

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2019-05-09

Deposited version:
Pre-print

Peer-review status of attached file:
Unreviewed

Citation for published item:
Silva, F., Urbano, P., Correia, L. & Christensen, A. L. (2015). odNEAT: an algorithm for decentralised
online evolution of robotic controllers. Evolutionary Computation. 23 (3), 421-449

Further information on publisher's website:
10.1162/EVCO_a_00141

Publisher's copyright statement:
This is the peer reviewed version of the following article: Silva, F., Urbano, P., Correia, L. &
Christensen, A. L. (2015). odNEAT: an algorithm for decentralised online evolution of robotic
controllers. Evolutionary Computation. 23 (3), 421-449, which has been published in final form at
https://dx.doi.org/10.1162/EVCO_a_00141. This article may be used for non-commercial purposes in
accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1162/EVCO_a_00141

odNEAT: An Algorithm for Decentralised
Online Evolution of Robotic Controllers

Fernando Silva fsilva@di.fc.ul.pt
Bio-inspired Computation and Intelligent Machines Lab, 1649-026 Lisboa, Portugal
Instituto de Telecomunicações, 1049-001 Lisboa, Portugal
LabMAg, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

Paulo Urbano pub@di.fc.ul.pt
LabMAg, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

Luı́s Correia luis.correia@ciencias.ulisboa.pt
LabMAg, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

Anders Lyhne Christensen anders.christensen@iscte.pt
Bio-inspired Computation and Intelligent Machines Lab, 1649-026 Lisboa, Portugal
Instituto de Telecomunicações, 1049-001 Lisboa, Portugal
Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa, Portugal

Abstract
Online evolution gives robots the capacity to learn new tasks and to adapt to chang-
ing environmental conditions during task execution. Previous approaches to online
evolution of neural controllers are typically limited to the optimisation of weights in
networks with a pre-specified, fixed topology. In this article, we propose a novel ap-
proach to online learning in groups of autonomous robots called odNEAT. odNEAT
is a distributed and decentralised neuroevolution algorithm that evolves both weights
and network topology. We demonstrate odNEAT in three multirobot tasks: aggrega-
tion, integrated navigation and obstacle avoidance, and phototaxis. Results show that
odNEAT approximates the performance of rtNEAT, an efficient centralised method,
and outperforms IM-(µ + 1), a decentralised neuroevolution algorithm. Compared
with rtNEAT and IM-(µ + 1), odNEAT’s evolutionary dynamics lead to the synthesis
of less complex neural controllers with superior generalisation capabilities. We show
that robots executing odNEAT can display a high degree of fault tolerance as they are
able to adapt and learn new behaviours in the presence of faults. We conclude with
a series of ablation studies to analyse the impact of each algorithmic component on
performance.

Keywords
Artificial neural networks, decentralised algorithms, multirobot systems, neurocon-
troller, online evolution.

1 Introduction

Evolutionary computation has been widely studied and applied as a means to au-
tomate the design of robotic systems (Floreano and Keller, 2010). In evolutionary
robotics, controllers are typically based on artificial neural networks (ANNs). The pa-
rameters of the ANNs, such as the connection weights and occasionally the topology,
are optimised by an evolutionary algorithm, a process termed neuroevolution. Neu-

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

roevolution has been successfully applied to tasks in a number of domains, see Yao
(1999) and Floreano et al. (2008) for examples.

In traditional evolutionary approaches, controllers are synthesised offline. When
a suitable neurocontroller is found, it is transferred to real robots. Once deployed,
the controllers are thus specialised to a particular task and environmental conditions.
Even if the controllers are based on adaptive neural models (Beer and Gallagher, 1992;
Harvey et al., 1997), they are fixed solutions and exhibit limited capacity to adapt to
conditions not seen during evolution.

Online evolution is a process of continuous adaptation that potentially gives robots
the capacity to respond to changes and unforeseen circumstances by modifying their
behaviour. An evolutionary algorithm is executed on the robots themselves while they
perform their tasks. The main components of the evolutionary algorithm (evaluation,
selection, and reproduction) are carried out autonomously on the robots without any
external supervision. This way, robots have the potential for long-term self-adaptation
in a completely autonomous manner. The first example of online evolution in a real mo-
bile robot was performed by Floreano and Mondada (1994). A contribution by Watson
et al. (1999, 2002) followed, in which the use of multirobot systems was motivated by
an anticipated speed-up of evolution due to the inherent parallelism in such systems.

Over the last decade, different approaches to online evolution in multirobot sys-
tems have been developed, see for instance Bianco and Nolfi (2004); Bredeche et al.
(2009); Haasdijk et al. (2010); Prieto et al. (2010); Karafotias et al. (2011). Notwithstand-
ing, in such contributions, online approaches have been limited to the evolution of
weighting parameters in fixed-topology ANNs. Fixed-topology methods require the
system designer to decide on a suitable topology for a given task, which usually in-
volves intensive experimentation. A non-optimal topology affects the evolutionary
process and, consequently, the potential for adaptation.

In this article, we present a novel algorithm for online evolution of ANN-based
controllers in multirobot systems called Online Distributed NeuroEvolution of Aug-
menting Topologies (odNEAT). odNEAT is completely decentralised and can be dis-
tributed across multiple robots. odNEAT is characterised by maintaining genetic diver-
sity, protecting topological innovations, keeping track of poor solutions to the current
task in a tabu list, and exploiting the exchange of genetic information between robots
for faster adaptation. Moreover, robots executing odNEAT are flexible and potentially
fault-tolerant, as they can adapt to new environmental conditions and to changes in the
task requirements.

This article offers a comprehensive presentation and analysis of odNEAT, initially
introduced in Silva et al. (2012). To the best of our knowledge, only one other online
method that optimises neural topologies and weights in a decentralised manner has
previously been proposed; the island model-based (µ + 1) algorithm of Schwarzer et al.
(2011), henceforth IM-(µ + 1) — an implementation of the (µ + 1)-online algorithm by
Haasdijk et al. (2010) with ad-hoc transmissions of randomly chosen controllers. In ad-
dition, the real-time NeuroEvolution of Augmenting Topologies (rtNEAT) algorithm
by Stanley et al. (2005), an online version of NeuroEvolution of Augmenting Topolo-
gies (NEAT) (Stanley and Miikkulainen, 2002) designed for video games, is a promi-
nent centralised evolutionary algorithm that has a number of features in common with
odNEAT. The goal of rtNEAT is similar to that of odNEAT in online evolution. rtNEAT
was developed to allow non-player characters to optimise their behaviour during a
game. We experimentally compare the performance of odNEAT with the performance
of rtNEAT and IM-(µ + 1) in three simulation-based experiments involving groups of

2 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

e-puck-like robots (Mondada et al., 2009). The first experiment, the aggregation task,
requires individual search and coordinated movement to form and remain in a sin-
gle group. The task is challenging given the robots’ limited sensing capabilities. The
second experiment, the integrated navigation and obstacle avoidance task, is used as
a means to analyse odNEAT’s behaviour when two conflicting objectives have to be
learned. The task implies an integrated set of actions, and consequently a trade-off
between avoiding obstacles and maintaining speed and forward movement. The third
experiment, the phototaxis task, is performed in a dynamic environment with changing
task parameters. The main conclusion is that odNEAT is an efficient and robust online
neuroevolution algorithm. odNEAT yields performance levels comparable to rtNEAT,
despite being completely decentralised, and odNEAT significantly outperforms IM-
(µ+ 1). We furthermore show that: (i) odNEAT allows robots to continuously adapt to
different environmental conditions and to the presence of faults injected in the sensors,
and that (ii) odNEAT evolves controllers with relatively low complexity and superior
generalisation performance.

The article is organised as follows. In Section 2, we discuss previous studies on on-
line evolution in multirobot systems, and we introduce NEAT, rtNEAT, and IM-(µ+ 1).
In Section 3, we present and motivate the features of odNEAT. In Section 4, we explain
our experimental methodology and the three tasks used in this study. In Section 5, we
present and discuss our experimental results. Section 6 is dedicated to the exploration
and analysis of odNEAT in terms of long-term self-adaptation, fault tolerance, and the
influence of each algorithmic component on performance. Concluding remarks and
directions for future research are provided in Section 7.

2 Background and Related Work

In this section, we review the main approaches in the literature for online evolution of
ANN-based controllers in multirobot systems, and the main characteristics of NEAT,
rtNEAT, and IM-(µ+ 1).

2.1 Online Evolutionary Robotics

Existing approaches to online evolution in multirobot systems fall into three cate-
gories (Eiben et al., 2010a): (i) distributed evolution, (ii) encapsulated evolution, and
(iii) a hybrid approach, similar to a physically distributed island model.

2.1.1 Distributed Evolution
In distributed evolution, each robot carries a single genotype. The evolutionary process
takes place when robots meet and exchange genetic information. The first attempt at
truly autonomous continuous evolution in multirobot systems was performed by Wat-
son et al. (1999, 2002), and entitled embodied evolution. Robots probabilistically broad-
cast a part of their stochastically mutated genome at a rate proportional to their fit-
ness. Robots that receive gene transmissions incorporate this genetic material into their
genome with a probability inversely proportional to their fitness. This way, selection
and variation operators are implemented in a distributed manner through the interac-
tions between robots.

Following Watson et al.’s initial publications on embodied evolution, a number of
improvements and extensions were proposed, see Bianco and Nolfi (2004) and Karafo-
tias et al. (2011) for examples. The distribution of an evolutionary algorithm in a pop-
ulation of autonomous robots offered the first demonstration of evolution as a contin-
uous adaptation process. The main disadvantage of embodied evolution approaches

Evolutionary Computation Volume x, Number x 3

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

is that the improvement of existing solutions is only based on the exchange of genetic
information between robots. In large and open environments, where encounters may
be rare or frequent transmission of information may be infeasible, the evolutionary
process is thus prone to stagnation.

2.1.2 Encapsulated Evolution
A complementary approach, encapsulated evolution, overcomes stagnation as each
robot maintains a population of genotypes stored internally and runs its self-sufficient
instance of the evolutionary algorithm locally. Alternative controllers are executed se-
quentially and their fitness is measured. Within this paradigm, robots adapt individu-
ally without interacting or exchanging genetic material with other robots.

In order to enable efficient encapsulated evolution, Bredeche et al. (2009) proposed
the (1+1)-online algorithm after the classic (1+1)-evolutionary strategy. Montanier and
Bredeche (2011) then extended the (1+1)-online algorithm to incorporate a restart pro-
cedure as a means to bypass local optima. In-between the two studies, Haasdijk et al.
(2010) proposed the (µ + 1)-online algorithm. The algorithm was evaluated for the
ability to address noisy evaluation conditions and to produce solutions within a satis-
factory period of time. With respect to Haasdijk et al.’s algorithm, subsequent studies
examined: (i) distinct self-adaptive mechanisms for controlling the mutation opera-
tor (Eiben et al., 2010b), (ii) racing as a technique to cut short the evaluation of poor
individuals (Haasdijk et al., 2011), and (iii) the impact of a number of parameters on
performance (Haasdijk et al., 2012). Although there has been a number of successive
contributions using encapsulated evolution, the main drawback of the approach is that
there is no transfer of knowledge or exchange of genetic information between robots,
which can accelerate online evolution (Huijsman et al., 2011).

2.1.3 Hybrid Evolution
The two methodologies, encapsulated evolution and distributed evolution, can be com-
bined, leading to a hybrid approach similar to an island model. Each robot optimises
the internal population of genomes through intra-island variation, and genetic infor-
mation between two or more robots is exchanged through inter-island migration.

Distinct approaches to hybrid online evolution have been proposed. An example
of such a method is the one introduced by Elfwing et al. (2005), in which task-oriented
and survival-oriented criteria are combined. In the approach, robots evaluate their in-
ternal population of solutions in a time-sharing manner. During the evaluation period,
the performance of a controller is assessed based on its ability to solve the task and to
sustain the robot’s energy reserve by finding and replacing battery packs.

With the purpose of enabling online self-organisation of behaviour in multirobot
systems, Prieto et al. (2010) proposed the real-time Asynchronous Situated Coevolution
(r-ASiCo) algorithm. r-ASiCo is based on a reproduction mechanism in which individ-
ual robots carry an embryo. When robots meet, the embryo is genetically modified. If
a controller is unable to solve the task, the embryo is used to produce a new controller.
Huijsman et al. (2011) introduced an approach based on the encapsulated (µ + 1)-
online algorithm, and on a peer-to-peer evolutionary algorithm designed by Laredo
et al. (2010). The hybrid method consistently yielded a better performance than both
pure distributed evolution and pure encapsulated evolution, due to its ability to lever-
age parallelism in multirobot systems. Despite the new approaches and algorithmic
advances, one of the main limitations of existing approaches to online evolution, in-
cluding all methods described above, is that neuroevolution solely adjusts the weights
of the ANN, while the topology must be specified a priori by the experimenter and

4 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

remains fixed during task execution.

2.2 NeuroEvolution of Augmenting Topologies

The NeuroEvolution of Augmenting Topologies (NEAT) method (Stanley and Miikku-
lainen, 2002) is one of the most prominent offline neuroevolution algorithms. NEAT
optimises both network topologies and weighting parameters. NEAT executes with
global and centralised information like canonical evolutionary algorithms, and has
been successfully applied to distinct problems, outperforming several methods that use
fixed-topologies (Stanley and Miikkulainen, 2002; Stanley, 2004). The high performance
of NEAT is due to three key features: (i) the tracking of genes with historical markers to
enable meaningful crossover between networks with different topologies, (ii) a nich-
ing scheme that protects topological innovations, and (iii) the incremental evolution of
topologies from simple initial structures, i.e., complexification.

In NEAT, the network connectivity is represented through a flexible genetic en-
coding. Each genome contains a list of neuron genes and a list of connection genes.
Connection genes encompass: (i) references to the two neuron genes being connected,
(ii) the weight of the connection gene, (iii) one bit indicating if the connection gene
should be expressed or not, and (iv) a global innovation number, unique for each gene
in the population. Innovation numbers are assigned sequentially, and they therefore
represent a chronology of the genes introduced. Genes that express the same feature
are called matching genes. Genes that do not match are either disjoint or excess, depend-
ing on whether they occur within or outside the range of the other parent’s innovation
numbers. When crossover is performed, matching genes are aligned. The NP-hard
problem of matching distinct network topologies is thus avoided and crossover can be
performed without a priori topological analysis. In terms of mutations, NEAT allows
for classic connection weight and neuron bias perturbations, and structural changes
that lead to the insertion of either a new connection between two previously uncon-
nected neurons, or a new neuron. A new neuron gene, representing the new neuron
in the ANN, is introduced in the genome by splitting an old connection gene into two
new connection genes.

NEAT protects new structural innovations by reducing competition between
genomes representing differing structures and network complexities. The niching
scheme is composed of speciation and fitness sharing. Speciation divides the popula-
tion into non-overlapping sets of similar genomes based on the amount of evolutionary
history they share. Explicit fitness sharing dictates that individuals in the same species
share the fitness of their niche. The fitness scores of members of a species are first ad-
justed, i.e., divided by the number of individuals in the species. Species then grow or
shrink in size depending on whether their average adjusted fitness is above or below
the population average. Since the size of the species is taken into account in the compu-
tation of the adjusted fitness, new smaller species are not discarded prematurely, and
one species does not dominate the entire population.

NEAT starts with a population of simple networks with no hidden neurons. New
neurons and new connections are then progressively added to the networks as a re-
sult of structural mutations. Because NEAT speciates the population, the algorithm
effectively maintains a variety of networks with different structures and different com-
plexities over the course of evolution. In this way, NEAT can search for an appropriate
degree of complexity to the current task.

Evolutionary Computation Volume x, Number x 5

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

2.3 rtNEAT: Real-time NEAT

Real-time NeuroEvolution of Augmenting Topologies (rtNEAT) was introduced
by Stanley et al. (2005) with the purpose of evolving ANNs online. rtNEAT is a cen-
tralised real-time version of NEAT originally designed for video games. Compared
with NEAT, rtNEAT differs in a number of aspects, namely: (i) rtNEAT is a steady-
state algorithm, while NEAT is generational, (ii) rtNEAT produces one offspring at
regular intervals, every n time steps, and (iii) unlike NEAT, in which the number of
species may vary, rtNEAT attempts to keep the number of species constant. To that
end, rtNEAT adjusts a threshold Ct that determines the degree of topological similarity
necessary for individuals to belong to a species. When there are too many species, Ct

is increased to make species more inclusive; when there are too few, Ct is decreased to
make species less inclusive. Despite these differences, rtNEAT has shown to preserve
the dynamics of NEAT, namely complexification and protection of innovation through
speciation (Stanley et al., 2005).

Even though rtNEAT only creates one offspring at a time, it approximates NEAT’s
behaviour, in which a number of offspring nk is assigned to each species. In rtNEAT, a
parent species Sk is chosen proportionally to its average adjusted fitness, as follows:

Pr(Sk) =
F k

F total

(1)

where F k is the average adjusted fitness of species k, and F total is the sum of all species’
average adjusted fitness. As a result, the expected number of offspring for each species
in rtNEAT is, over time, proportional to nk in traditional NEAT. The remaining process
of reproduction is similar to NEAT’s: two parents are chosen, and crossover and mu-
tation operators are applied probabilistically. The individual with the lowest adjusted
fitness is then removed from the population and replaced with the new offspring.

Similarly to rtNEAT, odNEAT is based on steady-state dynamics. We therefore
use rtNEAT instead of the original, generational NEAT for comparisons of features and
performance in the remainder of the article.

2.4 IM-(µ+ 1) algorithm

To the best of our knowledge, only one method has previously been pro-
posed (Schwarzer et al., 2011) that optimises both the weighting parameters and the
topology of ANN-based controllers according to a physically distributed island model.
The algorithm is a variant of the (µ + 1)-online algorithm, proposed by Haasdijk et al.
(2010), with random ad-hoc exchange of genomes between robots. We henceforth refer
to this method as IM-(µ+ 1). We first describe the similarities between IM-(µ+ 1) and
rtNEAT, and then the execution loop of IM-(µ+ 1).

The IM-(µ + 1) algorithm mimics a number of features of rtNEAT. Firstly, new
genes are assigned innovation numbers. An important difference with respect to rt-
NEAT is that in IM-(µ + 1), innovation numbers are local and randomly chosen from
a predefined interval to enable a decentralised implementation. The interval [1, 1000]
was used in Schwarzer et al. (2011). Secondly, as in rtNEAT, crossover is performed
between similar genomes to maximise the chance of producing meaningful offspring.
Explicit speciation is not used in IM-(µ+ 1). Instead, genomes that have a high degree
of genetic similarity are recombined. Genetic similarity is computed based on the ratios
of matching connection genes and matching neuron genes.

Thirdly, IM-(µ + 1) follows rtNEAT’s complexification policy and usually starts
evolution from simple topologies, although it can be seeded with a parametrisable

6 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

number of hidden neurons (Schwarzer et al., 2011). IM-(µ+1) allows for non-structural
mutations similarly to rtNEAT, namely connection weight and neuron bias perturba-
tions, but it employs different methods for optimising the topology of the ANN. Struc-
tural mutation of a connection gene can either remove the gene or introduce a new
connection gene in a random location and with a randomly assigned weight. In the
same way, structural mutation of a neuron gene can either delete the gene or produce
a new neuron gene with a random innovation number and a random bias value. In ad-
dition, insertion of new neuron genes and connection genes can be performed through
duplication and differentiation of an existing neuron gene, and of its incoming and
outgoing connection genes.

2.4.1 Execution Loop
In the IM-(µ+ 1) algorithm, as in the encapsulated (µ+ 1)-online, each robot maintains
an internal population of µ genomes. Robots in close proximity can exchange genomes
according to a migration policy that presupposes bilateral and synchronous commu-
nication. When two robots meet, they exchange genomes if none of them has had a
migration within a predefined period of time. Each robot randomly selects and re-
moves one genome from its internal population, and probabilistically applies crossover
and mutation. The resulting genome is transmitted to the neighbouring robot, and the
genome received is incorporated in the internal population.

During task execution, λ = 1 new offspring is produced at regular time intervals.
One genome from the population of µ genomes maintained by the robot is randomly
selected to be a parent. A second parent is used if there is any genome in the popu-
lation considered genetically similar. The offspring resulting from crossover and mu-
tation is decoded into an ANN that controls the robot. The controller operates for a
fixed amount time called the evaluation period. When the evaluation period elapses, the
evaluated genome is added to the population of the robot. The genome with the lowest
fitness score is subsequently removed to keep the population size constant.

3 odNEAT

In this section, we present Online Distributed NeuroEvolution of Augmenting Topolo-
gies (odNEAT), an online neuroevolution algorithm for multirobot systems, in which
both the weighting parameters and the topology of the ANNs are under evolutionary
control. One of the motivations behind odNEAT is that, by evolving neural topologies,
the algorithm bypasses the inherent limitations of fixed-topology online algorithms.
As in rtNEAT, odNEAT starts with simple controllers, in which the input neurons are
connected to the output neurons. The ANNs are progressively augmented with new
neurons and new connections, and a suitable network topology is the product of a
continuous evolutionary process. In addition, odNEAT is distributed across multiple
robots that evolve in parallel and exchange solutions.

odNEAT adopts rtNEAT’s matching and recombination of neural topologies, and
niching scheme, and presents a number of differences when compared with IM-(µ+1).
The differences between the three algorithms are summarised in Table 1. odNEAT
differs from rtNEAT and IM-(µ + 1) in a number of key aspects, the most significant
being:

• The internal population of each robot is constructed in an incremental manner.

• odNEAT maintains a local tabu list of recent poor solutions, which enables a robot
to filter out genomes representing controllers similar to those that failed recently.

Evolutionary Computation Volume x, Number x 7

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

• odNEAT follows a unilateral migration policy for the exchange of genomes be-
tween robots. Copies of the genome encoding the active controller are probabilis-
tically transmitted to nearby robots if they have a competitive fitness score and
represent topological innovations with respect to the robot’s internal population
of solutions.

• odNEAT uses local, high-resolution timestamps. Each robot is responsible for as-
signing a timestamp to each local innovation, be it a new connection gene or a new
neuron gene. The use of high-resolution timestamps for labels practically guaran-
tees uniqueness and allows odNEAT to retain the concept of chronology.

• A controller remains active as long as it is able to solve the task. A new controller
is only synthesised if the current one fails, i.e., when it is actually necessary.

• New controllers are given a minimum amount of time controlling the robot, a mat-
uration period.

Table 1: Summary of the main differences between odNEAT, rtNEAT, and IM-(µ+ 1)

odNEAT rtNEAT IM-(µ+ 1)
Population Distributed Centralised Distributed
Niching scheme Yes Yes No
Tabu list Yes No No
Migration policy Unilateral n/a Synchronous
Innovation numbers High-res. timestamps Sequential Random
Controller replacement When previous fails Periodically Periodically
Maturation period Yes No No

3.1 Measuring Individual Performance

In odNEAT, robots maintain a virtual energy level reflecting the individual task per-
formance of the current controller. Controllers are assigned a default and domain-
dependent virtual energy level when they start executing. The energy level increases
and decreases as a result of the robot’s behaviour. If a controller’s energy level reaches
a minimum threshold, a new controller is produced.

One common issue, especially for highly complex tasks, is that online evaluation
is inherently noisy. Very dissimilar conditions may be presented to different genomes
when they are translated into a controller and evaluated. The location of a robot within
the environment and the proximity to other robots, for instance, are factors that may
have a significant influence on performance and behaviour. With the purpose of obtain-
ing a more reliable fitness estimate, odNEAT distinguishes between the fitness score of
a solution and its current energy level. The fitness score is defined as the average of the
virtual energy level, sampled at regular time intervals.

3.2 Internal Population, Exchange of Genomes, and Tabu List

In odNEAT, each robot maintains a local set of genomes in an internal population. The
internal population is subject to speciation and fitness sharing. The population contains
genomes generated by the robot, namely the current genome and previously active
genomes that have competitive fitness scores, and genomes received from other robots.
Every control cycle, a robot probabilistically broadcasts a copy of its active genome and

8 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

the corresponding virtual energy level to robots in its immediate neighbourhood, an
inter-robot reproduction event, with a probability computed as follows:

P (event) =
F k

F total

(2)

where F k is the average adjusted fitness of local species k to which the genome belongs
and F total is the sum of all local species’ average adjusted fitnesses. The broadcast
probability promotes the propagation of topological innovations with a competitive
fitness.

The internal population of each robot is updated according to two principles.
Firstly, a robot’s population does not allow for multiple copies of the same genome.
Due to the exchange of genetic information between the robots, a robot may receive a
copy of a genome that is already present in its population. Whenever a robot receives
a copy C’ of a genome C, the energy level of C’ is used to incrementally average the
fitness of C, and thus to provide the receiving robot with a more reliable estimate of the
genome’s fitness. Secondly, whenever the internal population is full, the insertion of a
new genome is accompanied by the removal of the genome with the lowest adjusted
fitness score. If a genome is removed or added, the corresponding species has either
increased or decreased in size, and the adjusted fitness of the species is recalculated.

Besides the internal population, each robot also maintains a local tabu list, a short-
term memory which keeps track of recent poor solutions, namely: (i) genomes removed
from the internal population because it got full, or (ii) genomes whose virtual energy
level reached the minimum threshold, and therefore failed to solve the task. In the latter
case, the genome is added to the tabu list but it is maintained in the internal population
as long as its fitness is comparatively competitive.

The tabu list filters out solutions broadcast by other robots that are similar to those
that have already failed. The purpose of the tabu list is: (i) to avoid flooding the internal
population with poor solutions, and (ii) to keep the evolutionary process from cycling
around in an unfruitful neighbourhood of the solution space. Received genomes must
first be checked against the tabu list before they become part of the internal population.
Received genomes are only included in the internal population if they are topologically
dissimilar from all genomes in the tabu list.

3.3 New Genomes and the Maturation Period

When the virtual energy level of a controller reaches the minimum threshold, because
it is incapable of solving the task, a new genome is created. In this process, an intra-
robot reproduction event, a parent species is chosen proportionally to its average adjusted
fitness, as defined in (2). Two parents are selected from the species, each one via a tour-
nament selection of size 2. The offspring is created based on crossover of the parents’
genomes and mutation of the new genome. Once the new genome is decoded into
a new controller, it is guaranteed a maturation period during which no controller re-
placement takes place. The new controller can continue to execute after the maturation
period if its energy level is above the threshold.

odNEAT’s maturation period is conceptually similar to the recovery period of the
(1 + 1)-online algorithm (Bredeche et al., 2009), and its purpose is twofold. Firstly, the
maturation period is important because the new controller may be an acceptable so-
lution to the task but the environmental conditions in which it starts to execute may
be unfavourable. Thus, the new controller is protected for a minimum period of time.

Evolutionary Computation Volume x, Number x 9

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

Secondly, the maturation period defines a lower bound of activity in the environment
that should be sufficiently long to enable a proper estimate of the quality of the con-
troller. This implies a trade-off between a minimum evaluation time and how many
candidate solutions can be evaluated within a given amount of time. A longer matu-
ration period increases the reliability of the fitness estimate of solutions that fail, i.e.,
of the stepping stones of the evolutionary process, while a shorter maturation period
increases the number of solutions that can be evaluated within a given period of time.
In Algorithm 1, we summarise odNEAT as executed by each robot.

Algorithm 1 Pseudo-code of odNEAT that runs independently on every robot. The ex-
perimental parameters of odNEAT and the robot capabilities are detailed in Section 4.1

genome← create random genome()
controller ← assign as controller(genome)
energy ← default initial energy
loop

if broadcast? then
send(genome, robots in communication range)

end if
if has received? then

for all c in received genomes do
if tabu list approves(c) and population accepts(c) then

add to population(c)
adjust population size()
adjust species fitness()

end if
end for

end if
operate in environment()
energy ← update energy level()
if energy ≤ minimum energy threshold and not(in maturation period?) then

add to tabu list(genome)
offspring ← generate offspring()
update population(offspring)
genome← replace genome(offspring)
controller ← assign as controller(genome)
energy ← default initial energy

end if
end loop

4 Experimental Methodology

In this section, we define our experimental methodology, including the simulation plat-
form and robot model, and we describe the three tasks used in the study: aggregation,
phototaxis, and integrated navigation and obstacle avoidance. Our experiments serve
as a means to determine if and how odNEAT evolves controllers for solving the spec-
ified tasks, the complexity of solutions evolved, and the efficiency of odNEAT when
compared with rtNEAT and IM-(µ+ 1).

4.1 Experimental Setup

We use JBotEvolver (Duarte et al., 2014) to conduct our simulated experiments. JBotE-
volver is an open-source, multirobot simulation platform, and neuroevolution frame-
work. The simulator is written in Java and implements 2D differential drive kinematics.

10 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

In our experimental setup, the simulated robots are modelled after the e-
puck (Mondada et al., 2009), a 7.5 cm in diameter differential drive robot capable of
moving at speeds up to 13 cm/s. Each robot is equipped with infrared sensors that
multiplex obstacle sensing and communication between robots at a range of up to
25 cm.1 The sensors of the robots are used in the three tasks to detect walls and other
robots. In real e-pucks, the wall sensors can be implemented with active infrared sen-
sors, while the robot sensors can be implemented using the e-puck range & bearing
board (Gutiérrez et al., 2008). In the phototaxis task, robots are also given the ability to
detect the light source, which can be provided by the fly-vision turret or by the omni-
directional vision turret.2 Each sensor and each actuator are subject to noise, which is
simulated by adding a random Gaussian component within ±5% of the sensor satura-
tion value or actuation value. Each robot also has an internal sensor that enables it to
perceive its current virtual energy level.

Each robot is controlled by an ANN produced by the evolutionary algorithm be-
ing tested. The controllers are discrete-time recurrent neural networks with connec-
tion weights ∈ [−10, 10]. The inputs of the ANN are the normalised readings ∈ [0, 1]
from the sensors mentioned above. The output layer has two neurons, whose values
are linearly scaled from [0, 1] to [−1, 1]. The scaled output values are used to set the
signed speed of each wheel (positive in one direction, negative in the other). The acti-
vation function is the logistic function. The three algorithms start with simple networks
with no hidden nodes, and with each input neuron connected to every output neuron.
Evolution is therefore responsible for adding new neurons and new connections, both
feed-forward and recurrent.

A group of five robots operates in a square arena surrounded by walls. The size
of the arena was chosen to be 3 x 3 meters. Every 100 ms of simulated time, each robot
executes a control cycle. In Table 2, we summarise the characteristics common to the
three tasks. Regarding the configuration of the evolutionary algorithms, the parame-
ters are the same for odNEAT, rtNEAT, and IM-(µ+ 1): crossover rate - 0.25, mutation
rate - 0.1, add neuron rate - 0.03, add connection rate - 0.05, and weight mutation mag-
nitude - 0.5. The parameters were found experimentally: new connections have to be
added more frequently than new neurons, and evolution tends to perform better if
neural networks are recombined and augmented in a parsimonious manner. odNEAT
is configured with a maturation period of 5 control cycles (50 seconds). Preliminary
experiments showed this parameter value to provide an appropriate trade-off between
the reliability of fitness estimates and the speed of convergence towards good solu-
tions. A previously found to be poor solution is removed from the tabu list if a similar
genome is not among the last 50 genomes received by the robot. Performance is robust
to moderate variations in the parameters.

4.2 Preliminary Performance Tuning

We conducted a series of preliminary tests across all three tasks as a means to analyse
the algorithms’ dynamics. Firstly, we tested both odNEAT and rtNEAT with: (i) a
dynamic compatibility threshold and a target number of species from 1 to 10, and (ii) a
fixed compatibility threshold δ = 3.0 for speciating the population, with corresponding
coefficients set as in previous studies using NEAT (Stanley and Miikkulainen, 2002;

1The original e-puck infrared range is 2-3 cm (Mondada et al., 2009). In real e-pucks, the liblrcom library,
available at http://www.e-puck.org, extends the range up to 25 cm and multiplexes infrared communi-
cation with proximity sensing.

2See the Extensions section at http://www.e-puck.org/.

Evolutionary Computation Volume x, Number x 11

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

Table 2: Summary of the experimental details

Group size 5 robots
Broadcast range 25 cm
Control cycle frequency 100 ms
Arena size 3 x 3 meters
Simulation length 100 hours
Runs per configuration 30
odNEAT population size 40 genomes per internal population
IM-(µ+ 1) population size 40 genomes per internal population
rtNEAT population size 200 genomes
Neural network weight range [-10, 10]
Inputs range [0,1]
Outputs range [0,1], rescaled to [-1, 1]
Activation function Logistic function

Stanley, 2004). Results were found to be similar, and we therefore decided to use a
fixed compatibility threshold.

Secondly, we verified that the periodic production of new controllers in rtNEAT
and in IM-(µ + 1) led to incongruous group behaviour. Regular substitution of con-
trollers caused the algorithms to perform poorly in collective tasks that explicitly re-
quired continuous group coordination and cooperation, such as the aggregation task.
In IM-(µ + 1), ruptures of collective behaviour were caused by having every robot
changing to a new controller at the same time. In rtNEAT, rupture of collective be-
haviour was still significant but less accentuated, as only one controller was substituted
at regular time intervals. We compared the average fitness score of consecutive groups
of controllers executed on the robots. In the majority of the substitutions, the perfor-
mance of new controllers was worse than the performance of the previous ones. In
these cases, differences in the fitness scores were statistically significant in the aggre-
gation task for rtNEAT and for IM-(µ + 1) (ρ < 0.01, Mann-Whitney test), and in the
phototaxis task for IM-(µ+ 1) (ρ < 0.05).

To provide a fair and meaningful comparison of performance, we modified the
condition for creating new offspring. rtNEAT and IM-(µ + 1) were modified to pro-
duce offspring when a robot’s energy level reaches the minimum threshold (zero in
our experiments), i.e., when a new controller is necessary. In the IM-(µ+ 1) algorithm,
we also observed collisions in the assignment of innovation numbers. To reduce the
chance of collisions, we replaced the random assignment of innovation numbers by
high-resolution timestamps, as in odNEAT. We verified that the modified versions of
rtNEAT and IM-(µ + 1) consistently outperformed their original, non-modified coun-
terparts by evolving final solutions with higher fitness scores (ρ < 0.05, Mann-Whitney,
in the aggregation and phototaxis tasks), and that were found in fewer evaluations on
average.

4.3 Aggregation

In an aggregation task, dispersed agents must move close to one another so that they
form a single cluster. Aggregation plays an important role in a number of biological
systems (Camazine et al., 2001). For instance, several social animals use aggregation
to increase their chances of survival, or as a precursor of other collective behaviours.

12 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

We study aggregation because it combines different aspects of multirobot tasks, namely
distributed individual search, coordinated movement, and cooperation. Aggregation is
also related to a number of real-world problems. For instance, in robotics, self-assembly
and collective transport of heavy objects require aggregation at the site of interest (Groß
and Dorigo, 2009).

In the initial configuration, robots are placed in random positions at a minimum
distance of 1.5 meters between neighbours. Robots are evaluated based on a set of
criteria that include the presence of robots nearby, and the ability to explore the arena
and move fast. The initial virtual energy level of each controller E is set to 1000 and
limited to the range [0, 2000] units. At each control cycle, E is updated according to the
following equation:

∆E

∆t
= α(t) + γ(t) (3)

where t is the current control cycle, and α(t) is a reward proportional to the number n of
different genomes received in the last P = 10 control cycles. In our experiments, we use
α(t) = 3 · n energy units. As robots executing odNEAT exchange candidate solutions
to the task, the number of different genomes received is used to estimate the number
of robots nearby. The second component of the equation, γ(t), is a factor related to the
quality of movement computed as:

γ(t) =

{
-1 if vl(t) · vr(t) < 0

Ωs(t) · ωs(t) otherwise
(4)

where vl(t) and vr(t) are the left and right wheel speeds, Ωs(t) is the ratio between the
average and maximum speed, and ωs(t) =

√
vl(t) · vr(t) rewards controllers that move

fast and straight at each control cycle. Robot and controller details are summarised in
Table 3. To determine when robots have aggregated, we sample the number of robot
clusters at regular intervals throughout the simulation as in Bahgeçi and Sahin (2005).
Two robots are part of the same cluster if the distance between them is less than or
equal to their sensor range (25 cm).

Table 3: Aggregation controller details

Input neurons: 18

8 for IR robot detection (range: 25 cm)

8 for IR wall detection (range: 25 cm)

1 for energy level reading

1 for reading the number of different genomes received

in the last P = 10 control cycles

Output neurons: 2 Left and right motor speeds

4.4 Integrated Navigation and Obstacle Avoidance

Navigation and obstacle avoidance is a classic task in evolutionary robotics. Robots
have to simultaneously move as straight as possible, maximise wheel speed, and avoid

Evolutionary Computation Volume x, Number x 13

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

obstacles. The task is typically studied using only one robot. In multirobot experi-
ments, each robot poses as an additional, moving obstacle for the other robots. In a
confined environment, such as our enclosed arena, this task implies an integrated set
of actions, and consequently a trade-off between avoiding obstacles in sensor range and
maintaining speed and forward movement. We study navigation and obstacle avoid-
ance because it is an essential feature for autonomous robots operating in real-world
environments, and because it provides the basis to more sophisticated behaviours such
as path planning or traffic rules (Cao et al., 1997).

Initially, robots are placed in random locations and with random orientations,
drawn from a uniform distribution. The virtual energy level E is limited to the range
∈ [0, 100] units. When the energy level reaches zero, a new controller is generated and
assigned the default energy value of 50 units. During task execution, E is updated ev-
ery 100 ms according to the following equation, adapted from Floreano and Mondada
(1994):

∆E

∆t
= fnorm(V · (1−

√
∆v) · (1− dr) · (1− dw)) (5)

where V is the sum of rotation speeds of the two wheels, with 0 ≤ V ≤ 1. ∆v ∈ [0, 1]
is the normalised absolute value of the algebraic difference between the signed speed
values of the wheels. dr and dw are the highest activation values of the infrared sensors
for robot detection and for wall detection, respectively. dr and dw are normalised to a
value between 0 (no robot/wall in sight) and 1 (collision with a robot or wall).

The four components encourage respectively, motion, straight line displacement,
robot avoidance, and wall avoidance. The function fnorm maps linearly from the do-
main [0, 1] into [−1, 1]. Robot and controller details are summarised in Table 4.

Table 4: Navigation and obstacle avoidance controller details

Input neurons: 17

8 for IR robot detection (range: 25 cm)

8 for IR wall detection (range: 25 cm)

1 for energy level reading

Output neurons: 2 Left and right motor speeds

4.5 Phototaxis

In a phototaxis task, robots have to search and move towards a light source. We use
a dynamic version of the phototaxis task. Every five minutes of simulated time, the
light source is moved instantaneously to a new random location. In this way, robots
have to continuously search for and reach the light source, which eliminates behaviours
that find the light source by chance. As in the navigation task, robots start at random
locations and with random orientations drawn from a uniform distribution. The virtual
energy level E ∈ [0, 100] units, and controllers are assigned an initial value of 50 units.
At each control cycle, the robot’s virtual energy level E is updated as follows:

14 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

∆E

∆t
=

Sr if Sr > 0.5

0 if 0 < Sr ≤ 0.5

-0.01 if Sr = 0

(6)

where Sr is the maximum value of the readings from light sensors, between 0 (no light)
and 1 (brightest light). Light sensors have a range of 50 cm and robots are therefore
only rewarded if they are close to the light source. Remaining IR sensors detect nearby
walls and robots within a range of 25 cm. Details are summarised in Table 5.

Table 5: Phototaxis controller details

Input neurons: 25

8 for IR robot detection (range: 25 cm)

8 for IR wall detection (range: 25 cm)

8 for light source detection (range: 50 cm)

1 for energy level reading

Output neurons: 2 Left and right motor speeds

5 Results

In this section, we present and discuss the experimental results. We compare the per-
formance of odNEAT with the performance of rtNEAT and of IM-(µ + 1) in the three
tasks. We analyse: (i) the number of evaluations, i.e., the number of controllers tested
by each robot before one that solves the task is found, (ii) the task performance in terms
of fitness score, (iii) the complexity of solutions evolved, and (iv) their generalisation
capabilities. The number of evaluations is measured because it is independent of the
potentially different evaluation times used by the algorithms and thus ensures a mean-
ingful comparison. We use the two-tailed Mann-Whitney test to compute statistical sig-
nificance of differences between sets of results because it is a non-parametric test, and
therefore no strong assumptions need to be made about the underlying distributions.
Success rates are compared using the two-tailed Fisher’s exact test, a non-parametric
test suitable for this purpose (Fisher, 1925).

For each of the three tasks considered and each algorithm evaluated, we conduct
30 independent evolutionary runs. Because multiple comparisons are performed us-
ing the results obtained in each set of 30 runs (number of evaluations, fitness scores,
complexity of solutions evolved, and their generalisation capabilities), we adjust the
ρ-value using the two-stage Hommel method (Hommel, 1988), a more powerful and
less conservative modification of the classic Bonferroni correction method (Blakesley,
2008).

5.1 Comparing odNEAT and rtNEAT

We start by comparing the performance of odNEAT and rtNEAT to evaluate the quality
of our algorithm with respect to a centralised state-of-the-art neuroevolution method.
Table 6 summarises the number of evaluations and fitness scores of controllers that
solve the task for both odNEAT and rtNEAT. In terms of evaluations, results show com-
parable performance even though there is a slight advantage in favour of rtNEAT. On

Evolutionary Computation Volume x, Number x 15

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

average, odNEAT requires each robot to evaluate approximately 6 to 8 controllers more
than rtNEAT. Differences in the number of evaluations are not statistically significant
(ρ ≥ 0.05, Mann-Whitney).

With respect to the fitness scores, both odNEAT and rtNEAT typically evolve high
performing controllers as summarised in Table 6.3 In two of the three tasks assessed,
odNEAT tends to outperform rtNEAT. In the aggregation task and in the navigation
task, odNEAT produces superiorly performing controllers (ρ < 0.05, Mann-Whitney).
In the phototaxis task, rtNEAT evolves superior controllers (ρ < 0.05, Mann-Whitney).

Table 6: Comparison of the number of evaluations and of the fitness scores of solutions
to the task (out of 100) between odNEAT and rtNEAT. Values listed are the avg. ± std.
dev. over 30 independent runs for each experimental configuration

Task Method Number of evaluations Fitness score

Aggregation
odNEAT 103.7 ± 80.9 89.2 ± 4.8

rtNEAT 95.5 ± 60.4 83.4 ± 11.9

Navigation
odNEAT 23.6 ± 19.2 93.0 ± 9.2

rtNEAT 17.6 ± 11.1 89.9 ± 11.4

Phototaxis
odNEAT 40.9 ± 24.1 85.7 ± 6.4

rtNEAT 34.8 ± 16.3 89.6 ± 6.3

odNEAT differs from rtNEAT in the sense that it has a distributed and decen-
tralised nature, and therefore does not assess the group-level information from the
global perspective. To unveil the evolutionary dynamics of the two algorithms, we
first analyse the stepping stones that lead to the final solutions, i.e., how the evolu-
tionary search proceeds through the high-dimensional genotypic search space for the
respective algorithms. A number of methods have been proposed to perform such
analysis (Kim and Moon, 2003; Vassilev et al., 2000), and they are mainly based on
visualisations of the structure of fitness landscapes or the fitness score of the best indi-
viduals over time. To visualise the intermediate genomes produced by odNEAT and
rtNEAT, and how the algorithms traverse the search space with respect to each other, we
use Sammon’s nonlinear mapping (Sammon Jr., 1969). Contrarily to visualisation and di-
mensionality reduction techniques such as Principal Components Analysis (Kittler and
Young, 1973), and Self-organising Maps (Kohonen, 1982), Sammon’s mapping aims to
preserve the original distances between elements in the mapping to a lower dimension.

Sammon’s mapping performs a point mapping of high-dimensional data to two-
or three-dimensional spaces, such that the structure of the data is approximately pre-
served. The algorithm minimises the error measure Em, which represents the disparity
between the high-dimensional distances δij and the resulting distance dij in the lower
dimension for all pairs of points i and j. Em can be minimised by a steepest descent
procedure to search for a minimum error value, and it is computed as follows:

Em =
1∑n−1

i=1

∑n
j=i+1 δij

n−1∑
i=1

n∑
j=i+1

(δij − dij)2

δij
(7)

3The fitness scores for the aggregation task shown in Table 6 are linearly mapped from [0, 2000] to [0, 100],
which is the range of the fitness score for the other two tasks.

16 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

Using Sammon’s mapping, we project the genomes representing intermediate con-
trollers tested over the course of evolution by odNEAT and rtNEAT. In order to obtain
a clearer visualisation, we do not map all genomes produced during the course of evo-
lution. Instead, we only map genomes that have a genomic distance δ > 4.5 when
compared with already recorded genomes. This criterion was found experimentally to
ensure that the two-dimensional space has a representative selection of genomes while
being readable. The output of the mapping are x and y coordinates for every genome.
The distance in the high-dimensional space δij between two genomes i and j is based
on genomic distance as used by odNEAT and rtNEAT for speciation. On the other
hand, the distance between two points in the two-dimensional visualisation space is
computed as their Euclidean distance.

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

(a) Aggregation

odNEAT
rtNEAT

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6 odNEAT

rtNEAT

(b) Navigation and obstacle avoidance

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6 odNEAT

rtNEAT

(c) Phototaxis

Figure 1: Sammon’s mapping. (a) Aggregation task. Sammon’s mapping of 103
genotypes evolved by odNEAT (black) and 95 genotypes evolved by rtNEAT (gray).
(b) Navigation and obstacle avoidance task. Sammon’s mapping of 72 genotypes
evolved by odNEAT (black) and 91 genotypes evolved by rtNEAT (gray). (c) Photo-
taxis task. Sammon’s mapping of 21 genotypes evolved by odNEAT (black) and 39
genotypes evolved by rtNEAT (gray).

In Figure 1, we show the Sammon’s mapping for the three tasks. The error val-
ues are Em = 0.086 for the aggregation task, Em = 0.075 for the navigation and ob-
stacle avoidance task, and Em = 0.082 for the phototaxis task. The low error values
indicate that the distances between genomes are well-preserved by the mapping. In
the aggregation task, Sammon’s mapping shows a similar exploration of the search
space. odNEAT and rtNEAT explore identical regions in the two-dimensional space,
and evolve a comparable number of genomes matching those regions: 103 evolved by
odNEAT vs. 95 evolved by rtNEAT. On the other hand, in the navigation task, odNEAT
evolves fewer genomes matching the analysed regions of the search space: 72 vs. 91
evolved by rtNEAT. That is, rtNEAT covers more regions of the genotypic search space.

Evolutionary Computation Volume x, Number x 17

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

A similar trend is also observed in the phototaxis task, in which rtNEAT evolves 39
genomes vs. 21 evolved by odNEAT.

Since odNEAT relies exclusively on local information, the evolutionary algorithm
executing on each robot tends to do a more confined exploration of the search space. In
the aggregation task, robots are in close proximity and they therefore continuously ex-
change genomes. In such case, the distributed and decentralised dynamics of odNEAT
resemble, to some extent, the dynamics of a centralised algorithm. Hence, the explo-
ration of the search space performed by odNEAT and rtNEAT is similar, quantitatively
and qualitatively. In the other two tasks, because robots tend to be further apart, there
is typically more pressure to evolve solutions by using the information available in the
population of each individual robot.

5.1.1 Neural Complexity and Generalisation Performance
To the best of our knowledge, there is no general metric for ANN complexity. We use
the effective number of parameters in each network, Cfp, which is defined as the sum
of the number of connections and the number of neurons. This measure of complexity
is used in a number of heuristics for the back-propagation algorithm to determine, for
instance, a suitable size for the training set (Haykin, 1999). Table 7 lists the complexity
reached by each evolutionary method in the final successful solutions. odNEAT’s evo-
lutionary dynamics also lead to the synthesis of simpler solutions than in rtNEAT, both
in terms of neurons and connections added through evolution. Differences in the neu-
ral complexity of evolved solutions are significant in all experimental configurations
(ρ < 0.01, Mann-Whitney).

Table 7: Summary of the neural complexity added through evolution from the initial
topology by odNEAT and rtNEAT. Connections added and neurons added refer to the
avg. ± std. dev. over 30 independent runs for each experimental configuration

Task Method Connections added Neurons added Avg. Cfp

Aggregation
odNEAT 6.3 ± 5.6 5.5 ± 5.0 11.8

rtNEAT 11.3 ± 11.1 9.3 ± 8.9 20.6

Navigation
odNEAT 6.6 ± 0.9 3.1 ± 0.3 9.7

rtNEAT 10.0 ± 1.4 4.9 ± 0.7 14.9

Phototaxis
odNEAT 2.3 ± 0.7 1.1 ± 0.3 3.4

rtNEAT 5.4 ± 1.9 2.5 ± 0.9 7.9

In artificial neural network training, it has been shown that, among a set of solu-
tions for a given task, less complex networks tend to have better generalisation per-
formance (Schmidhuber, 1997). To compare the generalisation capabilities of odNEAT
and rtNEAT, we restart each task 100 times per original evolutionary run. In the task
restarts, each robot maintains its controller and further evolution is not allowed. Task
restarts are generalisation tests that enable us to assess if robots can continuously oper-
ate after several redeployments. The generalisation tests involve both the flexibility to
solve the task starting from different initial conditions, and the ability to operate in con-
ditions potentially not experienced during the evolutionary phase. A group of robots
passes the generalisation test if it continues to solve the task, i.e., if the virtual energy
level of any of the robots in the group does not reach zero (see Sections 4.3, 4.4, and
4.5). Each generalisation test has a maximum duration of 100 hours of simulated time.

18 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

Table 8: Generalisation performance of controllers evolved by odNEAT and rtNEAT
in the three tasks. The generalisation performance refers to the avg. ± std. dev. of the
success rate for each set of 100 task restarts

Task Method Generalisation performance (%) Successful tests

Aggregation
odNEAT 75.1 ± 32.6 2253/3000

rtNEAT 61.6 ± 32.4 1847/3000

Navigation
odNEAT 73.4 ± 23.3 2202/3000

rtNEAT 69.4 ± 31.9 2082/3000

Phototaxis
odNEAT 60.2 ± 33.5 1806/3000

rtNEAT 62.3 ± 19.0 1870/3000

Table 8 lists the generalisation performance of odNEAT and rtNEAT. In general,
odNEAT presents an interesting capacity to generalise and execute in different condi-
tions. odNEAT outperforms rtNEAT by approximately 13.5 percentage points in the
aggregation task and by 4.0 percentage points in the navigation task, as it successfully
solves 406 and 120 tests more, respectively. Differences in successful generalisation
tests are statistically significant in the two tasks (ρ = 1.8 · 10−15 in the aggregation task,
and ρ = 1 · 10−3 in the navigation task, Fisher’s exact test). In the phototaxis task,
rtNEAT yields better generalisation performance and successfully solves 64 tests more
than odNEAT, which corresponds to approximately 2.1 percentage points. Differences
are considerably smaller than in the other two tasks, and are not statistically significant
(ρ = 0.095, Fisher’s exact test).

Overall, the analysis performed in this section shows that odNEAT yields perfor-
mance levels comparable to those of rtNEAT in terms of the number of evaluations
necessary to evolve solutions, and of the task performance of the final controllers. In
addition, odNEAT consistently evolves controllers with relatively low complexity and
superior generalisation capabilities that can potentially adapt and operate in different
deployment scenarios without further evolution.

5.2 Comparing odNEAT and IM-(µ+ 1)

In this section, we compare the performance of odNEAT and IM-(µ + 1). Experiments
conducted with the IM-(µ+1) algorithm serve as a means to compare odNEAT with an
algorithm with a similar fundamental characteristic: the decentralised online evolution
of neural topologies and weights.

Comparison of performance is shown in Table 9. In the aggregation task, odNEAT
and IM-(µ + 1) evolve solutions to the task at similar rates. Differences in the
number of evaluations between the two algorithms are not statistically significant
(ρ ≥ 0.05, Mann-Whitney). In the remaining two tasks, the navigation task and the
phototaxis task, odNEAT significantly outperforms IM-(µ+1) with respect to the num-
ber of evaluations (ρ < 0.001, Mann-Whitney). odNEAT requires approximately 54%
of the evaluations needed by IM-(µ + 1) in the navigation task, and 45% of the eval-
uations in the phototaxis task. Furthermore, odNEAT always evolves controllers that
yield significantly higher fitness scores (ρ < 1 · 10−4, Mann-Whitney).

An analysis of the neural complexity of evolved solutions, shown in Table 10, in-
dicates that ANNs evolved by odNEAT are also less complex than those evolved by

Evolutionary Computation Volume x, Number x 19

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

Table 9: Comparison of the number of evaluations and of the fitness scores of solutions
to the task (out of 100) between odNEAT and IM-(µ+1). Values listed are the avg.± std.
dev. over 30 independent runs for each experimental configuration

Task Method Number of evaluations Fitness score

Aggregation
odNEAT 103.7 ± 80.9 89.2 ± 4.8

IM-(µ+ 1) 100.8 ± 21.9 75.8 ± 10.5

Navigation
odNEAT 23.6 ± 19.2 93.0 ± 9.2

IM-(µ+ 1) 43.6 ± 10.8 89.5 ± 0.4

Phototaxis
odNEAT 40.9 ± 24.1 85.7 ± 6.4

IM-(µ+ 1) 91.0 ± 30.6 77.6 ± 9.9

IM-(µ + 1). Both algorithms evolve networks with recurrent and feed-forward con-
nections. Differences in Cfp values are statistically significant across the three tasks
(ρ < 0.001, Mann-Whitney). Overall, the IM-(µ + 1) algorithm is biased towards large
networks. Since there is no fitness cost in adding new neurons and connections, IM-
(µ + 1) consistently generates large neural topologies. The growth is due to the struc-
tural mutation operators as: (i) each connection gene has a fixed equal probability of
generating a new connection gene in the same genome, and (ii) insertion of new neu-
ron genes is based on the duplication and differentiation of a neuron gene and its in-
coming and outgoing connection genes. This form of growth leads to networks that
consistently have more connections than neurons added through evolution, as listed
in Table 10. Since larger networks have more parameters and need more time to be
optimised, either by the adjustment of weighting parameters or the removal of unnec-
essary neurons and connections through mutation, the algorithm tends to require more
evaluations to find solutions than odNEAT.

Table 10: Summary of the neural complexity added through evolution from the initial
topology by odNEAT and IM-(µ + 1). Connections added and neurons added refer
to the avg. ± std. dev over 30 independent runs for each experimental configuration.
In the IM-(µ + 1) algorithm, the size proportionate addition of new connections and
the duplication of neurons, and of their incoming and outgoing connections, lead to
networks that consistently have a large number of connections (see text for details)

Task Method Connections added Neurons added Avg. Cfp

Aggregation
odNEAT 6.3 ± 5.6 5.5 ± 5.0 11.8

IM-(µ+ 1) 23.6 ± 12.2 2.2 ± 0.4 25.8

Navigation
odNEAT 6.6 ± 0.9 3.1 ± 0.3 9.7

IM-(µ+ 1) 36.7 ± 14.4 2.5 ± 0.6 39.2

Phototaxis
odNEAT 2.3 ± 0.7 1.1 ± 0.3 3.4

IM-(µ+ 1) 26.0 ± 14.9 1.8 ± 0.5 27.8

In odNEAT, the niching scheme protects topological innovations and also prevents
bloating of genomes: species with smaller genomes are maintained in the population
as long as their fitness is competitive, and smaller networks are thus not replaced by

20 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

larger ones unnecessarily. The successive generation of new candidate controllers leads
to a progressive optimisation of existing structure in each robot’s internal population
with parsimonious addition of structure.

In odNEAT, the structure of each intermediate solution represents a search space
of parameter values that evolution must optimise. The more complex the structure, the
higher the number of parameters that must be optimised simultaneously. If the struc-
tural complexity can be minimised, the dimensionality of the search spaces explored
along the path to a solution is reduced, and evolution can more efficiently optimise the
intermediate solutions. Such an approach will generally lead to performance gains in
terms of: (i) speed of convergence towards the final solution, i.e., the number of eval-
uations, and (ii) the task performance of the intermediate and final solutions evolved.
This hypothesis is supported by the results listed in Table 9 and in Table 10, which show
that odNEAT evolves less complex networks that always outperform those evolved by
IM-(µ + 1) in terms of their ability to solve the task, even when the evaluations neces-
sary to evolve a solution are comparable (as in the aggregation task).

Table 11: Generalisation performance of controllers evolved by odNEAT and IM-(µ+1)
in the three tasks. The generalisation performance refers to the avg. ± std. dev. of the
success rate for each set of 100 task restarts

Task Method Generalisation performance (%) Successful tests

Aggregation
odNEAT 75.1 ± 32.6 2253/3000

IM-(µ+ 1) 46.1 ± 24.5 1382/3000

Navigation
odNEAT 73.4 ± 23.3 2202/3000

IM-(µ+ 1) 55.2 ± 36.2 1657/3000

Phototaxis
odNEAT 60.2 ± 33.5 1806/3000

IM-(µ+ 1) 46.0 ± 14.3 1379/3000

In the generalisation experiments, we observe that odNEAT evolves controllers
that also display a generalisation performance superior to the controllers evolved by
IM-(µ + 1), as listed in Table 11. Depending on the task, odNEAT outperforms IM-
(µ+1) between approximately 14 percentage points and 29 percentage points, as robots
executing odNEAT successfully solve 427 to 871 generalisation tests more. Differences
in the number of successful generalisation tests are statistically significant (ρ < 1 · 10−4

in the three tasks, Fisher’s exact test). The results of the generalisation tests are coher-
ent with those obtained in Section 5.1.1, which showed that odNEAT evolves neural
networks with comparatively high generalisation capabilities. During long-term op-
eration in the field, robots may experience environmental conditions not seen during
the evolutionary phase. Therefore, producing robust controllers that can adapt to new
circumstances without further evolution is advantageous, and has been subject to in-
creasing interest (Lehman et al., 2013). Another important aspect in robotic systems is
the robustness to failures (Christensen et al., 2009). The following section is devoted
to understanding the properties of odNEAT with respect to the algorithm’s ability to
adapt to faults in the sensors, and the impact of each algorithmic component on perfor-
mance.

Evolutionary Computation Volume x, Number x 21

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

6 Assessing odNEAT: Fault Injection Experiments and Ablation Studies

In the previous section, we experimentally compared the performance of odNEAT with
the performance of rtNEAT and IM-(µ+1). In this section, we further assess odNEAT’s
robustness and features. We focus on two aspects: (i) odNEAT’s ability to address long-
term self-adaptation when there are faults in the robot’s sensors, and (ii) the impact of
each algorithmic component on performance.

6.1 Adaptation Performance

The experimental protocol for the fault injection experiments described in this section
is defined in coherence with the results of Carlson et al. (2004), which analysed the
reliability of 15 mobile robots in terms of physical failures. For small robots operating
in the field, such as the models considered in this study, there is an overall frequency of
0.10 failures per hour, and 12% of failures affect the sensors. In their study, the authors
do not distinguish between complete failure and partial failure. In our experiments, we
assume sensor failures as damaging the sensor completely, and feeding a zero signal
into the neural network during subsequent readings.

In the fault injection experiments, we conduct 30 independent runs using a group
of 5 robots. We double the duration of each run to 200 hours of simulated time to
examine the long-term effects of injected faults. Every hour of simulated time, faults are
injected with probability 0.10, in which case one randomly chosen operational physical
sensor becomes faulty with probability 0.12. Each robot starts out with the controller
evolved in the experiments described in the previous section, but further evolution is
allowed. The goal of using evolved controllers is to separate learning to solve the task
from learning to overcome sensor faults.

To assess the effects of faults in the sensors, we analyse: (i) the number of con-
trollers produced to cope with a given percentage of faulty sensors, and (ii) the op-
eration time (age) of the controllers used by the robots during the experiments. The
number of controllers produced is an indicator of the difficulty of the evolutionary pro-
cess to adapt the behaviour of robots when faults are present. Complementarily, the
operation time of controllers relates to the number of faults they can tolerate, thereby
indicating the robustness of solutions evolved.

The controllers more robust to faults are those evolved in the aggregation task.
On average, robots can sustain faults in approximately 85% of physical sensors, which
corresponds to 20 out of 24 physical sensors. After this point, the experiments are
terminated because the 200 hours limit is reached. Figure 2 shows the operation time
of controllers during the experiments. As more faults are injected, the operation time
continues to increase linearly, with a gentle slope, which indicates that new controllers
are rarely necessary. In effect, the final controllers operate for more than 100 consecutive
hours.

The high robustness to faults in the aggregation task is due to the robot’s behaviour
and to the task requirements. Robots form a single group and there is, therefore, con-
siderable sensory information available. As long as robots can sense other robots with
one or two sensors, faults in the remaining sensors have virtually no effect on per-
formance. The high degree of tolerance to faults is due to the exchange of genomes
between robots. As described in Section 4.3, the number of genomes received by a
given robot is used as an estimation of the number of robots nearby, and is part of the
virtual energy level and fitness score computations. Because only the physical sensors
of the robots are affected by faults, the virtual energy level and the ”received genomes”
sensors function normally and robots continue to solve the task.

22 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80

A
v

g
.
o

p
er

at
io

n
 t

im
e

(h
o
u

rs
)

Avg. percentage of sensor faults per robot

Aggregation task -- operation time of controllers

Aggregation

Figure 2: Fault injections during the aggregation task: average operation time (age) of
controllers executing at a given time, and subject to a given percentage of faults in the
sensors. The operation time increases linearly, with a gentle slope, thereby indicating
that new controllers are rarely necessary.

Figure 3 shows the number of controllers produced and the operation time of the
controllers in both the navigation and phototaxis tasks. In these two tasks, odNEAT
can also adapt to cope with failures in approximately 80% to 85% of the sensors, corre-
sponding to a maximum of 14 sensors in the navigation and obstacle avoidance task,
and 20 sensors in the phototaxis task. However, contrary to the aggregation task, robots
have to evolve new controllers more often to handle the new sensory conditions. In the
phototaxis task, with the increasing number of faults, odNEAT progressively tests more
controllers as a means to synthesise solutions for the task. As shown in Figure 3(a),
when the percentage of faults reaches 50%, each robot had evolved on average 60 new
controllers. For a higher percentage of faults, it becomes increasingly more difficult for
odNEAT to evolve a suitable solution. When faults affect 75% and 85% of the sensors,
the number of controllers evaluated grows to approximately 100 and 160, respectively.
This result indicates that robots experience significant difficulties when more than 50%
of the sensors are not functional. However, as supported by the approximately stable
average operation time of the group for a percentage of faults greater than 50%, shown
in Figure 3(b), new controllers are able to sustain a moderate degree of faults in sensors
before failing. In terms of neural augmentation, odNEAT continuously adds new topol-
ogy in response to the sensor faults. odNEAT adjusts and augments neural topologies
from an average of 3.4 parameters added through evolution, for solutions not subject
to faults, to approximately 28.2 parameters for solutions subject to faults in 85% of the
sensors.

In the integrated navigation and obstacle avoidance task, robots are robust to
faults. As shown in Figure 3(a), the initial controller only becomes unable to solve
the task when approximately 10% of the sensors fail. From the first fault until 85% of
the sensors fail, each robot tested 12.7 new controllers on average. Thus, even though
a significant portion of the sensors are faulty, robots only evaluated relatively few new
controllers during the entire fault injection experiments. In the synthesis of new con-
trollers, odNEAT does not augment neural topologies substantially as the complexity

Evolutionary Computation Volume x, Number x 23

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

A
v

g
.

co
n

tr
o

ll
er

s
p

ro
d

u
ce

d Navigation

Avg. percentage of sensor faults per robot Avg. percentage of sensor faults per robot

Phototaxis

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

A
v

g
.

o
p

er
at

io
n

 t
im

e
(h

o
u

rs
)

Navigation
Phototaxis

(a) Number of controllers produced

since the first injected fault.

(b) Operation time (age) of the controllers.

Figure 3: Summary of the results concerning the injection of faults in the robots’ sen-
sors. (a) Number of controllers produced since the first fault was injected. (b) Operation
time (age) of each controller executing at a given time.

of solutions is relatively stable. Neural complexity of solutions is augmented from 9.7
parameters on average added through evolution, for solutions not subject to faults, to
10.8 parameters for solutions with 85% faults in the sensors. Nonetheless, it should be
noted that there is a duality in the task. With the progressive injection of faults, robots
display a better navigation performance but a worse obstacle avoidance performance.
This is due to the obstacle avoidance fitness component relying on sensor readings, for
determining if there are obstacles nearby, while the navigation component relies on the
speed of the wheels, see (5), which are not affected by faults. An important considera-
tion is that when the percentage of faults is greater than 67%, the less effective obstacle
avoidance performance results in occasional collisions of robots with other robots and
with the walls of the arena if the direction of contact is not sensed.

Overall, the analysis in this section shows that odNEAT is able to evolve adaptive
solutions that can cope with faults in the robots’ sensors. Distinct task requirements
lead to different responses in the adaptation process. Robots executing odNEAT: (i) are
almost unaffected by faults in the aggregation task, (ii) progressively change their be-
haviour in the navigation and obstacle avoidance task, and (iii) experience more diffi-
culties in the phototaxis task, but are still able to adapt to the new sensory conditions.

6.2 Ablation Studies

In order to determine the impact of each algorithmic component in odNEAT, we per-
form a series of ablation studies. We use aggregation as the task for ablation studies.
Aggregation was found to be the hardest task, as shown in Table 6 and Table 9, and
thus provides a degree of complexity suitable for comparing the ablated versions of
odNEAT with the complete version of odNEAT. We conduct experiments in six distinct
experimental setups: (i) with a minimal internal population of size 2, (ii) without the
exchange of genomes between robots, (iii) without the tabu list, (iv) without the matu-
ration period, (v) without the niching scheme, and (vi) without the crossover operator.
Note that the number of genomes received by one robot is directly used in the fitness
calculation in the aggregation task, see Section 4.3. To implement the ablation study
in which robots do not exchange genomes, we allow robots to communicate but the

24 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

genomes received are not included in the evolutionary process, i.e., they are discarded
immediately after the energy level and fitness score calculations have been performed.

Table 12: odNEAT ablations summary. The table lists the simulation time (in hours),
the number of evaluations, and the success rate of each experimental configuration.
Results listed for each configuration are the avg. ± std. dev. over 30 independent runs

Method Sim. Time Evaluations Success Rate

Minimal population 16.4 ± 21.2 236.2 ± 213.8 22/30

No exchange of solutions 11.3 ± 12.0 156.0 ± 103.8 24/30

No tabu list 8.9 ± 12.2 133.6 ± 119.2 28/30

No maturation 13.9 ± 22.5 211.3 ± 287.8 29/30

No niching 41.1 ± 17.6 240.2 ± 103.0 25/30

No crossover 7.8 ± 6.5 127.8 ± 91.6 28/30

Full odNEAT 6.2 ± 5.6 103.7 ± 80.9 30/30

Results are shown in Table 12, and averaged over 30 independent evolutionary
runs for each configuration. Results in this table exclude runs that failed to find sus-
tainable behaviours within 100 hours of simulated time. Simulation time is measured to
complement the number of evaluations. In odNEAT, controllers execute as long as they
are able to solve the task, i.e., the virtual energy level is above the minimum threshold,
and the duration of evaluations therefore tends to vary.

The most critical algorithmic component of odNEAT is the internal population.
Differences in performance between full odNEAT and odNEAT with a minimal pop-
ulation are statistically significant in terms of the number of evaluations (ρ < 0.01,
Mann-Whitney), and success rate (ρ = 4.6 · 10−3, Fisher’s exact test). The size of the
population is important because the population maintains a local view of the system’s
history and provides the basis for evolution. With a minimal population, evolution
is limited to a small set of genomes, in this case 2. This experimental setup causes a
significant instability in the evolutionary process as evolution is much slower and may
even be incapable of exploring enough of the solution space to find successful solu-
tions, hence the comparatively low success rate, and high simulation time and number
of evaluations.

The exchange of genomes between robots is also a crucial feature in odNEAT’s per-
formance. Differences are statistically significant with respect to the number of evalu-
ations (ρ < 0.05, Mann-Whitney) and the success rate (ρ = 2.37 · 10−2, Fisher’s exact
test). To quantify to what extent is a robot dependent on the genomes it receives from
other robots, we analyse the origin of the information stored in each population when
executing the full, non-ablated odNEAT version. When evolution is ended, 73.4% of the
genomes maintained in each internal population originated from other robots, whereas
26.6% of the genomes stored were evolved by the robots themselves. The final so-
lutions executed by each robot to solve the task have on average 77.0% of matching
genes. Moreover, 17.6% of these solutions have more than 90% of their genes in com-
mon. The average weight difference between matching connection genes is of 4.8, with
each weight w ∈ [−10, 10]. Local exchange of genetic information is therefore a crucial
part in the odNEAT’s evolutionary dynamics that serves as a substrate for speeding up
the evolutionary process and for collective problem solving.

Evolutionary Computation Volume x, Number x 25

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

Without the tabu list, odNEAT achieves a success rate of 28/30 runs but, when evo-
lution is on the right track, it finds solutions relatively fast. Differences in the number
of evaluations and in the success rate are not significant. However, the comparatively
high standard deviation values in the simulation time and in the number of evaluations
reflect the instability of the evolutionary process when the tabu list is not used. The tabu
list keeps the evolutionary process from cycling around in an unfruitful neighbourhood
of the solution space, which may happen given that odNEAT evolves controllers only
based on local information. In effect, by rejecting genomes similar to those that failed,
the tabu list promotes topological diversity in the population and positively smooths
evolution, thereby providing a relevant contribution to the performance of odNEAT.

The maturation period defines a lower bound of activity in the environment, giv-
ing the new offspring a chance to spread their genome. Ablating the maturation period
provides results significantly different in terms of the number of evaluations (ρ < 0.05,
Mann-Whitney), but not significant with respect to the success rate. Without the matu-
ration period, good solutions are potentially lost forever and evolution is decelerated.
Robots are still be capable of solving the task in most experiments, but exhibit a clear
deficit in performance.

By ablating the niching scheme of odNEAT, performance is considerably affected.
Robots solve the task in 25/30 runs. Differences in the success rate are not significant.
When odNEAT is able to evolve a solution to the task, it requires substantially more
time, and robots evaluate significantly more controllers (ρ < 0.001, Mann-Whitney).
Without the crossover operator, odNEAT fails to find solutions for the task in 2 of the
30 runs. When odNEAT is able to find a solution without crossover, each robot is sub-
ject to approximately 24 additional evaluations, equivalent to 18.9%. Differences in the
number of evaluations are statistically significant (ρ < 0.01, Mann-Whitney). The se-
ries of ablation studies involving genetic operators show that both the crossover and
the niching scheme have a significant effect on performance, and further support a
number of conclusions in the literature: (i) the crossover operator is an advantage for
neuroevolution algorithms when performed appropriately, for instance by resorting
to innovation numbers (Stanley and Miikkulainen, 2002), and (ii) genotypic diversity
mechanisms such as speciation and fitness sharing can improve performance in evolu-
tionary robotics tasks (Mouret and Doncieux, 2012).

The ablation of each component of odNEAT’s components leads to a less efficient
algorithm. Arguably, the most important conclusion drawn from the ablation stud-
ies is that all components of odNEAT contribute to the algorithm’s performance as an
efficient online, distributed, and decentralised neuroevolution algorithm.

7 Conclusions

In this article, we have presented a novel distributed and decentralised neuroevolu-
tion algorithm called odNEAT for online learning in groups of robots. odNEAT im-
plements the online evolutionary process according to a physically distributed island
model. Each robot optimises an internal population of genomes, and there is the ex-
change of genetic information between robots. An important advantage of odNEAT
over the majority of existing online neuroevolution algorithms is that the optimisation
of both neural parameters and topology is under evolutionary control and an appro-
priate network topology is the result of a continuous evolutionary process.

We compared odNEAT with rtNEAT and with IM-(µ + 1) in three tasks: (i) ag-
gregation, (ii) integrated navigation and obstacle avoidance, and (iii) phototaxis. Our
study produced three main results. Firstly, odNEAT yields performance levels similar

26 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

to rtNEAT, a state-of-the-art neuroevolution algorithm, and outperforms the IM-(µ+1)
algorithm. Secondly, compared with rtNEAT and IM-(µ+1), odNEAT exhibits a higher
evolutionary pressure towards neural controllers with low complexity and with supe-
rior generalisation capabilities. Thirdly, our experiments showed that individual robots
executing odNEAT can successfully adapt to cope with faults in the sensors. Depend-
ing on the task requirements, robots can tolerate different degrees of faults and, if neces-
sary, evolve new controllers and progressively modify their behaviour in a completely
autonomous manner. Overall, our study showed that odNEAT is an efficient and ro-
bust algorithm, and a promising approach for online evolution in multirobot systems.

7.1 Ongoing and Future Work

The aim of our ongoing work is to study and demonstrate the performance of odNEAT
in real multirobot systems. We are therefore studying how to accelerate the online evo-
lutionary process through the use of behavioural building blocks of distinct granularity
to enable robots to adapt to dynamic and complex tasks in a timely manner (Silva et al.,
2014a,b). In this respect, we intend to investigate the effects of open-ended techniques
such as novelty search (Lehman and Stanley, 2011) and behavioural diversity-based
methods (Mouret and Doncieux, 2012) in online evolution. In tasks where the envi-
ronmental conditions or task requirements constantly change, explicitly encouraging
behavioural novelty could enable the evolutionary process to more easily produce a
large variety of effective solutions, thereby opening a new path towards long-term self-
adaptation.

Acknowledgments

This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT) un-
der the grants SFRH/BD/89573/2012, PEst-OE/EEI/LA0008/2013, PEst-OE/EEI/UI0434/2011,
and EXPL/EEI-AUT/0329/2013, and by the European Union – Information and Communication
Technologies project ’ASSISIbf’, no. 601074. The authors thank Christopher Schwarzer and Flo-
rian Schlachter for providing the source code of their algorithm, and the anonymous reviewers
for their constructive feedback and valuable comments.

Supplementary Material
The source code of the software, videos of the behaviours evolved, and details of the exper-
iments are available as supplementary material at: http://fgsilva.com/?page_id=121.
The source code can also be found at: https://github.com/fgsilva/online_evo_jbot.

References
Bahgeçi, E. and Sahin, E. (2005). Evolving aggregation behaviors for swarm robotic systems: A

systematic case study. In Proceedings of the IEEE Swarm Intelligence Symposium, pages 333–340.
IEEE Press, New York, NY.

Beer, R. D. and Gallagher, J. C. (1992). Evolving dynamical neural networks for adaptive behav-
ior. Adaptive Behavior, 1(1):91–122.

Bianco, R. and Nolfi, S. (2004). Toward open-ended evolutionary robotics: evolving elementary
robotic units able to self-assemble and self-reproduce. Connection Science, 16(4):227–248.

Blakesley, R. E. (2008). Parametric Control of Familywise Error Rates with Dependent ρ-values. PhD
thesis, University of Pittsburgh, Pennsylvania, PA.

Bredeche, N., Haasdijk, E., and Eiben, A. (2009). On-line, on-board evolution of robot controllers.
In Proceedings of the 9th International Conference on Artificial Evolution, pages 110–121. Springer,
New York, NY.

Evolutionary Computation Volume x, Number x 27

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

Camazine, S., Deneubourg, J. L., Franks, N., Sneyd, J., Theraulaz, G., and Bonabeau, E. (2001).
Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ.

Cao, Y., Fukunaga, A., and Kahng, A. (1997). Cooperative mobile robotics: Antecedents and
directions. Autonomous Robots, 4(1):1–23.

Carlson, J., Murphy, R., and Nelson, A. (2004). Follow-up analysis of mobile robot failures. In
Proceedings of the 2004 IEEE International Conference on Robotics and Automation, pages 4987–
4994. IEEE Computer Society Press, Los Alamitos, CA.

Christensen, A. L., O’Grady, R., and Dorigo, M. (2009). From fireflies to fault-tolerant swarms of
robots. IEEE Transactions on Evolutionary Computation, 13(4):754–766.

Duarte, M., Silva, F., Rodrigues, T., Oliveira, S. M., and Christensen, A. L. (2014). JBotEvolver:
A versatile simulation platform for evolutionary robotics. In Proceedings of the 14th Interna-
tional Conference on the Synthesis and Simulation of Living Systems, pages 210–211. MIT Press,
Cambridge, MA.

Eiben, A., Haasdijk, E., and Bredeche, N. (2010a). Embodied, on-line, on-board evolution for
autonomous robotics. In Levi, P. and Kernbach, S., editors, Symbiotic Multi-Robot Organisms:
Reliability, Adaptability, Evolution, chapter 7, pages 361–382. Springer, New York, NY.

Eiben, A., Karafotias, G., and Haasdijk, E. (2010b). Self-adaptive mutation in on-line, on-board
evolutionary robotics. In Proceedings of the 4th IEEE International Conference on Self-Adaptive
Self-Organizing Systems Workshop, pages 147–152. IEEE Press, Piscataway, NJ.

Elfwing, S., Uchibe, E., Doya, K., and Christensen, H. I. (2005). Biologically inspired embodied
evolution of survival. In Proceedings of the Congress on Evolutionary Computation, pages 2210–
2216. IEEE Press, Edinburgh, UK.

Fisher, R. (1925). Statistical Methods For Research Workers. Oliver & Boyd, Edinburgh, UK.

Floreano, D., Dürr, P., and Mattiussi, C. (2008). Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 1(1):47–62.

Floreano, D. and Keller, L. (2010). Evolution of adaptive behaviour by means of Darwinian
selection. PLoS Biology, 8(1):e1000292.

Floreano, D. and Mondada, F. (1994). Automatic creation of an autonomous agent: Genetic
evolution of a neural-network driven robot. In Proceedings of the 3rd International Conference on
Simulation of Adaptive Behavior, pages 421–430. MIT Press, Cambridge, MA.

Groß, R. and Dorigo, M. (2009). Towards group transport by swarms of robots. International
Journal of Bio-Inspired Computation, 1(1–2):1–13.

Gutiérrez, A., Campo, A., Dorigo, M., Amor, D., Magdalena, L., and Monasterio-Huelin, F. (2008).
An open localization and local communication embodied sensor. Sensors, 8(11):7545–7563.

Haasdijk, E., Arif, A., and Eiben, A. (2011). Racing to improve on-line, on-board evolutionary
robotics. In Proceedings of the 13th Genetic and Evolutionary Computation Conference, pages 187–
194. ACM Press, New York, NY.

Haasdijk, E., Eiben, A., and Karafotias, G. (2010). On-line evolution of robot controllers by an en-
capsulated evolution strategy. In Proceedings of the IEEE Congress on Evolutionary Computation,
pages 1–7. IEEE Press, Piscataway, NJ.

Haasdijk, E., Smit, S., and Eiben, A. (2012). Exploratory analysis of an on-line evolutionary
algorithm in simulated robots. Evolutionary Intelligence, 5(4):213–230.

Harvey, I., Husbands, P., Cliff, D., Thompson, A., and Jakobi, N. (1997). Evolutionary robotics:
the Sussex approach. Robotics and Autonomous Systems, 20(2):205–224.

28 Evolutionary Computation Volume x, Number x

Online Evolution of Robotic Controllers

Haykin, S. (1999). Neural Networks: a Comprehensive Foundation. Prentice-Hall, Englewood Cliffs,
NJ.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni
test. Biometrika, 75(2):383–386.

Huijsman, R., Haasdijk, E., and Eiben, A. (2011). An on-line on-board distributed algorithm for
evolutionary robotics. In Proceedings of the 10th International Conference on Artificial Evolution,
pages 119–130. [Online Proceedings] - http://www.info.univ-angers.fr/ea2011/
doc/EA2011_ProceedingsWeb.pdf.

Karafotias, G., Haasdijk, E., and Eiben, A. (2011). An algorithm for distributed on-line, on-board
evolutionary robotics. In Proceedings of the 13th Genetic and Evolutionary Computation Conference,
pages 171–178. ACM Press, New York, NY.

Kim, Y.-H. and Moon, B.-R. (2003). New usage of Sammon’s mapping for genetic visualization.
In Proceedings of 5th Genetic and Evolutionary Computation Conference, pages 1136–1147. Springer,
Berlin, Germany.

Kittler, J. and Young, P. (1973). A new approach to feature selection based on the Karhunen-Loeve
expansion. Pattern Recognition, 5(4):335–352.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43(1):59–69.

Laredo, J., Eiben, A., van Steen, M., and Merelo, J. (2010). EvAg: a scalable peer-to-peer evolu-
tionary algorithm. Genetic Programming and Evolvable Machines, 11(2):227–246.

Lehman, J., Risi, S., D’Ambrosio, D., and Stanley, K. O. (2013). Encouraging reactivity to create
robust machines. Adaptive Behavior, 21(6):484–500.

Lehman, J. and Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary Computation, 19(2):189–223.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.,
Floreano, D., and Martinoli, A. (2009). The e-puck, a robot designed for education in engineer-
ing. In Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pages
59–65. IPCB, Castelo Branco, Portugal.

Montanier, J.-M. and Bredeche, N. (2011). Embedded evolutionary robotics: The (1+1)-restart-
online adaptation algorithm. In New Horizons in Evolutionary Robotics, volume 341 of Studies in
Computational Intelligence, chapter 11, pages 155–169. Springer, Berlin, Germany.

Mouret, J. and Doncieux, S. (2012). Encouraging behavioral diversity in evolutionary robotics:
An empirical study. Evolutionary Computation, 20(1):91–133.

Prieto, A., Becerra, J., Bellas, F., and Duro, R. (2010). Open-ended evolution as a means to self-
organize heterogeneous multi-robot systems in real time. Robotics and Autonomous Systems,
58(12):1282–1291.

Sammon Jr., J. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on
Computers, C-18(5):401–409.

Schmidhuber, J. (1997). Discovering neural nets with low Kolmogorov complexity and high
generalization capability. Neural Networks, 10(5):857–873.

Schwarzer, C., Schlachter, F., and Michiels, N. (2011). Online evolution in dynamic environments
using neural networks in autonomous robots. International Journal on Advances in Intelligent
Systems, 4(3–4):288–298.

Silva, F., Correia, L., and Christensen, A. L. (2014a). Speeding up online evolution of robotic
controllers with macro-neurons. In Proceedings of the 16th European Conference on the Applications
of Evolutionary Computation. Springer, Berlin, Germany. In press.

Evolutionary Computation Volume x, Number x 29

F. Silva, P. Urbano, L. Correia, and A. L. Christensen

Silva, F., Duarte, M., Oliveira, S. M., Correia, L., and Christensen, A. L. (2014b). The case for
engineering the evolution of robot controllers. In Proceedings of the 14th International Conference
on the Synthesis and Simulation of Living Systems, pages 703–710. MIT Press, Cambridge, MA.

Silva, F., Urbano, P., Oliveira, S., and Christensen, A. L. (2012). odNEAT: An algorithm for dis-
tributed online, onboard evolution of robot behaviours. In Proceedings of the 13th International
Conference on the Simulation and Synthesis of Living Systems, pages 251–258. MIT Press, Cam-
bridge, MA.

Stanley, K. O. (2004). Efficient Evolution of Neural Networks through Complexification. PhD thesis,
University of Texas, Austin, TX.

Stanley, K. O., Bryant, B. D., and Miikkulainen, R. (2005). Real-time neuroevolution in the NERO
video game. IEEE Transactions on Evolutionary Computation, 9(6):653–668.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10(2):99–127.

Vassilev, V. K., Fogarty, T. C., and Miller, J. F. (2000). Information characteristics and the structure
of landscapes. Evolutionary Computation, 8(1):31–60.

Watson, R., Ficici, S., and Pollack, J. (2002). Embodied evolution: Distributing an evolutionary
algorithm in a population of robots. Robotics and Autonomous Systems, 39(1):1–18.

Watson, R. A., Ficici, S. G., and Pollack, J. B. (1999). Embodied evolution: Embodying an evolu-
tionary algorithm in a population of robots. In Proceedings of the 1999 Congress on Evolutionary
Computation, pages 335–342. IEEE Press, Piscataway, NJ.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447.

30 Evolutionary Computation Volume x, Number x

