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Abstract 
 

Following Jones and Williams (2000), we assume that R&D is simultaneously 
subject to positive and to negative external effects (e.g., the non rival nature of technology 
conflicts with congestion externalities). This observation allows to conceive an economy 
where two R&D sectors evolve without departing significantly from each other in terms of 
their productive results (society tends to penalize imbalances in technical progress, making 
negative external effects to appear associated to a sector when this outstands relatively to 
the other sector; the second sector, in turn, will be subject to positive externalities that 
reflect a catching up effect). The proposed framework, when associated to a growth setup, 
is able to replicate the existence of endogenous fluctuations and, therefore, it intends to be a 
contribution to the literature on endogenous business cycles. 
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1. Introduction 

 

An insightful analysis made by Jones and Williams (2000) have called the 

attention for an important fact about investment in R&D and its implications to the 

perception we have about economic growth. As it is well known, frequently we observe 

positive externalities associated to the non-rival nature of technology and knowledge, 

and this observation makes us jump to the conclusion that there is an economy wide 

receptiveness to innovations: households will be eager to gain access to goods that are 

technologically more sophisticated, the government protects and stimulates private 

investors in R&D and other economic sectors tend to provide the environment needed 

to R&D to be developed to its fullest capacity. The two cited authors emphasize the 

relevance of these positive externalities, but they highlight as well that negative 

externalities associated to the R&D sector may also be identified. Namely, the 

congestion external effect provoked by patent racing and the eventually too fast 

obsolescence of previous generations of knowledge goods act as forces that prevent 

society from supporting an accelerated development of new technologies. If economic 

agents perceive technical progress as faster than what they can keep up to, then 

households will lose interest in innovation, the government will attribute less subsidies 

to research and business partners will prefer to continue to explore the existent wave of 

technology rather than stimulating a new one.  

The previous argument can be reinforced with the well known ‘productivity 

paradox’ of Solow (1987) [see Brynjolfsson (1993), Bresnahan, Brynjolfsson and Hitt 

(2002) and Gunnarsson, Mellander and Savvidou (2004), among many others]. The 

paradox essentially states that innovation in the computer and software industries did 

not gave place to important productivity gains. Some of the explanations for the 

paradox (that were put forward in the papers cited above) focus on the idea that the 

information and communication technology (ICT) revolution was not followed by other 

complementary innovations, for example related with human capital formation and with 

the design and structure of organizations; as a result, the ICT were rejected by many 

organizations, who could not find much use in them [for instance, Bresnahan, 

Brynjolfsson and Hitt (2002) found that firms adopting ICT without any other 

innovation investment became less productive than the firms maintaining traditional 

methods of production]. This is a good example of how a dynamic R&D sector can 

suffer a negative externality if it is not accompanied by other technical developments. 

The truth is that the receptiveness to innovations is linked to a balanced evolution of the 
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various R&D sectors, in such a way that one can conceive an economy wide negative 

external effect affecting the leader R&D producers and, simultaneously, a positive 

external effect that allows the follower R&D firms to catch up with the first ones (in the 

case of the ICT, we can think about computers as stimulating human capital upgrading 

and organizational remodelling that without such communication technologies 

revolution would never have happened; this is the positive external effect). 

Having in mind that positive and negative externalities co-exist in what respects 

technological progress, we propose a model of growth with two R&D sectors. The main 

feature of this discrete time model is that the outcome of the two sectors should not 

depart too much from each other, in the sense that the society does not tolerate 

technological imbalances. Thus, if the output of R&D sector A is higher than the output 

of R&D sector B, a negative externality to the production of knowledge arises in sector 

A and, simultaneously, a positive externality can be found in sector B, and the other 

way around if in a given moment the second sector is the more productive one. With 

this framework, we will be able to justify the presence of endogenous business cycles in 

a conventional economic growth framework. 

This work intends to contribute to the literature that attempts to explain cycles 

under a deterministic growth model, and thus it approaches the analysis undertaken, 

among others, by Christiano and Harrison (1999), Schmitt-Grohé (2000), Guo and 

Lansing (2002), Cellarier (2006) and Gomes (2006a). The novelty, relatively to the 

referred papers, is that cycles are not determined by final goods sector externalities, 

specific conditions of the labour market, learning mechanisms or conditions of demand, 

but, as stated, by the simultaneous presence of positive and negative externalities in the 

production of knowledge, which produce a tendency for different R&D sectors to 

evolve at a similar pace.  

Furthermore, one should stress that the analysis is undertaken under the 

conventional growth setup, i.e., resorting to a competitive economy environment, where 

the several production functions to assume exhibit constant returns to scale. In this way, 

the search for non linear dynamics is made under a framework that approaches the one 

that is taken, among others, by Nishimura and Yano (1995) and Boldrin, Nishimura, 

Shigoka and Yano (2001), that is, the standard Walrasian growth model. This approach 

neglects market inefficiencies of the Keynesian type (nominal rigidities, price 

stickiness, strategic complementarities and coordination failures) and departs also from 

the Real Business Cycles (RBC) theory, since the analysis is fully deterministic: there 

are no stochastic variables underneath the fluctuations; these are generated by purely 
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deterministic relations. Nonlinear deterministic dynamics were first addressed in 

economics, and more precisely with regard to business cycles, with an influent strand of 

theory introduced along the 1980s and early 1990s: Stutzer (1980), Benhabib and Day 

(1981), Day (1982), Grandmont (1985), Baumol and Benhabib (1989), Boldrin and 

Woodford (1990), Chiarella (1992) and Bullard and Butler (1993), just to cite some of 

the most prominent contributions. 

The paper is organized as follows. Section 2 presents the model; section 3 

characterizes the dynamics underlying the two-sector R&D activity, when externalities 

are present. First, local dynamics in the steady state vicinity are addressed, and, on a 

second moment, we discuss the global properties of the dynamic system; we will be 

particularly concerned with the chaotic features of the model; section 4 introduces a 

capital accumulation constraint to further characterize the economic implications of the 

proposed setup; finally, section 5 concludes.  

 

2. The Model 

 

We consider an economy populated by infinitely lived agents where human 

capital, Ht, grows at a constant rate γ>0, that is, ttt HHH γ=−+1 , H0 given. In this 

economy there are two technological sectors (A and B). In the absence of external 

effects, these sectors can be described by accumulation processes similar to the ones 

generally presented in growth models [see, e.g., Romer (1990) and Jones (1995)]: 

ttttt AHAfAA ρ−=−+ ),(1
1 , A0 given, and ttttt BHBfBB σ−=−+ ),(2

1 , B0 given, with 

ρ>0 and σ>0 obsolescence rates. Cobb-Douglas production functions are assumed: 

φφ −= 1
1

1 )(),( tttt uHAgHAf  and [ ] µµ −⋅−= 1
2

2 )1(),( tttt HuBgHBf . Parameter u is the 

share of human capital used to produce technology good A; g1 and g2 are positive values 

and φ, µ ∈ (0,1). 

Under diminishing marginal returns to technology and human capital, the 

dynamics of the above system are easily identifiable. In concrete, a unique stable steady 

state is attainable, independently of the initial state. This means that, like human capital, 

both R&D variables will grow in the long run at the same rate γ. Constant technology – 

human capital ratios would define the steady state locus: 
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. These results are trivial in the literature about endogenous 

growth and they are mainly the outcome imposed by the perfectly competitive market 

structure that this setup implicitly considers. 

Now, take the arguments in the introduction, i.e., assume that if, in a given 

moment, sector A generates a larger output than sector B, then a positive externality will 

be associated with sector B and a negative externality will be present in sector A (and 

the other way around, if sector B is the dominant sector in a given time period). We 

modify the R&D equations to include the externalities: 

ttttttt ABAHAfAA ρξ −⋅=−+ ),(),( 11
1  and ttttttt BBAHBfBB σξ −⋅=−+ ),(),( 22

1 . 

The externality terms are defined as follows: 
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2 θξ . Parameters θ1 and θ2 are positive constants. 

The shape of the externality functions serves our purposes: if At=Bt then no externalities 

exist and we have a conventional competitive model. When the two technology 

variables have different values, function ξi, i=1,2, will represent a quantity below or 

above one, depending on the level of technology of the sector being above or below the 

other sector’s technology level, which reflects, respectively, the presence of negative or 

positive externalities related to each R&D sector. 

The externality function for sector A is represented in figure 1. We observe that 

the externality is positive (the term associated to the production function is larger than 

1) when the output of the considered technological level is lower than the output of the 

other R&D sector, and that the externality is negative (the term associated to the 

production function is smaller than 1) when the output of the considered technological 

level is above the output of the other R&D sector. 
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Figure 1 – Externality function for R&D sector A. 
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The previous system produces nonlinear dynamic results, that are explored in the 

next section.  

 

3. Dynamics 

 

Local stability properties of the two-sector R&D problem with externalities are 

first addressed. Subsequently, we take a look at possible global dynamics outcomes. 

 

3.1 Local Analysis 

 

To study local dynamics one should determine the steady state pair ),( ba . This 

pair is the solution of the system, 
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; since the function arctan(.) is symmetric 

around zero, the condition 0)arctan()arctan( =−+− baab  is true and can be used to 

obtain long run constant values for the variables. Although the computation does not 

allow to get explicit values ),( ba  unless specific parameter values are attributed and an 

extrapolation process is used, it is straightforward to perceive that the equilibrium exists 

and it is unique. In what follows, we will use the pair of positive values ),( ba  as it is, 

without presenting it as combinations of parameters. 

The linearization of the R&D equations in the steady state vicinity yields the 

following matrix system, 



Too Much of a Good Thing: EBC generated by Bounded Technological Progress 7 
 

 

   








−

−
⋅








−
−

=








−

−

+

+

bb

aa

bb

aa

t

t

t

t

222

111

1

1

ωηω
ωωη

,  

with 
2

11
1 )(1 ab

a

−+
⋅⋅

≡
φθψω , 

2
21

2 )(1 ba

b

−+
⋅⋅

≡
µθϕω , 221 )1( ψψφη +−⋅≡ , 222 )1( ϕϕµη +−⋅≡  

all positive quantities. 

Conditions for stability, that is, conditions under which the eigenvalues of the 

Jacobian matrix are inside the unit circle, can be given in terms of the trace and 

determinant of this matrix (that we designate by J), as follows 

 

122121212110)()(1 ηωηωωωηηηη +++>+++⇒>++ JDetJTr  

 

122121212110)()(1 ηωηωηηηηωω +++>+++⇒>+− JDetJTr  

 

21122110)(1 ηηηωηω >++⇒>− JDet  

 

To guarantee diminishing marginal returns in each one of the production 

functions, the following constraints apply, η1<1 and η2<1. Under these two conditions, 

the second and third presented inequalities are always satisfied. Only the first one can 

be a true or a false relation for different sets of parameter values. Note, as well, that 

complex roots for the characteristic equation are excluded, and thus both eigenvalues 

are real numbers; this is true given that: 

04)()(4)( 21
2

2121
2 >++−−=− ωωηηωωJDetJTr . 

Figure 2 draws the standard diagram of stability in R2. 
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Figure 2 – Local stability dynamics. 

 

As figure 2 allows to perceive there are only two types of results that are possible 

in what respects local dynamics. The stable node area corresponds to the case where 

condition 0)()(1 >++ JDetJTr  is satisfied. The area of saddle-path stability is 

accomplished for 0)()(1 <++ JDetJTr . The areas in grey are not possible stability 

locations for our system, because they correspond to regions where the other stability 

conditions are violated, what does not happen in our problem.  

In what concerns bifurcation analysis, one concludes that Neimark-Sacker 

bifurcations are outside the scope of our system, because complex eigenvalues were 

excluded from the feasible set of outcomes; also, fold, pitchfork and transcritical 

bifurcations are impossible to obtain, given that condition 0)()(1 =+− JDetJTr  never 

holds. This leaves us with the possibility of a flip bifurcation, when the following 

condition is satisfied: 12212121211 ηωηωωωηηηη +++=+++ . Combining the 

condition for a flip bifurcation with the others, always satisfied, stability conditions, one 

observes that the presence of a flip bifurcation requires that inequality 2121 ηηωω +>+  

must hold. 

Our generic analysis of local stability can be synthesized in two main results: 

(i) The R&D system with externalities supports only two types of stability 

(stable node and saddle-path); 

(ii)  The transition between the two types of stability areas occurs through a 

flip bifurcation. 

Stable node 

Saddle-path 

1-Tr(J)+Det(J)=0 1+Tr(J)+Det(J)=0 

1 Tr(J) 

Tr(J)2-4Det(J)=0 

1 
1-Det(J)=0 

-1 

Det(J) 
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Imposing some simplifying assumptions one can analyze further the local 

properties of the difference equations system. Consider the particular case in which 

ηηη ≡= 21 . In this case, the eigenvalues can be presented through simple expressions 

and the analysis of stability can be made directly with them. The eigenvalues of the 

Jacobian matrix are, under the imposed constraint, ηλ =1  and 212 ωωηλ −−= . The 

first eigenvalue is always inside the unit circle; the second is inside the unit circle if the 

following condition is satisfied: ηωω +>+ 121 . This is the condition for stable node 

stability. If the inequality is of opposite sign, then saddle-path stability is observed. 

Figure 3 represents areas of stability in the space of parameters ),( 21 ωω . The line 

separating the two regions corresponds to the bifurcation; note that this line is as much 

far from the origin as the higher is the value of parameter η. 

 

 
Figure 3 – Regions of stable node stability and saddle-path stability in the space of parameters. 

 

To end our local dynamic analysis, we calculate the stable arm when saddle-path 

stability holds. To proceed with this computation, we determine an eigenvector 

associated to the eigenvalue inside the unit circle. We obtain 






 −−
=

1

1111
ω

λωη
p . 

The second element of the eigenvector is the slope of the stable arm, that is, the stable 

trajectory can be written as )(
1

111 aabb tt −⋅
−−

=−
ω

λωη
. The convergence to the 

equilibrium point is characterized by a same qualitative movement of both technology 

variables if the condition 111 ωλη >−  is met. Otherwise, for 111 ωλη <− , the 

adjustment to the steady state is described by an inverse relation between the evolution 

of technology variables: bt rises when at declines, or the other way around. 

1+η 

Stable node 

Saddle-path 

1+η 

ω1 

ω2 
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In the particular case 21 ηη = , the stable trajectory simplifies to tt aabb −=− , 

that is, assuming that the stable trajectory is followed, a unit positive change in one of 

the R&D variables occurs simultaneously with a unit negative change on the other 

technology index.  

Also the unstable trajectory can be computed; this is, on the general case, 

)(
1

211 aabb tt −⋅
−−

=−
ω

λωη
 and, on the simplified version, )(

1

2 aabb tt −⋅=−
ω
ω

. 

Figure 4 illustrates the dynamics of the saddle-path case (under the less general 

formulation of the problem); in this diagram, one identifies a positively sloped unstable 

arm and a negatively sloped stable trajectory that is followed only if the initial state of 

the system is placed over such stable trajectory.  

 

 
Figure 4 – Phase diagram in the saddle-path case. 

 

Assuming that initial values of technology are below their steady state outcomes, 

instability means, according to figure 4, that technological conditions will progressively 

deteriorate. Under a policy point of view, the authorities have, in this case, the task of 

guaranteeing full stability; policy parameters should be manipulated in order to 

guarantee ηωω +>+ 121 , and in this way make it possible for the R&D sectors to work 

in order to accomplish the correspondent steady state technology values. 

 

3.2 Global Dynamics 

 

The local analysis is misleading. While this can only make the separation between 

regions of stability and instability (more rigorously, saddle-path stability), a global 

E 

a  

S 

b  

at 

bt 

U 
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dynamic analysis reveals a huge set of long term possibilities including periodic and a-

periodic cycles. The analysis one can undertake at a global level is essentially graphical 

and based on numerical examples. For specific parameter values, we illustrate global 

dynamics with figures 5 to 11.1 The graphical presentations give just an illustration of 

the immense set of possible results, when parameter values are varied. In particular, it is 

important to emphasize that cycles of various orders are obtainable.  

 In figures 5 and 6 bifurcation diagrams are drawn; the selected bifurcation 

parameter is θ1, but choosing other bifurcation parameters (namely θ2, φ, or µ) would 

allow as well to obtain meaningful results. For the case in appreciation, we find for both 

variables that cycles of low order (order two or order four) alternate with cycles of 

higher order or without any identifiable order. Chaotic motion arises for some values of 

the chosen parameter, a result that will be reinforced with the following graphical 

presentations.  

 

 
Figure 5 –Bifurcation diagram (θθθθ1, at)  

[parameter values ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9, φφφφ=0.7, µµµµ=0.3, θθθθ2=2].  
 

                                                 
1  These figures, as well as figures 12 to 14, were drawn using iDMC (interactive Dynamical Model 
Calculator). This is a free software program available at www.dss.uniud.it/nonlinear, and copyright of 
Marji Lines and Alfredo Medio. 



Too Much of a Good Thing: EBC generated by Bounded Technological Progress 12 
 

 
Figure 6 –Bifurcation diagram (θθθθ1, bt)  

[parameter values ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9, φφφφ=0.7, µµµµ=0.3, θθθθ2=2]. 

 

Figures 7 and 8 present diagrams that identify, with several colours, cycles of 

various orders in the space of parameters; in figure 7, one identifies different 

periodicities for the parameters associated with the externality terms; in figure 8, a same 

analysis is undertaken for the elasticities in the R&D production functions. For both 

cases, one is able to confirm the richness of the dynamic results; for small changes in 

parameter values, the system passes from fixed point stability to cycles of low order, 

cycles of high periodicity and instability. The local analysis, where only fixed point and 

instability outcomes could be identified, did not allow for perceiving that in many cases 

strange dynamics effectively arise. 

 

 
Figure 7 – Cycles in the space of parameters (θθθθ1, θθθθ2)  

[parameter values ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9, φφφφ=0.7, µµµµ=0.3]. 
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Figure 8 – Cycles in the space of parameters (φφφφ,µµµµ)  

[parameter values ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9, θθθθ1=1.53, θθθθ2=2]. 
 

Finally, we consider a combination of parameter values that leads to cycles of no 

identifiable order (chaos) and present an attractor (figure 9) and the time series of both 

technology variables (figures 10 and 11). The chaotic motion is intuitively explained 

under the framework that was proposed; recall that sector A suffers a negative 

externality when at rises above bt and the opposite for sector B, and thus there is a 

permanent conflict between forces of accumulation and externalities that allow variables 

at and bt not to be constant but to fluctuate around a constant value.  

Recall, as well, that at and bt do not grow systematically over time at a positive 

rate, but this does not mean that, on average, technical progress does not exist. Our 

intensive form technology variables are ratios between technology indexes and a human 

capital variable that grows at a positive constant rate. Therefore, the original technology 

variables, At and Bt, evolve over time at a rate that on average is γ, but under a cyclical 

behaviour. In this way, one identifies for the technology variables an evolution process 

that combines a growth trend and endogenous cycles. 
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Figure 9 – Attractor (at, bt)  

[parameter values ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9, φφφφ=0.7, µµµµ=0.3, θθθθ1=1.53, θθθθ2=2].  
 

 
Figure 10 – Time series at.  

[parameter values ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9, φφφφ=0.7, µµµµ=0.3, θθθθ1=1.53, θθθθ2=2]. 
 
 

 
Figure 11 – Time series bt.  
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[parameter values ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9, φφφφ=0.7, µµµµ=0.3, θθθθ1=1.53, θθθθ2=2]. 
 

3.3 Chaos 

 

Mathematicians do not agree on an exact definition of chaos. As Sengupta (2003) 

remarks, nonlinearities in nature and society are pervasive but simultaneously not 

rigorously understood. Because chaotic motion can arise in multiple and sometimes 

surprising forms, there is not a universal definition one can apply to chaos, making this 

phenomenon more a philosophical entity than a mathematical objective notion. For the 

matter at hand, one will take the most consensual definitions in the context of dynamic 

systems. These definitions are gathered from the analysis in Medio and Lines (2001), 

Goenka and Poulsen (2002), Mitra, Nishimura and Sorger (2005) and Gomes (2006b). 

We begin by defining a generic discrete dynamic system xt+1=f(xt)∈X, with X a 

non-empty set and f a map, f:X→X. For this system, the following two definitions of 

chaos apply, 

 

Definition 1 – Topological chaos – the dynamic system xt+1=f(xt) exhibits 

topological chaos if for this system there is an uncountable scrambled set (S⊆X) and a 

periodic point of a period that is not a power of 2. 

 

Definition 2 – Ergodic chaos – the dynamic system xt+1=f(xt) exhibits ergodic 

chaos if one can identify an absolutely continuous Lebesgue probability measure υ on X 

which is invariant and ergodic under f. 

 

A thorough characterization of the properties of chaotic systems is outside the 

scope of this paper. We just discuss briefly the notions needed to understand the above 

definitions. After that, we make reference to the most common tool to inquire about the 

presence of chaos, namely Lyapunov characteristic exponents and present these for 

various combinations of parameter values in our R&D model. 

The notion of topological chaos is associated to the theorem of Li and Yorke 

(1975), which states that any continuous system with a periodic point of period 3 will 

exhibit chaos. This allows for a direct statement about the presence of chaos in the 

previously discussed model. As one realizes looking at figures 7 and 8, there are certain 

regions in the space of parameters where we clearly identify the presence of cycles of 

order 3 (and other odd orders). Under the cited theorem, then there must exist also areas 
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in the parameter space, for the same system, where complete a-periodicity prevails. 

Thus, part of the area in white in figures 7 and 8 is not only an area with periodic points 

of order above 35, but a region of periodicity of no identifiable order, which we 

associate with the notion of chaos (that is, a simple non rigorous definition of chaos 

would be linked to the idea that for some combinations of parameter values if we let the 

deterministic system run for a large number of observations, we will not be able to find 

any regular pattern of evolution). Definition 1 applies only for an uncountable 

scrambled set S. A rigorous definition of a set with these properties can be found in 

Mitra, Nishimura and Sorger (2005) and Gomes (2006b). Loosely speaking, set S 

corresponds to a strange attractor, that is, to an attracting set to which the system may 

converge in the long run that is not either a fixed point or a periodic point of any 

identifiable order. 

 The second definition of chaos is associated with measure theory, that is, to the 

investigation of the statistical properties of groups of orbits. The ergodic approach to 

chaos focus on the probabilistic properties of deterministic systems. We will not explore 

this approach [see Medio and Lines (2001), chapter 9]. To understand definition 2 one 

should clarify that the probability measure υ is invariant if f is a measure preserving 

map with respect to υ (i.e., if, relatively to this measure, sets of a certain size are 

mapped by f into sets of the same size). The invariant measure υ is ergodic if, for every 

measurable set V⊆X satisfying {x∈X|f(x)∈V}=V, it holds that υ(V) ∈{0,1}. 

The previous definitions characterize chaos in a formal way, however they are 

difficult to implement in order to identify the true nature of a deterministic dynamic 

system. Associated to the definition of topological chaos is one of the most widely 

accepted properties of chaotic systems: sensitive dependence on initial conditions 

(SDIC). A system displays SDIC if orbits starting from points that are very close but 

that do not exactly coincide tend to follow different trajectories after a few iterations. Of 

course, in a deterministic system if the initial state is the same for two trajectories, these 

trajectories will be identical throughout the time span that is considered, but if initial 

states are not exactly the same we will have chaotic motion when two trajectories 

rapidly evolve towards states that are not similar at all. 

Because the most common property of chaotic systems is that they tend to display 

SDIC, the most used instrument to evaluate the presence of chaos in a deterministic 

system is a measure of exponential divergence of nearby orbits, that is, Lyapunov 

characteristic exponents (LCEs). The LCEs are analytically defined, for some system of 
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order m, as the following limit, ∏
−

=
∞→

⋅=
1

0

)(ln
1

lim
n

i
i

n
xDf

n
LCEs , where Df(xi) is a m×m 

matrix with elements ∂fj/∂xl, where fj is some function j of the system and xl is some 

variable l of the system.  

In the specific case under analysis, i.e., the R&D system, there are only two 

equations, and therefore one may remark that: 

i) two LCEs are determinable; 

ii ) if both LCEs are negative, there is no divergence of nearby orbits. In this case, 

a fixed point may be observed (obviously, if there is a fixed point nearby orbits do not 

diverge; on the contrary, they will converge to the same equilibrium value). Periodic 

points of various orders will correspond as well to a case where LCEs are negative 

(orbits can converge to one of the p possible long term outcomes, with p the number of 

periods of the cycle); 

iii ) a positive LCE signals that nearby orbits exponentially diverge and, thus, the 

presence of at least one positive LCE relates to the lack of predictability in the system, 

which is often a good argument to support the presence of chaos. 

In table 1, we present Lyapunov exponents for several possibilities regarding 

parameter values.2 All the selected values of parameters reflect situations of chaos, 

given that one of the LCEs is positive in every case. The reader might want to compare 

the results in table 1 with figures 7 and 8 to better perceive where regions of chaos arise. 

Note that the first case in the table is the benchmark case that has allowed drawing the 

time series in figures 10 and 11. The other eight possibilities just change the value of a 

given parameter letting the other remain on their benchmark values. 

 

 θ1 θ2 φ µ LCE1 LCE2 

i 1.53 2 0.7 0.3 0.245 -0.056 

ii 0.8 2 0.7 0.3 0.311 -0.050 

iii 3 2 0.7 0.3 0.125 -0.032 

iv 1.53 2.5 0.7 0.3 0.311 -0.065 

v 1.53 5 0.7 0.3 0.387 -0.038 

vi 1.53 2 0.75 0.3 0.180 -0.052 

vii 1.53 2 0.8 0.3 0.165 -0.050 

viii 1.53 2 0.7 0.4 0.418 -0.044 

                                                 
2  The values in the table were also computed using iDMC. 
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ix 1.53 2 0.7 0.8 0.154 -0.011 

 
Table 1 – Lyapunov characteristic exponents for several combinations of parameter values 

[ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9]. 
 

With the computation of LCEs we confirm the results in previous sub-sections, for 

which the presence of chaos seemed evident. The next step, in the following section, 

consists in associating the R&D setup that was developed to a growth model, as a way 

to generate endogenous real business cycles inside a deterministic capital accumulation 

framework.   

 

4. Capital Accumulation 

 

In this section, we introduce a final goods sector. We are interested in addressing 

the growth implications of bounded technological progress and, therefore, a capital 

accumulation constraint is added to the analysis. We consider an exogenous saving rate 

instead of the Ramsey utility maximization framework. The reason is simple. To 

continue to obtain cycles of various orders as we introduce our technological variables 

into the final goods sector, it is necessary a growth setup that exhibits stability.  

As it is well known, the Ramsey model gives place to a system of two equations, 

describing the movement of physical capital and consumption through time, that is 

characterized by saddle-path stability (the system may in fact be reduced to a one-

dimensional equation describing the time path of the consumption – capital ratio; under 

standard assumptions, this equation is unstable: for any initial state that does not exactly 

coincide with the steady state, the defined ratio will diverge from the long term stable 

locus). The only way to use the consumer optimization problem to characterize growth 

dynamics with meaningful results, under the technology external effects scenario, 

would be to consider that the saddle-path is followed in every circumstance. This does 

not differ significantly from the assumption of an exogenous saving rate. 

Take a standard capital accumulation constraint, 

tttttt KBAsKKK δαββα −⋅=− −−
+

11
1 )( , K0 given. In this equation, Kt defines the available 

amount of capital in period t, 0<s<1 represents the savings rate, δ>0 is the rate of 

capital depreciation and α, β ∈ (0,1) are elasticity parameters. The production function 

in this equation is characterized by labour augmenting technological progress (as a 

simplification, the amount of labour is considered constant and equal to 1). 
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Defining 
t

t
t H

K
k ≡ , the capital accumulation constraint can be written in intensive 

form: [ ]ttttt kbaskk ⋅−+⋅⋅
+

= −−
+ )1()(

1

1 11
1 δ

γ
αββα . Considering reasonable values for the 

saving rate, for the depreciation rate and for the elasticity parameters, one verifies that 

the strange dynamics that characterize the technology system are passed to the growth 

model. To confirm this evidence take a look at the bifurcation diagram in figure 12, the 

attractor in figure 13 and the time path of the capital variable in figure 14. This last 

figure clearly indicates that (for the specific set of parameter values for which the figure 

is drawn) cyclical motion is present in the process of capital accumulation. 

 

 
Figure 12 –Bifurcation diagram (θθθθ1, kt)  [parameter values ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9, φφφφ=0.7, µµµµ=0.3, 

θθθθ2=2, s=0.25, αααα=0.25, ββββ=0.6, δδδδ=0.05, γγγγ=0.05]. 
 

 
Figure 13 – Attractor (at, kt)  [parameter values ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9, φφφφ=0.7, µµµµ=0.3, θθθθ1=1.53, 

θθθθ2=2, s=0.25, αααα=0.25, ββββ=0.6, δδδδ=0.05, γγγγ=0.05]. 
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Figure 14 – Time series kt  [parameter values ψψψψ1=ϕϕϕϕ1=0.5, ψψψψ2=0.95,ϕϕϕϕ2=0.9, φφφφ=0.7, µµµµ=0.3, θθθθ1=1.53, 

θθθθ2=2, s=0.25, αααα=0.25, ββββ=0.6, δδδδ=0.05, γγγγ=0.05]. 
 

Once more, one should emphasize that this is an endogenous growth model, where 

human capital grows at a constant rate and physical capital, through the influence of the 

chaotic motion of technology variables, will grow at a rate that is in average constant, 

although the respective path exhibits fluctuations. Note too that, according to the 

graphic in figure 14, the model allows to replicate short and long run cycles: within 3-4 

periods there are small cycles that co-exist with an overall tendency for larger cycles, 

that can be depicted for several dozens of observations.   

 

5. Final Remarks 

 

The analysis in the preceding sections was motivated by the intuitive idea that 

strong technological imbalances are useless for economic activity. Because the various 

technologies are often complementary, consumers and firms in various sectors prefer 

that technologies be able to keep up with each other. If this does not happen, the 

economic system tends to produce external effects that allow for a convergence process 

between R&D sectors. 

The mechanism just described has served to change the traditional two-sector 

endogenous growth model of innovation and capital accumulation into a framework 

able to characterize endogenous business cycles. The local analysis allowed for 

concluding that in the parameters’ space we encounter regions of full stability and 

saddle-path stability, which are separated by a flip bifurcation line. The global dynamic 

analysis reveals a much more profound set of possible outcomes. Cycles of various 

orders and a-periodic / chaotic motion describe the interaction between the two R&D 
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sectors that is imposed by the external effects, for different parameter values. 

Combinations of parameter values leading to chaos are particularly meaningful, 

indicating that the process through which the outputs of R&D sectors stay close 

conducts to an everlasting process of rise and decline relatively to some benchmark 

average value (that in the case represents a ratio between a technology variable and the 

level of human capital, this one growing at a constant rate in time). 

On a second stage, we have taken the technology indexes time series into a 

conventional production function for goods, with labour augmenting technical progress. 

Immediately one verifies that the dynamic properties underlying innovation are passed 

to a Solow-type capital accumulation constraint and, as a result, endogenous business 

cycles gain a candidate explanation. 

We must emphasize that the obtained results are true under the specific externality 

functions that were presented. While these serve the purpose at hand, it is true that they 

are not subject to direct generalization when other types of external effect functions are 

considered. The undertaken model structure should be interpreted as a possible way to 

combine the perfectly competitive growth setup (that is very useful to characterize 

growth trends but that seems unable to jointly describe the fluctuations that occur 

simultaneously with the growth process), and a kind of ‘market imperfection’ able to 

introduce fluctuations. The presence of negative externalities affecting the leading 

technology sector, as well as positive externalities that make it possible for slow growth 

innovation sectors to catch up was characterized as a possible mean to combine the long 

run growth analysis with the short run presence of fluctuations that are determined only 

by real factors and not by any type of nominal / monetary phenomenon.  
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