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Abstract

A Monte Carlo algorithm is derived to solve the one-dimensional telegraph equa-
tions in a bounded domain subject to resistive and non-resistive boundary con-
ditions. The proposed numerical scheme is more efficient than the classical Kac’s
theory because it does not require the discretization of time. The algorithm has been
validated by comparing the results obtained with theory and the Finite-difference
time domain (FDTD) method for a typical two-wire transmission line terminated at
both ends with general boundary conditions. We have also tested transmission line
heterogeneities to account for wave propagation in multiple media. The algorithm is
inherently parallel, since it is based on Monte Carlo simulations, and does not suffer
from the numerical dispersion and dissipation issues that arise in finite difference-
based numerical schemes on a lossy medium. This allowed us to develop an efficient
numerical method, capable of outperforming the classical FDTD method for large
scale problems and high frequency signals.
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1 Introduction

Probabilistic methods based on Monte Carlo simulations have been used al-
ready to solve problems in Science and Engineering modeled by partial differ-
ential equations. The most important difference compared with the classical
methods used so far rests on the possibility of computing the solution at
a single point, being therefore essentially a meshless-type method. From the
computational point of view this feature can be exploited advantageously over
the classical methods. In fact, since no computational mesh is required, the
well known memory constraints for solving large scale and high dimensional
problems are minimized. Moreover, since the solution is computed by taking
the average of independent calculations, the underlying algorithms are well
suited for parallel computing [1]. However, unless one is interested to compute
the solution at single points, as happens in some specific applications on the
analysis of systems and networks, they are typically not competitive enough
compared with classical numerical algorithms, when used to compute the so-
lution at every point inside a given computational domain. This is basically
due to the well-known slow convergence rate of the Monte Carlo method. An
alternative consists in combining the Monte Carlo method with other classical
techniques, such as the domain decomposition method, computing merely the
solution in a few points along some chosen interfaces inside the domain. This
method is called probabilistic domain decomposition method (PDD), and was
successfully used to solve a variety of problems modeled by elliptic, and linear
and semilinear parabolic partial differential equations [2,3].

A key ingredient to implement a PDD method is to find a probabilistic repre-
sentation of the solution. For linear elliptic equations, and parabolic equations,
the probabilistic representation consists on the celebrated Feynman-Kac for-
mula. In the specific field of electromagnetism, several accelerating techniques
have been proposed in the literature to solve probabilistically electrostatic
problems, such as the floating random walk [6], and walking on spheres [24,25],
capable to speed up the computation of the solution by means of a variable
time step size. For time-dependent electromagnetic problems, in particular
for the time harmonic solution of the wave equation described by the scalar
Helmholtz equation, a probabilistic representation was proposed in [5]. This
representation is based on a suitable transformation, which allows to trans-
form the original problem into two set of equations, one of them amenable to
be solved using the Feynman-Kac formula.

In the general case of arbitrary hyperbolic partial differential equations, which
model transport phenomena in Science and Engineering, a general probabilis-
tic representation does not exist. However, there are two important exceptions.
The first one is the Vlasov-Poisson system of equations, which appears to be of
unquestionable interest in Plasma Physics. For such system of equations it was
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proposed already in [22] a probabilistic representation in the Fourier space,
and a corresponding numerical method [4]. The second exception consists on
the one-dimensional telegraph equations. For these equations the pioneering
work by Kac [16,17], and Golstein [12], showed that a probabilistic represen-
tation in terms of a Poisson random walk can be readily derived. Basically,
this was due to the fact that the telegraph equations can be seen as a wave
equation with dissipation, and hence amenable to be described as an expected
value of a suitable functional of a given stochastic process. Originally, the
method proposed by Kac was derived exclusively to deal with problems in
unbounded domains, as well as, zero initial velocity. More recently, in [15], it
has been conveniently generalized to tackle the problem of arbitrary initial
velocity. By exploiting the link between the wave equation and the telegraph
equations, through a suitable random time, some useful numerical schemes for
computing multidimensional fields in dispersive media have been introduced
as well.

It is missing however a general probabilistic method capable of dealing with
bounded domains, and moreover, from a computational point of view, of being
competitive to be used as an efficient alternative to the widespread FDTD nu-
merical method for electromagnetics. The goal of this paper is to fill these two
gaps by proposing a novel Monte Carlo method to solve the telegraph equa-
tions governing the evolution of voltage and current in a two-wire transmission
line. We show in this article how the method can be extended with suitable
boundary conditions, such as, feeding the line with a non-ideal voltage source
with internal resistance at one end, and terminating it with a non-resistive
load at other.

It is worth to remark that the telegraph equations are formally the same type
of equations as the Maxwell equations in 1D, therefore the method proposed
in this paper can be trivially extended to deal with such a system of equations.

Here it is the outline of the paper. The probabilistic algorithm for solving the
telegraph equations is presented in Sec. 2 for the unbounded case. In partic-
ular, we discuss the computational advantages offered by such an algorithm
compared with the classical one. In Sec. 3 the method is extended to cope with
bounded domains subject to suitable boundary conditions. Sec. 4 is devoted
to numerical examples, where the results obtained with our new algorithm
are compared with the results obtained with the classical FDTD method and
theoretical solutions based on Fourier analysis. Finally, to close the paper, in
Sec.5 we summarize the more relevant findings and possible extensions of this
work.
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2 Probabilistic Formulation of Telegraph Equations

The system of first-order partial differential equations governing the evolution
of the voltage u(x, t) and current i(x, t) in a general two-wire transmission line
(also known as telegraphist’s equations) are given by

∂u

∂x
=−L

∂i

∂t
−R i,

∂i

∂x
=−C

∂u

∂t
−Gu, (1)

where R, L, G, and C, are the resistance, inductance, conductance, and ca-
pacitance per unit length of the line, respectively. For simplicity, let us assume
that no boundary conditions are imposed and that we choose arbitrary initial
conditions u(x, 0) = u0(x), and i(x, 0) = i0(x). Recall that the Maxwell equa-
tions for the electric and magnetic fields E, and H in a lossy media, assuming
a x-directed z-polarized TEM wave (Hx = Ex = 0), with no variations in the
y and z direction, are given by the one-dimensional equations

∂Ey

∂x
=−μ

∂Hz

∂t
,

∂Hz

∂x
=−ε

∂Ey

∂t
− σ Ey, (2)

where ε, and μ are the electric permittivity and magnetic permeability, respec-
tively, and σ the electric conductivity. Note that both equations, the telegraph
equations and the Maxwell equations, are formally the same type of equations,
obtaining one from the other by simply replacing the voltage u by the electric
field Ey, the current i by the magnetic field Hz, and the parameters L by
μ, C by ε, G by σ, and finally setting R = 0. Through the transformation

f(x, t) = (u + R0 i )/2, and b(x, t) = (u − R0 i)/2, where R0 =
√
L/C is the

constant characteristic resistance, Eqs. (1) can be rewritten as

∂f

∂t
= −c

∂f

∂x
+ λ b− (λ+ μ) f,

∂b

∂t
= c

∂b

∂x
+ λ f − (λ+ μ) b, (3)

where c = 1/
√
LC is the constant phase velocity, μ = G/C, and λ = (R/L−

G/C)/2 is the distortion parameter, which reduces to zero in the special case
of a distortion-less line.

Using the characteristic curves [19], the system equations (1) can be trans-
formed into the following coupled integral equations:
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f(x, t) = f0(x− c t) e−(λ+μ)t + λ
∫ t

0
ds e−(λ+μ)s b(x− c s, t− s),

b(x, t) = b0(x+ c t) e−(λ+μ)t + λ
∫ t

0
ds e−(λ+μ)s f(x+ c s, t− s), (4)

where f0(x) = f(x, 0), and b0(x) = b(x, 0).

Let us assume S to be an absolutely continuous random variable defined on a
probability space (Ω,F ,P) with S : Ω → R+

0 , and governed by the exponential
density function p(s) = d

ds
P [s < S] = (λ + μ)e−(λ+μ)s. Thus, the following

probabilistic representation of Eqs. (3) are obtained

f(x, t) = f0(x− c t)P [S > t] + ρE
[
b(x− c S, t− S)1[S≤t]

]
,

b(x, t) = b0(x+ c t)P [S > t] + ρE
[
f(x+ c S, t− S)1[S≤t]

]
, (5)

where ρ = λ/(λ+ μ), and E denotes the expected value. Here 1A denotes the
indicator function, being 1 or 0 depending on whether the event A occurs.
Note that this system of equations is an implicit system in which to evaluate
f is required to evaluate b and vice-versa. This can be readily solved resorting
to Picard iteration, which has been already used successfully in a more general
setting with nonlinear equations, see [23] e.g.. There it was shown that the
coefficients of the so obtained Picard series can be probabilistically sampled
since they satisfy a normalization condition. Here a similar procedure can
be applied straightforwardly, and to implement it in practice we propose the
following recursive algorithm: Generate a first random time S0 obeying the
exponential density function. Then, depending on whether S0 < t or not, two
different alternatives are taken. If S0 > t, the algorithm is stopped, and the
contribution to the solution f(x, t) and b(x, t) of this particular realization of
the random variable is obtained by evaluating the initial condition f0 and b0
at the points x − c t, and x + c t, respectively. If, on the contrary, S0 < t,
then generate a second random number S1 distributed according to the same
density function. Once again two different alternatives follow depending on
whether S1 > t − S0 or not. If S1 > t − S0, the algorithm is stopped, and
the contribution to the solution f(x, t) and b(x, t) is obtained by multiplying
ρ by the initial conditions b0 and f0 at the points x − c S0 + c (t − S0), and
x + c S0 − c(t − S0), respectively. If S1 < (t − S0) the algorithm proceeds
repeating the same elementary rules. In Fig. 1 we present a flux diagram of a
practical implementation of the algorithm.

The overall solution is constructed summing up the different partial contri-
butions obtained from each trajectory. In fact, Eqs. (5) can be solved recur-
sively resorting to Picard iteration, as was mentioned above, by replacing the
right-hand side, which depends on the functions f(x, t), and b(x, t), with the
solutions itself. This in practice gives rise to the following expansion in terms
of random exponential times,
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Fig. 1. Recursive algorithm for solving the unbounded problem. Initially, η is set
to one, and the initial states are f(x, t), or b(x, t), depending on whether one is
interested to compute the solution f or b, respectively.

f(x, t) = f0(x− c t)P [S0 > t]

+ρE
[
b0(x− c S0 + c (t− S0))1[S0≤t]1[S1>t]

]
+ρ2E

[
f0(x− c S0 + c S1 − c (t− S0 − S1))1[S0≤t] 1[S1≤t] 1[S2>t]

]
+ · · · ,

b(x, t) = b0(x+ c t)P [S0 > t]

+ρE
[
f0(x+ c S0 + c (t− S0))1[S0≤t] 1[S1>t]

]
+ρ2E

[
b0(x+ c S0 − c S1 + c (t− S0 − S1))1[S0≤t] 1[S1≤t] 1[S2>t]

]
+ · · · (6)

Note that for a given realization ω of the random variables Si, the correspond-
ing arguments used so far to evaluate the initial condition f0 and b0 are given
in general as x − c S0 + c S1 − · · · − c SN + c (t − S0 − S1 − · · · − SN), and
x+ c S0 − c S1 + · · · + c SN − c (t− S0 − S1 − · · · − SN). Those starting with
x − c S0 + · · · correspond to arguments associated with the function f(x, t),
while those starting with x+c S0+ · · · are associated with the function b(x, t).
Regarding the arguments of the initial conditions f0 and b0, the following gen-
eral rule holds: the number of random times si appearing as the argument of
b0 is odd when used for evaluating the function f(x, t) and even when used
for evaluating the function b(x, t). For the initial condition f0 the rule is ex-
actly the opposite, being an odd number for evaluating the function b(x, t),
while an even number for evaluating the function f(x, t). Therefore, using such
sequences of exponential random times Si, the system equations (5) can be
reformulated in the following compact form,

f(x, t) = E
[
ρn(ω)f0 (x− βω(t))1[n(ω)≡0mod 2]

]
+E

[
ρn(ω)b0 (x− βω(t))1[n(ω)≡1mod 2]

]
b(x, t) = E

[
ρn(ω)f0 (x+ βω(t))1[n(ω)≡1mod 2]

]
+E

[
ρn(ω)b0 (x+ βω(t))1[n(ω)≡0mod 2]

]
(7)
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where

βω(t) = c

⎛
⎝n(ω)−1∑

i=0

(−1)iSi + (t−
n(ω)−1∑
i=0

Si)

⎞
⎠ , (8)

n(ω) is the random length of the sequence. Note that in practice x ± βω(t)
can be seen as a random trajectory in time, playing a similar role that the
characteristic curves play for the first-order wave equation. In fact, taking λ
and μ equal to zero, the classical solution for the wave equation is recovered,
since the probability of S > t goes to one, and then n(w) = 0 with probability
one.

A numerical method can be readily proposed, since the solution f(x, t), and
b(x, t) can be approximated numerically replacing the expected value by the
corresponding estimator, the arithmetic mean, thus

f(x, t) =
1

N

N∑
j=1

fωj
, b(x, t) =

1

N

N∑
j=1

bωj
, (9)

where N is the sample size, and fωj
, and bωj

corresponds to the partial con-
tribution to the solution f(x, t), and b(x, t), respectively, of the random path
βωj

(t). Such a contribution can be computed as follows,

fωj
= ρn(ωj){f0

(
x− βωj

(t)
)
1[n(ωj)≡0mod 2]

+b0
(
x− βωj

(t)
)
1[n(ωj)≡1mod 2]},

bωj
= ρn(ωj){f0

(
x+ βωj

(t)
)
1[n(ωj)≡1mod 2]

+b0
(
x+ βωj

(t)
)
1[n(ωj)≡0mod 2]}, (10)

Note that such a finite sample size unavoidably introduces a numerical error,
which is statistical in nature, and known to be of order of O(1/

√
N) when

N goes to infinity [9], provided the variance of the random process is finite.
Although a general proof for any arbitrary initial data may not exist, however
for all the examples studied so far, numerical results have confirmed that the
variance remains finite in all cases. Intuitively, this can be explained due to
the fact that physically meaningful chosen initial and boundary data decays
exponentially fast, assuring in such a way the convergence of the numerical
method. Therefore, the accuracy of the computed numerical solution will be
determined exclusively by the sample size N . Furthermore, it is important
to remark here that unlike classical methods such a probabilistic numerical
method does not suffer of any dispersion and dissipation issues, since no ap-
proximation schemes of the spatial and time derivatives of the solution are
made.

From the computational point of view, our numerical method is more efficient
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than any classical Monte Carlo method based on the theory of Kac regarding
the second order telegraph equation, as in [15]. This is so because our numerical
scheme does not require any discretization to obtain the random time. On the
other hand, when applying the classical theory of Kac for numerical purposes,
the definite time integral given by

∫ t

0
(−1)N(s) ds, (11)

where N(t) is a Poisson random process, has to be numerically approximated
by discretizing conveniently the time variable s. This introduces a new source
of error and the computational time spent to compute the solution will be
higher when compared with our algorithm, especially because in the method of
Kac an accurate solution can only be found if the time step is kept reasonably
small. The distinguishing feature of our new method is that, contrarily to the
theory of Kac, it generates the corresponding random paths based only on
those random times for which there is a change of path direction. A graphical
illustration of the operation of the probabilistic algorithm is given in Fig.
2 which shows three possible random paths – identified as (1), (2) and (3)
– corresponding to different realizations of x + β(ω), used to evaluate the
solution at the point x = 0 and time t = 20 ns. The parameters considered in
the simulation were c = 2×108 m/s, μ = 5.0×106 s−1 and λ = 22.5×106 s−1.
The partial contributions to the solution are ρ4f0(x− c s1 + c s2 − c s3 + c s4+
c (t−s1−s2−s3−s4)) for the random path marked as (1) ρ3f0(x+c s′1−c s′2+
c s′3 − c (t− s′1 − s′2 − s′3)) for that marked as (2) and ρ b0(x− c s′′1 + c (t− s′′1))
for path (3). Note that the solid lines (1) and (3) correspond to trajectories
that contribute to the solution of f , whereas the dotted line (2) contributes
to the solution of b.

The computational cost of both algorithms can be readily derived, and is given
by

CKac ≈ N
t

Δt
, CNew algorithm ≈ N

t

< s >
, (12)

where t is the final time, N the number of trajectories, and < s > denotes
the time average related with the random time when trajectories change their
direction of movement. This time average is equal to the inverse of the mean
of the exponential probability density p(s), which is given by 1/(λ + μ). The
computational cost of both algorithms grows linearly on the final time t. In the
classical algorithm of Kac the computational cost is also inversely proportional
to the discretized time step Δt, being greater when Δt gets smaller. The
computational cost of our new probabilistic method depends exclusively on
the parameters λ and μ. In Table 1 we present the computational time and
the numerical error of our method as a function of the final time t for the
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Fig. 2. Random paths for three different realizations of x+ βω(t). The trajectories
start at position x = 0 and run until t = 20 ns.

case of a transmission line fed by a wave packet signal and terminated by a
resistive load. The specific values of the parameters used for this simulation
are found in Fig. (5). The number of trajectories was kept fixed to N = 105

and, as can be seen, the computational cost grows linearly with t, while the
numerical error remains almost constant. The discrete L∞-error norm has been
obtained, as usual, as max(|uMC(xi, t)− u(xi, t)| : 1 ≤ i ≤ N) (see [14], e.g.),
where uMC corresponds to the numerical solution computed with our Monte
Carlo method for single spatial points xi equally spaced between 0 and 2, and
u is the theoretical solution in Eq. (21) evaluated at such points.

In the simple case of initial conditions given by f0(x) = b0(x) = δ(x), an
analytical solution was found in [21], and it was shown in Fig. 3 to validate
the proposed algorithm. Note that the agreement is perfect for both solutions,
f(x, t), and b(x, t).
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Table 1
CPU time and numerical error in the norm L∞ obtained when the voltage source
signal is a pulse for different values of the final time t. The parameters are as in
Fig. 5.

Final Time (ns) CPU Time (s) ErrorL∞

15 13.003 0.00017015

20 16.944 0.00010262

25 20.304 0.00015178

30 25.801 0.00018977

Fig. 3. Comparison between the analytical solution and the numerical solution ob-
tained by the algorithm in Eq. (5) at time t = 20 ns. The number of trajectories is
kept fixed to N = 105.

3 Probabilistic Formulation of Telegraph Equations with boundary
conditions

One of the interesting features of the algorithm is how it can be easily gen-
eralized to deal with boundary conditions. To illustrate how this is done,
let consider a non-ideal voltage source vg(t) with series internal resistance Rg

connected to the input terminals of a general two-wire transmission line termi-
nated with a linear time invariant network of lumped elements. This network
is generally described by a linear differential equation for the voltage, cur-
rent and their time derivatives (to several orders) at the end of the line. The
number of independent energy-storage elements of the network determine the
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order of this equation. As it is well known, the time domain relation between
the voltage and current in such a system can be characterized by a convolution
operation. Thus, assuming that the line has a length l, the voltage u(x, t) and
current i(x, t) at the boundaries x = 0, and x = l, are given by

u(0, t) = vg(t)− i(0, t)Rg, i(l, t) =
∫ ∞

−∞
u(l, λ)h(t− λ) dλ, (13)

where h(t) is the impulse response of the terminal network connected to the
transmission line at x = l. In terms of f(x, t), and b(x, t), the corresponding
boundary conditions are

f(0, t)= ζ vg(t) + Γg b(0, t), (14)

b(l, t)= f(l, t)−R0

∫ ∞

−∞
[f(l, λ) + b(l, λ)] h(t− λ) dλ,

where

ζ =
R0

R0 +Rg

, Γg =
Rg −R0

Rg +R0

. (15)

Consider for example that an inductive circuit with resistance RL and a in-
ductance LL (series circuit) is connected to the end of the line at x = l. The
impulse response of the network is then given by

h(t) =
1

LL

e
−RL

LL
t
H(t), (16)

Thus, according to Eq. (14), the value of b at the boundary x = l for a given
time t depends on the value of f for that time but also on the values of f
and b for previous instants of time between 0 and t. This is consistent with
the fact that inductive elements store energy and therefore have memory.
Furthermore, according to the exponential decay characterized by the time
constant τL = LL/RL in Eq. (16), the values of f and b at the boundary
in earlier times contribute less for the values of b at time t, as theoretically
expected. For a purely resistive circuit (LL = 0) the impulse response is the
following:

h(t) =
1

RL

δ(t), (17)

and from Eq. (14) it yields

b(l, t) = ΓL f(l, t), ΓL =
RL −R0

RL +R0

. (18)

Now, at the load terminal, the values taken by f and b at previous times have
no influence on the values of b at the current time t, a clear manifestation of
the fact that the circuit has no memory. The solution of the transmission line
equations with these general boundary conditions is given by the following
system of integral equations,
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f(x, t) = f0(x− c t) e−(λ+μ)t 1[x>c t]

+λ
∫ t

0
ds e−(λ+μ)s b(x− c s, t− s)1[x≥c s]

+
∫ t

0
ds e−(λ+μ)s δ(c s− x) f(0, t− s)1[x≤c t],

b(x, t) = b0(x+ c t) e−(λ+μ)t 1[l−x>c t]

+λ
∫ t

0
ds e−(λ+μ)s f(x+ c s, t− s)1[l−x≥c s]

+
∫ t

0
ds e−(λ+μ)s δ(c s+ x− l) b(l, t− s)1[l−x≤c t], (19)

which is a generalization of Eqs. (4) to deal now with load and generator
constraints.

A probabilistic method can be derived as in the unbounded case, defining a
random time S exponentially distributed according to the same probability
density p(s), and yields,

f(x, t) = f0(x− c t)P [S > t]1[x>c t] + ρE
[
b(x− c S, t− S)1[S≤t]1[x≥c S]

]
+ρ λ−1 E [f(0, t− S)δ(c S − x)]1[x≤c t]

b(x, t) = b0(x+ c t)P [S > t]1[l−x>c t]

+ρE
[
f(x+ c S, t− S)1[S≤t] 1[l−x≥c S]

]
+ρ λ−1 E

[
b(l, t− S)δ(c S + x− l)1[l−x≤c t]

]
(20)

Note that contrary to what happens in the unbounded case, when the gen-
erated random time S is greater than the time t, two different actions takes
place. In fact, to compute the solution f(x, t), the function b has to be evalu-
ated at the points x−c S, and the function f at the point x = 0, provided that
the random time S coincides with x/c. This should be done, as it was for the
unbounded case, recursively. However, for the bounded case independently of
the generated random time s being or not larger than t, the algorithm should
check whether or not the random path crosses the boundaries at 0 or l. In case
of crossing for any of both boundaries, the random path is reflected back into
the domain. Further, for the boundary at x = 0, and according to the bound-
ary conditions defined in (14), the voltage source vg(t) has to be evaluated
at the time the random path crossed such a boundary. To illustrate how the
algorithm can be implemented in practice, a pseudocode is given in Algorithm
1.

When the general boundary conditions in Eq. (14) are considered, the proce-
dure is the following for the boundary at l:

(1) Generate a two-point discrete random variable ξ1 taking the values 0, and
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Algorithm 1 Telegraph equations with boundary conditions

Require: : x, t, N, l,ΓL,Γg, ρ, vg, ζ
for i = 1, 2 do

sign = (−1)i

for n = 1, . . . , N do
τ = 0, η = 1, X = x
while τ < T do

repeat: generate(S)
τ = τ + S, X ′ = X + sign c S
if X ′ < 0 then

call UPDATE LEFT
goto repeat

else if X ′ > l then
call UPDATE RIGHT
goto repeat

end if
sign = −sign, η = ηρ,X = X ′

end while
X ′ = X + sign c[T − (τ − S)]
if X ′ < 0 then

call UPDATE LEFT
goto repeat

else if X ′ > l then
call UPDATE RIGHT
goto repeat

end if
X = X ′

end for
solution[i] = solution[i]/N

end for
f(x, t) = solution[1], b(x, t) = solution[2]

procedure update left(X, sign, τ, solution)
τ = τ − S − sign x/c, sign = −sign,X = 0
solution[i] = solution[i] + η ζ vg(t− τ), η = η Γg

end procedure
procedure update right(X, sign, τ)

τ = τ − S + sign (l − x)/c, sign = −sign,X = l
η = η ΓL

end procedure

13



1, with probability 1/2.
(2) If ξ1 = 0, then the first term in the right-hand-side of Eq. (14) is cho-

sen, which corresponds to evaluate the function f at x = l, and time t,
otherwise if ξ1 = 1 the second term should be chosen.

(3) When ξ1 = 1, a new two-point discrete random variable ξ2 with the same
properties as ξ1 is generated. Such a new random variable is used to
choose between evaluating the function f or b according whether ξ2 is 1,
or 0 respectively. Both functions are evaluated at the time t − S, where
S is obtained randomly from a exponential probability density given by
p(s) = (RL/LL)e

−(RL/LL)S 1[s≥0]. Note that in case of a purely resistive
load S is 0 with probability one, and therefore the functions f and b are
evaluated always at the time t.

(4) Repeat recursively the previous steps replacing conveniently the argu-
ments of the functions f and b.

In practice, the bounded case entails different scenarios for the random paths,
and in Fig. 4 some simulated random paths are depicted for the purpose
of illustration for the more simple purely resistive circuit. Let suppose for
simplicity that f0(x) = b0(x) = 0, then the partial contributions to the solution
f(x, t), and b(x, t) of the random paths are: (1) ζ vg(t−S1)+Γgρ ζ vg(t−S1−
S2 − S3); (2) 0; and (3) ζ vg(t− S ′

1) + Γgρ ζ vg(t− S ′
1 − S ′

2 − S ′
3).

Concerning the numerical method for bounded problems, it is worth to re-
mark that the probabilistic methods proposed in literature for solving bound-
ary value problems for elliptic or parabolic partial differential equations are
based on the well-known Feynman-Kac formula [18]. When this formula is
used for numerical purpose, to obtain accurate solutions requires to compute
precisely the first exit time of a diffusion process (or a Brownian motion in
particular for a Laplace operator). Numerical experiments show that the error
made estimating the first exit time may be dominant over the other sources
of numerical errors and is therefore of paramount importance in providing an
accurate value of such a quantity [2]. Rather, the corresponding probabilistic
method for the telegraph equations does not exhibit this issue, mainly because
the nature of the generated random process is completely different. Indeed the
underlying random trajectories can be seen as piecewise-deterministic, being
characterized by a switch of deterministic straight lines of slope c or −c at ran-
dom times, as shown in Fig. 4. Moreover, the density function of the first exit
time is a delta function, and thus no error is done to evaluate it numerically.

Summarizing, the statistical error is the unique source of errors of the proposed
numerical method for solving unbounded and bounded problems. The method
does not require any computational mesh, being essentially meshless, and it
allows to compute the solution at arbitrary point in space and time through a
recursive procedure which is probabilistic in nature. Moreover, computing the
solution at any given time does not require to compute and keep the solution
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Fig. 4. Three random trajectories for three different realizations of x + βω(t) in a
bounded domain [0, 2] m. The paths start at x = 0.5, and are stopped at time t = 20
ns. The solid curves (1) and (3) correspond to paths belonging to the solution f ,
while the dotted line (2) to paths for the solution of b.

at intermediate times. Indeed, the probabilistic method generates the whole
history of the underlying random process, and the solution is computed using
exclusively the initial and boundary data.

4 Numerical Results

In this section, we present numerical examples to illustrate the probabilistic
method introduced in the previous section. In order to asses the validity of
our method, a comparison was made solving the problems by the classical
FDTD method. In the following, by theoretical solution it is meant the so-
lution obtained solving analytically the telegraph equations in Fourier space.
The voltage u(x, t) can be obtained from its counterpart u(x, ω) through the
Fourier transform,

u(x, t) =
1

2π

∫ +∞

−∞
u(x, ω)ej ωt dω, (21)

where u(x, ω) is given by

u(x, ω) =
∞∑
i=0

ui(x, ω). (22)
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Fig. 5. Comparison between the numerical results obtained with the Monte Carlo
method (MC), and the theoretical solution, for four different time values.

The index i identifies a pair of forward and backward waves. For i equal to zero,
u0(x, ω) is composed by the wave coming from the generator, which travels
forward from x = 0 to x = l, and by the backward wave from x = l to x = 0.
The backward wave is reflected on the generator, giving birth to a new forward
wave which will later reflect on the load, thus originating a backward wave.
These two waves represent u1(x, ω). In general ui(x, ω) is obtained following
the same constructive procedure, and yields

ui(x, ω) = u0(x, ω)Γ
i
g(ω)Γ

i
L(ω) e

−2 j k(ω)l i, (23)

where k(ω) is the complex wave number given by

k(ω) = −j

c

√
(j ω +R/L)(j ω +G/C), (24)

and c = 1/
√
LC. Note that for the lossy case k is a complex number, and

its dependence with ω is not linear, and therefore the medium is lossy and
dispersive. In Eq. (23), u0, is given by

u0(x, ω) = ζ(ω)Vg(ω)
[
e−j k(ω)x + ΓL(ω) e

−j k(ω)(2l−x)
]
, (25)
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where

ΓL(ω) =
ZL(ω)− Z0(ω)

ZL(ω) + Z0(ω)
, Γg(ω) =

Rg − Z0(ω)

Rg + Z0(ω)
,

ζ(ω) =
Z0(ω)

Z0(ω) +Rg

, Z0(ω) =

√
R + jω L

G+ jω C
. (26)

It is worth to mention that the complex coefficients above are not in general
those given in Eq. (15). In fact, they coincide only for the case of a lossless
line. Remarkably, the Monte Carlo method is capable of solving the telegraph
equations encoding all the information regarding losses and dispersion in the
system of equations (20), rather than in the coefficients characterizing the line,
as it happens in the frequency domain theory described above.

In Fig. 5 it is depicted the numerical results obtained when solving a trans-
mission line with a purely resistive load subject to a voltage source given
by a wavepacket, vg(t) = sin (2π f t) exp[−(t − t0)

2/(2s2)], where t0 = 7.5
ns, s0 = 0.75 ns and f = 1.0 GHz. The parameters of the line are l = 2
m, L = 0.250 μH/m, C = 100.0 pF/m, R = 12.5 Ω/m, G = 0.5 mS/m,
RL = 12.5 Ω, Rg = 75 Ω. For the Monte Carlo method N was 105. The theo-
retical solution in the figure was obtained from Eqs. (21)-(26) introducing the
Fourier transform of the wavepacket in Eq. (25). The four figures correspond
to instants of time (a) before reaching any boundary; (b) immediately after
reaching the right boundary (load) located at x = 2; (c) exactly before reach-
ing the left boundary (source) located at x = 0, and (d) immediately after
reaching the left boundary. Note the very good agreement between the Monte
Carlo method and the theoretical solution for every case, which validates the
Monte Carlo method with boundary conditions on the load and source.

It is worth to remark that the numerical solution computed with the Monte
Carlo method has been obtained pointwise, since the numerical method allows
to compute the solution at a single point without t he need of any computa-
tional mesh, as rather it happens for the FDTD method. Specifically for this
example, since the frequency f is a free parameter, it can be used to test the
accuracy of the method for arbitrarily large frequency values.

Indeed this has been done, and the numerical error in the L∞ norm summa-
rized in Table 2 for different number of spatial and temporal cells. Here the
numerical experiments were done to mimic experimental setups built to moni-
toring in time the voltage and current of the transmission line at a given point
inside the line. Thus, the final time were kept fixed to 2 in all simulations,
and the solution computed at temporal points equally distributed between 0
and 2. Concerning the spatial coordinate, for the Monte Carlo method the
simulations were run at the point x equal to 0.5. Recall that for the Monte
Carlo method, a computational mesh is not needed, and therefore the solution
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Table 2
Numerical error in the norm L∞ obtained with the wavepacket source as the carrier
frequency increases. All simulations are run until t = 10ns.

Frequency [GHz]
FDTD MC

16384 32768 65536 131072 16384(cΔt = Δx/2) N = 1000

3 0.002088 0.001016 0.000471 0.000202 0.000932 0.014497

19 0.013234 0.006401 0.002988 0.001285 0.012136 0.014648

40 0.027896 0.013449 0.006291 0.002701 0.312132 0.013457

90 0.063151 0.030387 0.013171 0.006077 0.370000 0.015282

200 0.146617 0.068182 0.031572 0.013520 0.732208 0.014351

can be obtained at a single point. On the contrary for the FDTD method, the
solution has to be computed in any point of the computational domain, and
this regardless of only needing the solution in time for a single spatial point.
Column 2, 3, 4, and 5 corresponds to the numerical error done when computed
numerically the solution by the FDTD method with 16, 384, 32, 768, 65, 536,
and 131, 072 spatial and temporal discretization cells, respectively. Note that
in terms of the discretization parameters, Δt, and Δx, this corresponds to
choose both to be equal. Rather in column 6, the number of temporal cells
were chosen to be the double of the spatial cells, or equivalently cΔt = Δx/2.
This has been done to show that the minimum error can be obtained, when
the time step is chosen to be the well known ”magic” time step. In fact, this
was reported already in literature, see [13] e.g. Concerning the last column
of the table, this corresponds to the numerical error obtained by the Monte
Carlo method, being the number of paths chosen to be N = 1000, the solution
computed at a single spatial point, and 16, 384 points equally distributed in
time between 0, and 2.

It is worth to remark that contrarily to the FDTD method, where the numeri-
cal error seems to grow linearly with the value of the frequency, the numerical
error done with the Monte Carlo method turns out to be independent of it.
Therefore, to keep constant the numerical error for increasingly large values of
the frequency, this requires for the FDTD method increasing proportionally
the number of cells. This has been explicitly pointed out in Table 2 marking
in boldface the numerical error of order of 0.013. Moreover, since the compu-
tational time depends linearly on the number of cells, this means that such a
time should increase accordingly whenever the value of the frequency grows.
On the contrary, the computational time spent by the Monte Carlo method
will remain constant independently of the value of the frequency. Such a be-
havior is indeed observed, being the results depicted in Fig. 6. To measure
properly the CPU time, all simulations were carried out in sequential mode
at an standard Linux Cluster equipped with Intel Xeon processors running at
2.27 GHz under the same computational conditions. Note that for sufficiently
large values of the frequency, the Monte Carlo method clearly outperforms the
FDTD method, being the differences even more striking when the length of
the line increases. This is because the solution obtained by the Monte Carlo
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Fig. 6. Comparison between the CPU simulation times of the MC and FDTD
methods, when solving the telegraph equations for several frequency values of the
wavepacket pulse. Values are normalized to the MC CPU time. Here two different
values of the length of the line, l = 2 m (denoted as FDTD2), and l = 4 m (FDTD4)
are shown, coloured as orange and yellow, respectively, for the FDTD method. For
both numerical methods the numerical error has been kept fixed to 10−2.

method is computed at a single spatial point, and as it was explained above,
the only source of error is statistical in nature. Therefore, the numerical er-
ror is completely independent of the length of the line, and consequently no
more discretization cells are needed to keep constant the numerical error, as
it happens on the contrary for the the FDTD method.

To illustrate the potential of the algorithm for solving non-resistive transmis-
sion line, the same type of simulations were done now for the case of a gaussian
pulse, vg(t) = exp[−(t−t0)

2/(2s2)]. The transmission line is terminated with a
resistance RL, and an inductance LL. The results are plotted in Fig. 7. Again
the agreement between the results obtained with the Monte Carlo method and
the theoretical solution is perfect.

As an example for multiple propagation mediums, in Fig. 8 it is plotted the
results obtained when solving a transmission line composed of three segments
connected in series with two different medium properties. The middle segment
has an inductance nine times larger than the other two segments. To solve nu-
merically this problem it is required to impose continuity for both, the voltage
u(x, t), and the current i(x, t), at the interfaces separating the different seg-
ments. In terms of the functions fj(x, t) and bj(x, t) for a general multiple
mediums transmission line composed by n segments, where j = 1, . . . , n de-
notes the jth segment, is given by
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Fig. 7. Comparison between the numerical results obtained with the Monte Carlo
method (MC), and the theoretical solution, for four different time values. The pa-
rameters at the load are RL = 100 Ω, LL = 0.0625 μH/m, and the other parameters
as in previous figures. The voltage source is a gaussian pulse, with t0 = 7.5 ns,
s0 = 0.75 ns.

bj(xj, t) =

2

Rj+1
0

bj+1(xj, t) + fj(xj, t)
(

1

Rj
0

− 1

Rj+1
0

)
(

1

Rj
0

+ 1

Rj+1
0

) ,

fj+1(xj, t) =

2

Rj
0

fj(xj, t)− bj+1(xj, t)
(

1

Rj
0

− 1

Rj+1
0

)
(

1

Rj
0

+ 1

Rj+1
0

) , (27)

where xj corresponds to the spatial position of the jth interface, and Rj
0 is the

constant characteristic resistance of the segment j. The Monte Carlo method
for solving this problem is implemented now as follows: Whenever a random
path crosses the interfaces at xj, a two-point discrete random variable ξ taking
the values 0, and 1, with probability 1/2 is generated. For a random path
crossing the interface at xj, and coming from the segment j to j + 1, if ξ = 0
then the function bj+1(xj, t) is evaluated. This in practice requires generating
a random trajectory according to the properties of segment j+1, evolving now
through the segment j+1. On the contrary, if ξ = 1 then the function fj(xj, t)
is evaluated. For a random path this corresponds to be reflected back to the
same segment j. The same holds for the other condition regarding the function
fj+1(xj, t), but now the scenario corresponds to random paths crossing the
interface at xj, and coming from the segment j+1 to the segment j. The Fig.
8 shows again the perfect agreement between the solution obtained with the
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Fig. 8. Transmission line composed of three segments with different electromag-
netic characteristics. The middle segment (in grey) has a characteristic inductance
L = 2.250 μH/m (line 2) and the two other segments have characteristic inductance
L = 0.250 μH/m. The other simulation parameters are the same as in the previous
simulation. The line is terminated with a resistance of value RL = 100 Ω, and the
voltage source is a gaussian pulse, with t0 = 7.5 ns, s0 = 0.75 ns.

Monte Carlo method, and the FDTD method for any values of time.

As it was already anticipated, the Monte Carlo method seems to be free of any
numerical dispersion and dissipative issues. This is clearly different from any
finite-difference based numerical schemes, such as the classical FDTD method.
The main reason is found in how the continuous partial differential equations
are discretized.

Recall that for the Monte Carlo method no discretization in the temporal and
spatial variables is done, being the number of paths the only discretization
parameter. To illustrate this remarkable feature, in Fig. 9 it is shown the
results corresponding to the numerical simulation of the line with a raised
cosine voltage source given by
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vg(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if |t− T | ≤ ξ−
1

2

[
1 + cos

(
π

β T
[|t− T | − ξ−]

)]
, if ξ− < |t− T |ξ+

0, if |t− T | > ξ+,

(28)

where ξ± = (1±β)T/2. The parameter β controls the roughness of the on/off
transitions of the signal in the time domain and can take values between zero
and one.

The raised cosine signal turns out to be specially suited to observe a known
phenomena in FDTD simulations called ”ringing” due to dispersion which can
be easily observed when β goes to zero. For the FDTD simulations in Fig. 9
we have considered two values of the time step: 1) cΔt = 0.99Δx, which is
close to the so called ”magic time step”, and 2) cΔt = 0.5Δx. The magic time
step was avoided on purpose because the numerical method becomes unstable
for this particular signal and parameters. Moreover, it has been proved in
[13] that for the telegraph equations, there is no ”magic time step size” for
lossy media discretized by the Yee’s FDTD method. The lack of numerical
stability, even satisfying theoretically the CFL condition, was already pointed
out in [20] for the case of the one-dimensional Maxwell equations in free space.
Moreover, according to the practical suggestions mentioned in [7], as a rule-
of-thumb, it is recommended to choose values of the time step close to the
CFL limit as possible. Apart from the results obtained with the Monte Carlo
method, and the FDTD method, the theoretical solution obtained by the
analytical procedure described above is shown in Fig. 9. Note the very good
agreement between the Monte Carlo method and the theoretical solution.
On the contrary, the FDTD method (for both time step values considered)
exhibits the mentioned ”ringing”, being more pronounced for cΔt = 0.5Δx,
as theoretically expected. For the Monte Carlo method, the number of points
where the solution was computed, and the number of paths, were chosen to
make approximately equal the computational time spent by the FDTDmethod
with cΔt = 0.99Δx. In closing, it holds that for about the same computational
cost, the Monte Carlo method seems to be more accurate than the FDTD
method.

5 Conclusion

A new probabilistic method to solve the one-dimensional telegraph equations
has been presented. Mathematically, what distinguishes this algorithm is the
fact that the classical Kac’s theory, and subsequent works based on this the-
ory, were developed analyzing merely the single second order partial differen-
tial equation, while the method presented here is based on the corresponding
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Fig. 9. Comparison between the numerical results obtained with the Monte Carlo
method (MC), the FDTD method, and the theoretical solution, for a raised cosine
pulse as a voltage source. For the FDTD method two different values of Δt has
been used, one close to the well known ”magic time step”, and other far from it.
Parameters of the line are l = 2 m, L = 0.250 μH/m, C = 100 pF/m, R = 12.5
Ω/m, G = 0.5 mS/m, RL = 12.5 Ω, Rg = 75 Ω, and for the pulse, T = 5 ns, and
β = 10−6. For the MC method, N = 105.

system of first order differential equations. One of the main advantages of this
new approach is that it can be used to obtain a numerical algorithm more
efficient compared with that obtained with classical Kac’s theory. In fact, the
direct use of the classical theory seems to be somewhat unsuitable from a
computational point of view, since it requires a further discretization in time,
which introduces a new source of error, and consequently degrades the overall
performance of the underlying numerical algorithm. Furthermore, this new
approach has been shown to be particularly suitable to solve bounded prob-
lems and we have shown how to incorporate general boundary conditions in
the method.

The algorithm was validated successfully through the simulation of electro-
magnetic wave propagation in transmission lines for voltage sources with dif-
ferent spectral characteristics. The results were compared with those obtained
using the classical FDTD method and theoretical solutions using Fourier anal-
ysis. We have successfully demonstrated the applicability of our algorithm to
the case of boundary conditions involving non-resistive loads and transmission
line heterogeneities to model wave propagation in multiple mediums.

Apart from the well-known advantages of probabilistic methods, such as be-
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ing naturally parallel and meshless, the probabilistic method proposed here
does not exhibit numerical dispersion and dissipation features. This is be-
cause no approximation of any derivatives of the solution was done and so
the method is not based on any sort of spatial and temporal discretization,
as in finite difference methods. The meshless nature of the method allows to
compute the solution at single points in space and time efficiently, which is
specially advantageous for monitoring the signal evolution at specific places of
the transmission line, without needing the values of the voltage and current in
all the intermediate points. However, in view of the slow rate of convergence
of any Monte Carlo method, it may be not so convenient to be used for com-
puting the solution in the whole line. As an alternative the method can be
combined with the FDTD method through a domain decomposition method.
This idea, called probabilistic domain decomposition method [2], was already
proposed in literature for different problems, but can also be applied, adapting
conveniently, for the telegraph equations.

Important is also to remark that for high frequency and large scale prob-
lems, the computational performance of our Monte Carlo-based method over-
comes the performance of the classical FDTD method for one-dimensional
problems. This is highly unexpected given that Monte Carlo methods are
considered rather inefficient for low dimensions. On the other hand, for high
dimensional problems, Monte Carlo methods typically outperform determin-
istic mesh-based methods in view of the well known ”curse of dimensionality”.
In fact, the computational cost of such methods grows exponentially with the
dimension of the problem while is independent of the dimensions for the Monte
Carlo methods, see e.g.[10]. This encourages to think that the generalization
of the algorithm for multidimensional problems will perform even better than
the algorithm proposed here for one-dimensional problems. Such an exten-
sion is planned to be accomplished using the random flights proposed recently
in [8,11]. In fact, here it was shown that there exists indeed a probabilistic
solution of the n-dimensional telegraph equation, where now the random tra-
jectories are obtained generating a Poisson random time, along with a uniform
distribution. For each Poisson event the trajectory follows a direction in space
choosing randomly the orientation from a uniform distribution. Generalizing
this approach to deal with boundary conditions is currently a work in progress
to be submitted elsewhere.
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