+1 = j). The adja-

cency conditions c1.1, c1.2, c1.3 define all possible states i

and j such that the transition i → j corresponds to an itera-

tion LEA→ LEA or LEA→ HAL. Case 6b defines the transi-

tion probability between adjacency conditions c2 and c3 to 1.

The adjacency condition c2 covers all possible pairs of states

(i, j) such that the transition i→ j corresponds to an iteration

HAL→ GRO→ LEA. The adjacency condition c3 defines the

absorbing state of the system. As defined in Case 6c, tran-

sitions not covered by the adjacency conditions never occur.

Note that this Markov chain model can be applied to any

spatial distribution of the robots given the interaction graph

by solely changing the adjacency conditions.

5.3 Model analysis

We analyze the performance of the growth process through

the canonical decomposition of ΠY in the transition proba-

bility matrix ΓY and the fundamental matrix ΣY . We define

the random variable ϕ as the number of iterations neces-

sary to reach a target group size D. That is, ϕ = ϕdet +ϕsto,

where ϕdet and ϕsto account for the number of iterations dur-

ing the deterministic and stochastic phase, respectively. ϕdet

is given by Eq. (5), while ϕsto is derived from the Markov

chain model that provides the number of state transitions be-

fore the process reaches its only absorbing state. We analyze
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the cumulative distribution function F(ϕ) using Eq. (2) and

the variance V[ϕ] using Eq. (4), while the expected value is

given by

E[ϕ] = argmax
k>0

(

1+
k

∑
i=1

8i < D

)

+ξ ΣY , (7)

where ξ is a column vector with all values set to 1.

In what follows, we first assess the reliability of the

Markov chain model assuming a Moore neighborhood-

based interaction graph with eight neighbors per node.

We compare model predictions against data collected from

simulation-based studies. Second, we assess the quality of

our spatial assumption using data acquired from both real

robots experiments and simulation-based experiments in

which we vary the spatial distribution of the robots from a

square lattice to a random distribution. We then present the

results of our scalability studies of the growth process.

5.3.1 Model validation

We validate the reliability of the Markov chain model us-

ing multiple probability-probability (P-P) plots, in which we

compare the cumulative distribution function F(ϕ) with the

empirical distribution F̂(ϕ) collected from simulation for

varying sizes of potential recipient robots N and target group

size D.

In Fig. 12, we present the results using nine different P-

P plots organized in a 3× 3 matrix. Plots in the same row

have identical N values while plots in the same column have

target group size D = Ddet + d · (N − Ddet), where d is a

constant fraction of robots remaining in the stochastic phase

(N −Ddet). For each configuration of parameters N and D,

we execute 1000 independent simulation runs and record the

number of iterations required before D was reached. As a

P-P plot is confined to the unit square, the distributions un-

der examination agree when the points in the plot lie on the

diagonal of the square. In all nine plots shown in Fig. 12,

the function (F(ϕ), F̂(ϕ)) produces data points in the close

proximity of the diagonal of the respective squares indicat-

ing a good agreement between theoretical and empirical dis-

tributions for each combination of parameters considered.

We depend on this observation to confirm the reliability of

our model.

5.3.2 Real robot experiments and spatial assumptions

We conducted a series of experiments with real robots to

study the duration of the growth process. In particular, we

studied how a random distribution of the robots may af-

fect the duration of the growth process with respect to the

model predictions that assume an interaction graph-based

on square lattice distribution. We assumed an already estab-

lished one-to-one STC link between the AR.Drone and one
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Fig. 12 P-P plots comparing theoretical and empirical cumulative dis-

tribution functions of ϕ with N ∈ {9,49,121} and D = Ddet +d · (N −
Ddet) with d ∈ {25%,50%,75%}. Each data point is an average of

1000 simulation runs

marXbot. We performed experiments with N = 9 marXbots

and one AR.Drone with an experimental setup similar to that

presented in Sect. 4.3.2. However, unlike the experiments

presented in Sect. 4.3.2, no light source was considered in

this set of experiments. The AR.Drone therefore used the

center of the bounding box that includes all marXbots in the

field of view as the input to its PID controller. The freeze sig-

nal was issued when fewer than nine marXbots were visible

to the AR.Drone. We considered two spatial distributions of

the marXbots: random (Fig. 13a left) and a square lattice

with a side length of 0.4 m (Fig. 13a right). For each spa-

tial distribution, we varied the target group size D in the set

{2,4,8}. We executed 30 repetitions for each combination

of parameters resulting in a total of 180 runs. Video footage

of this series of experiments is available in the online sup-

plementary material (Mathews et al, 2013).

Figure 13b is a plot of the results obtained using random

distribution, square lattice distribution, and model predic-

tions. The results show that the median value of the square

lattice distribution and the expectation value of the model

predictions for D = 2 and D = 8 do not vary significantly.

Also, the amplitude of the standard deviation is well approx-

imated. In the case of D = 4, however, the empirical data

does not correspond well to the theoretical expectation. This

may be explained by random fluctuations of the estimated

distributions caused by the limited sample size of 30 runs.

When comparing the results obtained using random distribu-

tions, we observe the growth process to terminate minimally

faster than the expectation value of the model. This observa-

tion is a direct consequence of the sizes chosen for D. When

nine marXbots are distributed in a square lattice around the

target robot, all eight neighbors of the target robot are clos-

est candidate robots and hence no deterministic iteration of
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Fig. 13 (a) Snapshots of experiments where N = 9 and D = 4: (left)

random distribution and (right) square lattice distribution. (b) Em-

pirical cumulative distribution functions of real robot experiments

with F̂r(ϕ) for randomly distributed marXbots, F̂l(ϕ) for marXbots

distributed in a square lattice plotted against theoretical expectation

E[ϕ]±
√

V[ϕ] for N = 9 and D ∈ {2,4,8}. Each boxplot represents

30 runs. Empty boxes are for F̂r(ϕ) and filled boxes are for F̂l(ϕ). The

error bars represent the model predictions

the type HAL→GRO→HAL can occur. By contrast, when

distributed randomly, some marXbots may occlude others

and hence render intermediate group sizes more probable.

Consequently, the AR.Drone may reach the target group

size with deterministic phase iterations only, and may avoid

stochastic phase iterations entirely. We also confirm this ob-

servation using the video footage of the experiments (Math-

ews et al, 2013). We conclude that for small N, the square

lattice-based interaction graph underlying the Markov chain

model overestimates the duration of the growth process as

random distributions often do not result in the dense, struc-

tured neighborhoods inherent to the square lattice.

In simulation-based studies, we further investigated the

difference in the duration of the growth process between

a random distribution and a square lattice, and compare

N

F
r
( ϕ
) ,

 F
l(
ϕ
) ,

 �
[ ϕ

]
±

�[
ϕ

]

9 25 49 81 121

0

5

10

15

20

25

30

Fig. 14 Empirical cumulative distribution functions computed for N ∈
{9,25,49,81,121} and D = Ddet +50% ·(N−Ddet) with 1000 simula-

tion runs each. F̂r(ϕ) represents randomly distributed marXbots, F̂l(ϕ)
represents square lattice distribution, and the theoretical expectation

E[ϕ]±
√

V[ϕ]

the results with the predictions of the model for increas-

ing N ∈ {9,25,49,81,121}. Figure 14 shows the results in

which the target group size D = Ddet + 50% · (N −Ddet) is

set to a constant fraction of the stochastic phase. To mitigate

the effect of random fluctuations, we performed 1000 sim-

ulation runs for each parameter configuration. The results

show that for smaller N ∈ {9,25,49}, the growth process

terminates faster when robots are randomly distributed. For

larger N ∈ {81,121}, the Markov chain model provides a

good approximation of the outcome of the simulations re-

gardless of the spatial arrangement of the potential recipient

robots. This can be explained by the high density of robots

that makes it more probable for a robot to perceive at least

one neighbor in each of its eight sections of perception. The

average degree of connectivity in the resulting interaction

graph may hence resemble that of a square lattice with eight

nodes. In summary, the data shows that even if the spatial

assumption underlying the Markov chain model is not met,

the model provides a reliable and quantitative approximation

of the duration of the growth process provided the potential

recipient robots are densely packed.

5.3.3 Scalability

An STC link to a target group can be established by exe-

cuting the elimination process presented in Sect. 4 followed

by either the growth process or by repeating the elimination

process multiple times such that one robot is added to the

target group after each repetition. Using the Markov chain

model, we study the scalability properties of both these ap-

proaches by computing the expectation value of ϕ where

N = 121 and D ∈ {2, . . . ,100}.

In Fig. 15, we present the results of the study in which

we also vary the number of distinct signals Cs available
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Fig. 15 Scalability study showing the expectation value E[ϕ] for N =
121 robots and target group size D ∈ {2, . . . ,100} in a square lattice

distribution. Results obtained by repeating the elimination process with

varying |Cs| (dashed line) are plotted against those obtained from the

growth process (solid line). The inset shows the performance of the

growth process for larger values of D together with the fitted values

shown in circular markers

to the iterative elimination process. The results show that

the iterative growth process clearly outperforms the iterative

elimination process regardless of the size |Cs|. This domi-

nance still holds when the theoretical case is considered in

which |Cs| tends to infinity. For larger values of D, we ob-

serve that the iterative growth process scales approximately

as D · log(D) (see fitted values shown in the inset in Fig. 15).

When D can be reached through iterations in the determinis-

tic phase only (e.g., D ∈ {9,25,49, . . .}) the iterative growth

process terminates faster than for other values of D which

require iterations to occur in the stochastic phase resulting

in the spikes shown in Fig. 15 and its inset. Although estab-

lishing an STC link to a group of robots through the itera-

tive growth process is faster in all cases considered, grow-

ing a target group by incrementally adding one robot after

the other may still remain an option in applications that re-

quire STC links to particular robots rather than to a cohesive

group of a specific size.

5.4 One-to-many STC application scenario

We consider a segregation task as an example of a real-

world application that requires spatial coordination among

the robots. In this experiment, we deploy eight marXbots

and one AR.Drone on a mission in which a subgroup con-

sisting of four marXbots closest to an object of interest

needs to be segregated from the rest of the group and sent

to the object of interest. We use a light source placed on the

ground as the object of interest. The marXbots are, unlike

the AR.Drone, neither aware of the total number of robots

in the system nor of the number of robots that may be re-

quired for upcoming tasks. After deployment, the AR.Drone

Fig. 16 Two top-down snapshots of the segregation experiment. Left:

the group of robots reaches the object of interest. Right: the AR.Drone

uses spatially targeted communication to segregate the four marXbots

closest to the object of interest from the group and to direct them to-

wards the object

follows the group of marXbots until the object of interest is

in its field of view (see Fig. 16 left). The AR.Drone then

establishes a one-to-one STC link to the marXbot closest

to the object of interest, before launching the growth pro-

cess to expand the link to grow a target group that includes

the four marXbots closest to the object of interest. Finally,

the AR.Drone uses the established one-to-many STC link

to achieve segregation between the two groups by broad-

casting instructions (Christensen et al, 2008) that require the

target group to perform a phototaxis behavior while the re-

maining robots are commanded to execute a retreat behavior

(see Fig. 16 right). In this experiment, the marXbot behavior

is fully autonomous. The AR.Drone performs autonomous

sensing and communication, but was flown manually.

In the proof-of-concept experiment we conducted, the

one-to-one STC was established within 6 iterations (i.e.,

within 6 · 200 ms=1200 ms, as the fixed threshold τ was

set to 200 ms). The growth process took only one itera-

tion of type HAL→GRO→HAL to form the required tar-

get group (i.e., within 3 · 300 ms=900 ms as marXbots

use three sequentially retrieved frames from their omnidi-

rectional cameras for the decision-making required in the

exclusion mechanism shown in Fig. 9 while a frame is re-

trieved each 300 ms). The wall clock time given in ms dis-

counts the time during which not all eight marXbots are in

the field of view of the AR.Drone and the freeze signal is is-

sued. A video recording of the experiment is available in the

online supplementary material (Mathews et al, 2013). Fur-

ther examples of applications for one-to-many STC can be

found in our previous work (Mathews et al, 2012a).
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6 Discussion

The STC protocol as described in this paper requires that

any potential recipient robot in the communication range of

the initiator robot must also be able to communicate back to

the initiator robot. If this condition is not respected, it cre-

ates a problem of asymmetrical communication: potential

recipient robots can respond to the initiator robot without

the initiator robot being aware of them. As a result, in some

cases the initiator robot can believe that it has established

a one-to-one link with a single target robot when in fact it

has unknowingly selected multiple target robots. Similarly,

when establishing a one-to-many link extra potential recipi-

ent robots can add themselves to the forming group without

the initiator’s knowledge.

With the hardware we use in our experiments there is an

asymmetry between the communication ranges of the initia-

tor and potential recipient robots: the AR.Drone transmits

using wireless Ethernet and can therefore send signals to all

the marXbots. The marXbots transmit using LEDs, thus the

only marXbots that can send signals to the AR.Drone are

those in the AR.Drone’s field of vision. In our experimen-

tal setup we have avoided the asymmetrical communication

problem by placing all the marXbots within the AR.Drone

field of vision. In practice, this means that in our experi-

ments all communication in the system is global.

Instead of solving the asymmetric communication prob-

lem by using global communication, to establish a one-to-

one STC link it would be enough to let the initiator robot use

the macroscopic model (see Sect. 4.2) to calculate the prob-

ability that only one target robot has been selected. This cal-

culation would use the number of elimination iterations al-

ready conducted together with an estimate of the total num-

ber of robots4 that can receive the initiator robot’s signals to

produce the required probability. Should this probability be

not low enough, the protocol could be repeated for an addi-

tional number of iterations until the probability falls below

the required threshold.

This solution does not extend to the establishment of

one-to-many STC links. In some cases a behavioral solu-

tion could solve the problem. With the hardware we use, for

example, the AR.Drone could ensure that robots outside of

its field of vision cannot become part of the group. This can

be achieved by initiating and then expanding the group in

such a way that the boundaries of the group never expand

beyond its own field of vision. Even in cases in which such

behavioral solutions are not feasible, small errors in the size

of the group will often not be important, especially given

4 This estimate need not be precise. One can even round up the esti-

mate by an order of magnitude to be on the safe side. The logarithmic

nature of the relationship between the number of robots in the system

and the number of iterations in the STC protocol (see Fig. 7) ensures

that the cost in terms of additional iterations will be very low.

that the resulting group will anyway be spatially coherent.

This is for example true in almost all swarm robotics appli-

cations (Nouyan et al, 2009; Dorigo et al, 2013, 2014).

A remaining issue with the applicability of the STC pro-

tocol, even in its extended form, to our hardware would be

if two or more AR.Drones wished to establish STC links in

parallel. The fact that they each use non-situated broadcast

communication (wireless Ethernet) would make it impossi-

ble for the marXbots to distinguish between signals from the

different initiator robots. However, this is no longer an issue

when both the initiator and potential recipient robots use sit-

uated communication. In previous work we have shown the

STC protocol working with this type of bidirectional situ-

ated communication (Mathews et al, 2010a, 2012b). In such

a setup, multiple initiator robots can establish STC links in

parallel—the potential recipient robots can use the inherent

properties of situated communication to distinguish between

signals from the different initiator robots (e.g., based on dis-

tance) and therefore choose which STC process to partici-

pate in.

Another potential issue with our protocol is related to

the noise inherent to most technologies that transmit situated

communication signals (e.g., ultrasound, infrared, or LED

light). Our STC protocol can cope with wrongly detected

signals caused by noise. During the elimination process, if a

wrong signal causes the target robot to eliminate itself at any

point, the initiator robot stops signalling until all potential

recipient robots quit the process, then simply starts the elim-

ination process again. During the growth process, if a signal

is wrongly detected by any of the robots, the process simply

requires a few additional iterations to correct the error. Both

these corrective measures have time costs. We therefore also

used filtering techniques to reduce the number of wrong sig-

nals: to filter out wrongly detected signals, we let each signal

receiving robot make decisions only after processing at least

three subsequently received camera frames. This simple fil-

tering mechanism proved sufficient to completely eliminate

transmission errors in all of our experiments.

7 Conclusions and future work

Multirobot systems are starting to consist of large num-

bers of robots. Additionally, such systems often consider

a heterogeneous group of robots that operate in increas-

ingly large environments pursuing different tasks in paral-

lel. Scalable spatial coordination between different types of

robots is thus becoming increasingly important. In this pa-

per, we identified spatially targeted communication as an es-

sential form of communication that enables spatial coordi-

nation in multirobot systems. We presented a protocol that

enables robots in a decentralized multirobot system to estab-

lish ad-hoc communication links to particular target robots

based on their location in the environment. The protocol can
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be implemented on standard hardware found on many ex-

isting robotic platforms. We formally described the proto-

col’s constituent processes using Markov chain formalisms

and showed that the elimination process scales logarithmi-

cally with respect to the number of potential recipient robots

while the growth process scales logarithmically with respect

to the target group size. We presented results of 332 exper-

imental runs carried out using a heterogeneous multirobot

system composed of autonomous aerial and ground-based

robots — a type of heterogeneous multirobot system that

has recently gained much attention (Dorigo et al, 2013) and

may potentially benefit the most from our approach. We pre-

sented two application scenarios to demonstrate the useful-

ness of spatially targeted communication when solving real-

world tasks. Our approach does not require any dedicated

hardware and also functions in GPS-denied environments.

Thus, it offers high portability to a variety of existing and

future robotic systems that include any kind of situated sig-

nal emitting technology.

In future research, we are incorporating the approach

presented in this work in studies that require coordination

between teams of aerial and ground-based robots that op-

erate in parallel. We are also interested in developing plat-

form specific models that consider characteristics inherent

to the used platform, for instance probability of miscommu-

nication (due to wrongly detected signals) or probability of

malfunctioning robots, to enhance the robustness of model

predictions when operating on different real robotic hard-

ware. Such models will allow us to reliably apply spatially

targeted communication to a multitude of platforms to study

a series of complex tasks that require spatial coordination

ranging from multirobot construction to dynamic task allo-

cation under the supervision of aerial robots.
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