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1. Introduction

An insightful analysis made by Jones and Willian2000) have called the
attention for an important fact about investmentR&D and its implications to the
perception we have about economic growth. Asutefi known, frequently we observe
positive externalities associated to the non-rivatiure of technology and knowledge,
and this observation makes us jump to the conatutiat there is an economy wide
receptiveness to innovations: households will lgeee#o gain access to goods that are
technologically more sophisticated, the governmgmtects and stimulates private
investors in R&D and other economic sectors tendrtwide the environment needed
to R&D to be developed to its fullest capacity. Time cited authors emphasize the
relevance of these positive externalities, but tighlight as well that negative
externalities associated to the R&D sector may disoidentified. Namely, the
congestion external effect provoked by patent acamd the eventually too fast
obsolescence of previous generations of knowledglgy act as forces that prevent
society from supporting an accelerated developroénew technologies. If economic
agents perceive technical progress as faster thaat they can keep up to, then
households will lose interest in innovation, theeggmment will attribute less subsidies
to research and business partners will prefer mimae to explore the existent wave of
technology rather than stimulating a new one.

The previous argument can be reinforced with thdl Wweown ‘productivity
paradox’ of Solow (1987) [see Brynjolfsson (199)esnahan, Brynjolfsson and Hitt
(2002) and Gunnarsson, Mellander and Savvidou (R08%hong many others]. The
paradox essentially states that innovation in th@puter and software industries did
not gave place to important productivity gains. $oof the explanations for the
paradox (that were put forward in the papers ciébdve) focus on the idea that the
information and communication technology (ICT) rienmn was not followed by other
complementary innovations, for example related \Wwitlnan capital formation and with
the design and structure of organizations; as altreébe ICT were rejected by many
organizations, who could not find much use in th@fior instance, Bresnahan,
Brynjolfsson and Hitt (2002) found that firms adogt ICT without any other
innovation investment became less productive ti@nfirms maintaining traditional
methods of production]. This is a good example @ivla dynamic R&D sector can
suffer a negative externality if it is not accomjgahby other technical developments.

The truth is that the receptiveness to innovatistisiked to a balanced evolution of the
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various R&D sectors, in such a way that one carcewe an economy wide negative
external effect affecting the leader R&D producarsl, simultaneously, a positive
external effect that allows the follower R&D firns catch up with the first ones (in the
case of the ICT, we can think about computersiasutiting human capital upgrading
and organizational remodelling that without suchmuowunication technologies
revolution would never have happened; this is th&twe external effect).

Having in mind that positive and negative extetresi co-exist in what respects
technological progress, we propose a model of dravith two R&D sectors. The main
feature of this discrete time model is that thecomte of the two sectors should not
depart too much from each other, in the sense tti@tsociety does not tolerate
technological imbalances. Thus, if the output offIR8ectorA is higher than the output
of R&D sectorB, a negative externality to the production of knedge arises in sector
A and, simultaneously, a positive externality canfdaend in sectoB, and the other
way around if in a given moment the second sestdhé more productive one. With
this framework, we will be able to justify the peese of endogenous business cycles in
a conventional economic growth framework.

This work intends to contribute to the literatuhatt attempts to explain cycles
under a deterministic growth model, and thus itrapphes the analysis undertaken,
among others, by Christiano and Harrison (1999§)n8it-Grohé (2000), Guo and
Lansing (2002), Cellarier (2006) and Gomes (Z)0@he novelty, relatively to the
referred papers, is that cycles are not determimedinal goods sector externalities,
specific conditions of the labour market, learnmgchanisms or conditions of demand,
but, as stated, by the simultaneous presence dafygoand negative externalities in the
production of knowledge, which produce a tendenmy different R&D sectors to
evolve at a similar pace.

Furthermore, one should stress that the analysisindertaken under the
conventional growth setup, i.e., resorting to a petitive economy environment, where
the several production functions to assume exhdnstant returns to scale. In this way,
the search for non linear dynamics is made undexraework that approaches the one
that is taken, among others, by Nishimura and Y@®®5) and Boldrin, Nishimura,
Shigoka and Yano (2001), that is, the standard &&ln growth model. This approach
neglects market inefficiencies of the Keynesianetymominal rigidities, price
stickiness, strategic complementarities and coatahin failures) and departs also from
the Real Business Cycles (RBC) theory, since tladyais is fully deterministic: there

are no stochastic variables underneath the fluchstthese are generated by purely
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deterministic relations. Nonlinear deterministicndynics were first addressed in
economics, and more precisely with regard to bgsimgcles, with an influent strand of
theory introduced along the 1980s and early 198@gzer (1980), Benhabib and Day
(1981), Day (1982), Grandmont (1985), Baumol anadhiBdib (1989), Boldrin and
Woodford (1990), Chiarella (1992) and Bullard andtl8& (1993), just to cite some of
the most prominent contributions.

The paper is organized as follows. Section 2 pteséme model; section 3
characterizes the dynamics underlying the two-seR&D activity, when externalities
are present. First, local dynamics in the steadtesticinity are addressed, and, on a
second moment, we discuss the global propertigheotdlynamic system; we will be
particularly concerned with the chaotic featuresthef model; section 4 introduces a
capital accumulation constraint to further chamaegethe economic implications of the
proposed setup; finally, section 5 concludes.

2. The Model

We consider an economy populated by infinitely divagents where human
capital, H;, grows at a constant ray0, that is,H,,, —H, = JH,, Ho given. In this
economy there are two technological sect@sagd B). In the absence of external
effects, these sectors can be described by acctiomujarocesses similar to the ones
generally presented in growth models [see, e.gmdr0(1990) and Jones (1995)]:
A, - A =f"(A,H)-pA, A given, andB,, - B, = f*(B,,H,) - 0B,, By given, with
>0 and 0>0 obsolescence rates. Cobb-Douglas productiontiimsc are assumed:
f1(A,H,) = g,A°(UH,)"” and f2(B,H,) = g,B*[@-u)H,[". Parameteu is the
share of human capital used to produce technologg 4; g; andg, are positive values
andg 0 (0,1).

Under diminishing marginal returns to technologyd ahuman capital, the
dynamics of the above system are easily ident#ialol concrete, a unique stable steady
state is attainable, independently of the initiates. This means that, like human capital,

both R&D variables will grow in the long run at tekame ratg. Constant technology —

1(1-¢)
=u Eﬁgj and
P

human capital ratios would define the steady statais:

|| >l
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= (1)

B L .

ﬁ: L-u) [éij . These results are trivial in the literature abeatiogenous
o

growth and they are mainly the outcome imposedhleyperfectly competitive market
structure that this setup implicitly considers.

Now, take the arguments in the introduction, ig&ssume that if, in a given
moment, sectoA generates a larger output than seBtidhen a positive externality will
be associated with sectBrand a negative externality will be present in @eét (and
the other way around, if sectBris the dominant sector in a given time period). We

modify the R&D equations to include the externati

A\+1_A = fl(A,Ht)DEl(A,Bt)—pA and Bt+1_Bt = fz(Bt’Ht)DEZ(A\’Bt)_OBt'

The externality terms are defined as followfS(A ,B,) =1+6, mrcta{uj

t

and é*(A,B,) =1+6, @rcta{%]. Parameters} and & are positive constants.
t
The shape of the externality functions serves oup@ses: ifA=B; then no externalities
exist and we have a conventional competitive modléhen the two technology
variables have different values, functigh i=1,2, will represent a quantity below or
above one, depending on the level of technologh@fsector being above or below the
other sector’s technology level, which reflectspectively, the presence of negative or
positive externalities related to each R&D sector.

The externality function for secta is represented in figure 1. We observe that
the externality is positive (the term associatetht production function is larger than
1) when the output of the considered technolodaag! is lower than the output of the
other R&D sector, and that the externality is negaithe term associated to the
production function is smaller than 1) when thepotitof the considered technological
level is above the output of the other R&D sector.

g(1

N
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Figure 1 — Externality function for R&D sector A.

A

. B L :
Defining a, EH— and b, EH—t, the problem can be presented in intensive form,
t t

{aﬁl Yaf ' (a.b) +y,a, with £'(a,,b) =1+ 6, arctarfb, -a,),

b, = 4.0 F2(a,,b) + d,b,

2(a b)) = _ _gu” e, g M-uT
£%(a,b) =1+6, [arctafa, -b), ¢, = vy w2—1+y, ¢, = vy and

1-0

¢=1s,

The previous system produces nonlinear dynamictsegbit are explored in the

next section.
3. Dynamics

Local stability properties of the two-sector R&Doplem with externalities are
first addressed. Subsequently, we take a look sgiple global dynamics outcomes.

3.1 Local Analysis

To study local dynamics one should determine thadstestate paifa,b). This

pair is the solution of the system,

1_l//2 ml—¢ _i
6, [, o

arctan —b) = 1-9. B -t
6,1y, o,

around zero, the conditioarctanp —a) +arctan —b) =0 is true and can be used to

arctanb —-a) =

=

; since the function arctan(.) is symmetric

obtain long run constant values for the variabMghough the computation does not
allow to get explicit valuea,b) unless specific parameter values are attributeldaan
extrapolation process is used, it is straightfodmar perceive that the equilibrium exists
and it is unique. In what follows, we will use thair of positive valuega,b) as it is,

without presenting it as combinations of parameters
The linearization of the R&D equations in the steatgte vicinity yields the

following matrix system,
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an-al_|m-w @ a-a
{bﬁl —5} { w, o, —a)jEEbt —5}'
wih = BP0 =B = o) 40, 1, = H 09,
all positive quantities.

Conditions for stability, that is, conditions undehich the eigenvalues of the
Jacobian matrix are inside the unit circle, cangbesn in terms of the trace and

determinant of this matrix (that we designatelpyas follows
1+Tr(J)+Det(J) >0=1+n, +n, +n.0, > w, + @, + W, + wyl),
1-Tr(J)+Det(J) >0=>1+w +w, +n,n, >N, +n, + Wi, + wn,
1-Det(J) >0=1+wn, + w,n, >N,

To guarantee diminishing marginal returns in eacte af the production
functions, the following constraints appls<1 ands»<1. Under these two conditions,
the second and third presented inequalities arayawsatisfied. Only the first one can
be a true or a false relation for different setpafameter values. Note, as well, that
complex roots for the characteristic equation ar@ueled, and thus both eigenvalues
are real numbers; this IS true given that:
Tr(J)? - 4Det(J) = (v, —w, =1, +1,)* +4ww, >0.

Figure 2 draws the standard diagram of stabilitRin
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Det(J)

R(J)Z-ArDet(J):D
1 /

1-Det(J)=0

-1 statfle nod 1 Tr(J)

Saddle-path

1—Tr(J)+Det(J)=/ 1+Tr(J)+Det(J)=0

Figure 2 — Local stability dynamics.

As figure 2 allows to perceive there are only twpeis of results that are possible
in what respects local dynamics. The stable noda eperesponds to the case where
condition 1+Tr(J) + Det(J) >0 is satisfied. The area of saddle-path stability is
accomplished forl+Tr(J) + Det(J) < OThe areas in grey are not possible stability
locations for our system, because they corresponedions where the other stability
conditions are violated, what does not happen irpooblem.

In what concerns bifurcation analysis, one condudbat Neimark-Sacker
bifurcations are outside the scope of our systeecabise complex eigenvalues were
excluded from the feasible set of outcomes; alstd, fpitchfork and transcritical
bifurcations are impossible to obtain, given thadition 1-Tr(J) + Det(J) = 0 never
holds. This leaves us with the possibility of g fhifurcation, when the following
condition is satisfied: 1+n7, +n, +n.n, =@ +w, +wn, + wn,. Combining the
condition for a flip bifurcation with the otherdweys satisfied, stability conditions, one
observes that the presence of a flip bifurcatiauies that inequalityy, + w, >n, +1,
must hold.

Our generic analysis of local stability can be bgsized in two main results:

0] The R&D system with externalities supports only ttypes of stability

(stable node and saddle-path);
(i) The transition between the two types of stabilitgas occurs through a

flip bifurcation.
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Imposing some simplifying assumptions one can aaljurther the local
properties of the difference equations system. @enshe particular case in which
n, =n, =n. In this case, the eigenvalues can be presentedgh simple expressions
and the analysis of stability can be made direatith them. The eigenvalues of the
Jacobian matrix are, under the imposed constraint 7 and A, =n-w, - w,. The
first eigenvalue is always inside the unit cirdlee second is inside the unit circle if the
following condition is satisfiedw, + w, >1+n. This is the condition for stable node
stability. If the inequality is of opposite sigrhein saddle-path stability is observed.
Figure 3 represents areas of stability in the sp#Ecparameters(w,w,). The line
separating the two regions corresponds to thedafion; note that this line is as much

far from the origin as the higher is the value afgmeter;.

(1%

1+n

Stable node

Saddle-path

1+n [

Figure 3 — Regions of stable node stability and sdte-path stability in the space of parameters.

To end our local dynamic analysis, we calculatestadle arm when saddle-path

stability holds. To proceed with this computatiome determine an eigenvector

associated to the eigenvalue inside the unit cindfe obtain p={1 m}

The second element of the eigenvector is the sbbplke stable arm, that is, the stable

_6:/71_0-)1

. : -A _
trajectory can be written ab, L [{a, —a). The convergence to the

equilibrium point is characterized by a same gatie movement of both technology
variables if the conditions, -4, >« is met. Otherwise, fornp, —A, <a, the

adjustment to the steady state is described byarse relation between the evolution

of technology variabledy rises wherg; declines, or the other way around.
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In the particular case, =7,, the stable trajectory simplifies tg -b =a-a,,

that is, assuming that the stable trajectory i¥atd, a unit positive change in one of
the R&D variables occurs simultaneously with a umgative change on the other
technology index.

Also the unstable trajectory can be computed; thjson the general case,

b -b :mﬂa[ -a) and, on the simplified versior, —b :%EQa[ -a).
Figure 4 illustrates the dynamics of the saddldérpedise (under the less general
formulation of the problem); in this diagram, odentifies a positively sloped unstable
arm and a negatively sloped stable trajectory ith&llowed only if the initial state of

the system is placed over such stable trajectory.

n

&

Figure 4 — Phase diagram in the saddle-path case.

Assuming that initial values of technology are belheir steady state outcomes,
instability means, according to figure 4, that tealogical conditions will progressively
deteriorate. Under a policy point of view, the autties have, in this case, the task of
guaranteeing full stability; policy parameters ddode manipulated in order to

guaranteey, + w, >1+7, and in this way make it possible for the R&D sestto work

in order to accomplish the correspondent steadg stahnology values.

3.2 Global Dynamics

The local analysis is misleading. While this caityanake the separation between

regions of stability and instability (more rigordyissaddle-path stability), a global
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dynamic analysis reveals a huge set of long terssipdities including periodic and a-
periodic cycles. The analysis one can undertakeghvbal level is essentially graphical
and based on numerical examples. For specific peteanvalues, we illustrate global
dynamics with figures 5 to 11The graphical presentations give just an illugirabf
the immense set of possible results, when paramalaes are varied. In particular, it is
important to emphasize that cycles of various aréee obtainable.

In figures 5 and 6 bifurcation diagrams are drawe selected bifurcation
parameter ig9, but choosing other bifurcation parameters (nanéelyy or ) would
allow as well to obtain meaningful results. For tase in appreciation, we find for both
variables that cycles of low order (order two oder four) alternate with cycles of
higher order or without any identifiable order. Gtia motion arises for some values of
the chosen parameter, a result that will be reagfdrwith the following graphical

presentations.

0 il

tetal

Figure 5 —Bifurcation diagram (8, a,)
[parameter values¢s=¢,=0.5, ¢6=0.954,=0.9, ¢=0.7, 1=0.3, 6,=2].

! These figures, as well as figures 12 to 14, wrawn using iDMC (interactive Dynamical Model
Calculator). This is a free software program avddaat www.dss.uniud.it/nonlinearand copyright of
Marji Lines and Alfredo Medio.
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30
25
20 1
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10

075 100 125 150 175 200 225 250 275 300 325
tetal

Figure 6 —Bifurcation diagram (8, by)
[parameter values¢y=¢,=0.5, 46b=0.954,=0.9, ¢=0.7, 1=0.3, 6,=2].

Figures 7 and 8 present diagrams that identifyh s#veral colours, cycles of
various orders in the space of parameters; in digidr one identifies different
periodicities for the parameters associated wighetkiernality terms; in figure 8, a same
analysis is undertaken for the elasticities in B&D production functions. For both
cases, one is able to confirm the richness of tmaumhic results; for small changes in
parameter values, the system passes from fixed ptability to cycles of low order,
cycles of high periodicity and instability. The &analysis, where only fixed point and
instability outcomes could be identified, did ndow for perceiving that in many cases

strange dynamics effectively arise.

teta2

oo o5 10 15 20 25 30 35 40 45 50
tetal

H1 Wz 3 4 5 M6 7 2 W Wm0 m111 w1z 13

Hi4 W15 WH1s W17 W18 19 20 21 22 23 Hz4

W25 W2 EZ7 E2E Ez20 a0 <k az jeke] 34 a5
»35 Winfinity

Figure 7 — Cycles in the space of parametergy 6)
[parameter values ¢4=¢,=0.5, 6=0.95¢,=0.9, ¢=0.7, 1=0.3].
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1,00
N

H1 Wz 3 4 5 M6 7 2 W Wm0 m111 w1z 13

Hi4 W15 WH1s W17 W18 19 20 21 22 23 Hz4

W25 W2 EZ7 E2E Ez20 a0 <k az jeke] 34 a5
»35 Winfinity

Figure 8 — Cycles in the space of parameterga)
[parameter values¢y=¢,=0.5, $6=0.95¢,=0.9, =1.53, 6=2].

Finally, we consider a combination of parameteugalthat leads to cycles of no
identifiable order (chaos) and present an attratgure 9) and the time series of both
technology variables (figures 10 and 11). The dbawoiotion is intuitively explained
under the framework that was proposed; recall wettor A suffers a negative
externality whena; rises abovey and the opposite for sect& and thus there is a
permanent conflict between forces of accumulatiwh externalities that allow variables
a; andb; not to be constant but to fluctuate around a e@onstalue.

Recall, as well, thad andb; do not grow systematically over time at a positive
rate, but this does not mean that, on averageniahprogress does not exist. Our
intensive form technology variables are ratios leefmvtechnology indexes and a human
capital variable that grows at a positive constaté. Therefore, the original technology
variables A, andB;, evolve over time at a rate that on average sut under a cyclical
behaviour. In this way, one identifies for the teclogy variables an evolution process

that combines a growth trend and endogenous cycles.
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24 1
23

22 1

20 1

19 1

18

18 19 20 21 22 23 24 265 26 27 28 20 30 31 32
4

Figure 9 — Attractor (a, by)
[parameter values¢4=¢;=0.5, §%=0.95#$,=0.9, ¢=0.7,1=0.3, 6,=1.53, 8,=2)].

30,0 49

2751

= AR

20,0 1

17.5 1

1000 1025 1050 1075 1100
time
Figure 10 — Time seriesy.
[parameter values¢s=¢,=0.5, $6=0.95¢,=0.9, ¢=0.7, =0.3, 8,=1.53, 6,=2].

24,0 1
2351
2307
2251

2207
215 1 ﬂ
21019

205 1
200 19
19.5 1
19,0 1
18,5
18,0 7
17.5 1

1000 1025 1050 1075 1100
fime

Figure 11 — Time seried,.
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[parameter values¢s=¢,=0.5, $=0.95¢,=0.9, ¢=0.7, =0.3, 8,=1.53, 6,=2].

3.3 Chaos

Mathematicians do not agree on an exact definochaos. As Sengupta (2003)
remarks, nonlinearities in nature and society agevgsive but simultaneously not
rigorously understood. Because chaotic motion a@edn multiple and sometimes
surprising forms, there is not a universal defamtone can apply to chaos, making this
phenomenon more a philosophical entity than a nnadltieal objective notion. For the
matter at hand, one will take the most consensefahitions in the context of dynamic
systems. These definitions are gathered from tladysis in Medio and Lines (2001),
Goenka and Poulsen (2002), Mitra, Nishimura an@)&o{2005) and Gomes (208)6

We begin by defining a generic discrete dynamidesysq. 1=f(x)0X, with X a
non-empty set antfla map,f:X- X. For this system, the following two definitions of

chaos apply,

Definition 1 — Topological chaos — the dynamic systeam=f(x) exhibits
topological chaos if for this system there is asaumtable scrambled s (X) and a

periodic point of a period that is not a power of 2

Definition 2 — Ergodic chaos — the dynamic system=f(x) exhibits ergodic
chaos if one can identify an absolutely continuloeisesgue probability measuwson X

which is invariant and ergodic under

A thorough characterization of the properties ohdatit systems is outside the
scope of this paper. We just discuss briefly theons needed to understand the above
definitions. After that, we make reference to theshcommon tool to inquire about the
presence of chaos, namely Lyapunov characterigiiorents and present these for
various combinations of parameter values in our R&@del.

The notion of topological chaos is associated ® ttieorem of Li and Yorke
(1975), which states that any continuous systerh wiperiodic point of period 3 will
exhibit chaos. This allows for a direct statemembd the presence of chaos in the
previously discussed model. As one realizes lookinfigures 7 and 8, there are certain
regions in the space of parameters where we clédelhtify the presence of cycles of

order 3 (and other odd orders). Under the citedrdra, then there must exist also areas
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in the parameter space, for the same system, wdwrplete a-periodicity prevails.
Thus, part of the area in white in figures 7 anid 8ot only an area with periodic points
of order above 35, but a region of periodicity af mentifiable order, which we
associate with the notion of chaos (that is, a Bmmwn rigorous definition of chaos
would be linked to the idea that for some comboratiof parameter values if we let the
deterministic system run for a large number of olet@ons, we will not be able to find
any regular pattern of evolution). Definition 1 &pp only for an uncountable
scrambled se8. A rigorous definition of a set with these propestcan be found in
Mitra, Nishimura and Sorger (2005) and Gomes (PDO&oosely speaking, seb
corresponds to a strange attractor, that is, tataacting set to which the system may
converge in the long run that is not either a fiymmnt or a periodic point of any
identifiable order.

The second definition of chaos is associated widasure theory, that is, to the
investigation of the statistical properties of guewf orbits. The ergodic approach to
chaos focus on the probabilistic properties of heiteistic systems. We will not explore
this approach [see Medio and Lines (2001), cha@tero understand definition 2 one
should clarify that the probability measueis invariant iff is a measure preserving
map with respect tw (i.e., if, relatively to this measure, sets of ertain size are
mapped by into sets of the same size). The invariant measusesrgodic if, for every
measurable s&fl1X satisfying &OX|f(x)IV}=V, it holds that(V) [0,1}.

The previous definitions characterize chaos in ran& way, however they are
difficult to implement in order to identify the ®unature of a deterministic dynamic
system. Associated to the definition of topologicabkos is one of the most widely
accepted properties of chaotic systems: sensitegemtlence on initial conditions
(SDIC). A system displays SDIC if orbits startimgprh points that are very close but
that do not exactly coincide tend to follow diffatérajectories after a few iterations. Of
course, in a deterministic system if the initialtstis the same for two trajectories, these
trajectories will be identical throughout the tirmpan that is considered, but if initial
states are not exactly the same we will have chawottion when two trajectories
rapidly evolve towards states that are not sinataall.

Because the most common property of chaotic sysiethst they tend to display
SDIC, the most used instrument to evaluate theepias of chaos in a deterministic
system is a measure of exponential divergence afbyeorbits, that is, Lyapunov

characteristic exponents (LCEs). The LCEs are &ically defined, for some system of
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|”ij )

matrix with element®fj/dx, wheref; is some function of the system ang is some

orderm, as the following limit, LCEs= IimlEI]n
nN-o N

, WhereDf(x) is amxm

variablel of the system.

In the specific case under analysis, i.e., the R&Btem, there are only two
equations, and therefore one may remark that:

i) two LCEs are determinable;

i) if both LCEs are negative, there is no divergeofceearby orbits. In this case,
a fixed point may be observed (obviously, if thexa fixed point nearby orbits do not
diverge; on the contrary, they will converge to game equilibrium value). Periodic
points of various orders will correspond as wellatacase where LCEs are negative
(orbits can converge to one of thgossible long term outcomes, wiglthe number of
periods of the cycle);

iii) a positive LCE signals that nearby orbits expdoia#iy diverge and, thus, the
presence of at least one positive LCE relatesadabk of predictability in the system,
which is often a good argument to support the presef chaos.

In table 1, we present Lyapunov exponents for sgvpossibilities regarding
parameter valuesAll the selected values of parameters reflectasioms of chaos,
given that one of the LCEs is positive in everyecaghe reader might want to compare
the results in table 1 with figures 7 and 8 todrepierceive where regions of chaos arise.
Note that the first case in the table is the berashnocase that has allowed drawing the
time series in figures 10 and 11. The other eigissbilities just change the value of a

given parameter letting the other remain on theirdhmark values.

& & ) U LCE1l LCE2

[ 1.53 2 0.7 0.3 0.245 -0.056
i 0.8 2 0.7 0.3 0.311 -0.050
ii 3 2 0.7 0.3 0.125 -0.032
\Y 1.53 2.5 0.7 0.3 0.311 -0.065
% 1.53 5 0.7 0.3 0.387 -0.038
Vi 1.53 2 0.75 0.3 0.180 -0.052
Vi 1.53 2 0.8 0.3 0.165 -0.050
viii 1.53 2 0.7 0.4 0.418 -0.044

2 The values in the table were also computed UEIMLC.
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IX 1.53 2 0.7 0.8 0.154 -0.011

Table 1 — Lyapunov characteristic exponents for s@ral combinations of parameter values

[¢4=¢1=0.5, 46=0.95,=0.9].

With the computation of LCEs we confirm the resuttprevious sub-sections, for
which the presence of chaos seemed evident. Thieste, in the following section,
consists in associating the R&D setup that was ldpee to a growth model, as a way
to generate endogenous real business cycles iagigéerministic capital accumulation

framework.

4. Capital Accumulation

In this section, we introduce a final goods secide are interested in addressing
the growth implications of bounded technologicabgress and, therefore, a capital
accumulation constraint is added to the analysis.cdhsider an exogenous saving rate
instead of the Ramsey utility maximization framekoihe reason is simple. To
continue to obtain cycles of various orders as mwduce our technological variables
into the final goods sector, it is necessary a ginasetup that exhibits stability.

As it is well known, the Ramsey model gives plazatsystem of two equations,
describing the movement of physical capital andsaamption through time, that is
characterized by saddle-path stability (the systeay in fact be reduced to a one-
dimensional equation describing the time path efabnsumption — capital ratio; under
standard assumptions, this equation is unstabierfp initial state that does not exactly
coincide with the steady state, the defined ratiib diverge from the long term stable
locus). The only way to use the consumer optimiraproblem to characterize growth
dynamics with meaningful results, under the tecbgyl external effects scenario,
would be to consider that the saddle-path is folldwn every circumstance. This does
not differ significantly from the assumption of @xogenous saving rate.

Take a standard capital accumulation constraint,
K., — K, =sK? QA’B™)" - X,, Ko given. In this equatiork, defines the available
amount of capital in perioti 0<s<1 represents the savings rate,0 is the rate of
capital depreciation and, S (0,1) are elasticity parameters. The productiarction

in this equation is characterized by labour augmgntechnological progress (as a
simplification, the amount of labour is considepeshstant and equal to 1).
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Defining k, EH—t, the capital accumulation constraint can be writteintensive
t

form: k,,, = ﬁ/[ﬁsk{’ qa’b ") + (@1-9) Elkt]. Considering reasonable values for the

saving rate, for the depreciation rate and forelasticity parameters, one verifies that
the strange dynamics that characterize the techpagstem are passed to the growth
model. To confirm this evidence take a look athffarcation diagram in figure 12, the
attractor in figure 13 and the time path of theitdpvariable in figure 14. This last
figure clearly indicates that (for the specific séparameter values for which the figure
is drawn) cyclical motion is present in the procefssapital accumulation.

gn-\-.
B0
70
&0
< &0 A
a0

30

20 1
10 1

1265 1580 175 200 225 250 275 300 325
tetal

Figure 12 —Bifurcation diagram (8, ki) [parameter valuesyy=¢;=0.5, §»=0.95#,=0.9, ¢=0.7, 14=0.3,
6=2,5=0.25,a=0.25,=0.6, 5=0.05, )=0.05].
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Figure 13 — Attractor (a, ki) [parameter valuesgy=¢;=0.5, ¢46=0.95#,=0.9, ¢=0.7, 0.3, 6,=1.53,
6=2,5=0.25,a=0.25,4=0.6, 5=0.05, )=0.05].
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1000 1025 1050 1075 1100
time

Figure 14 — Time seriek, [parameter valuesygy=¢,=0.5, 6=0.95#,=0.9, ¢=0.7, 4=0.3, 6=1.53,
6-=2,50.25,a=0.25,4-0.6,50.05, )=0.05].

Once more, one should emphasize that this is angemdus growth model, where
human capital grows at a constant rate and physagatal, through the influence of the
chaotic motion of technology variables, will growaarate that is in average constant,
although the respective path exhibits fluctuatioN®te too that, according to the
graphic in figure 14, the model allows to replicab®rt and long run cycles: within 3-4
periods there are small cycles that co-exist withogerall tendency for larger cycles,

that can be depicted for several dozens of obsenst

5. Final Remarks

The analysis in the preceding sections was motivate the intuitive idea that
strong technological imbalances are useless fan@o@ activity. Because the various
technologies are often complementary, consumersfiemd in various sectors prefer
that technologies be able to keep up with eachrotiighis does not happen, the
economic system tends to produce external effeettsalow for a convergence process
between R&D sectors.

The mechanism just described has served to chdmeérdditional two-sector
endogenous growth model of innovation and capitalumulation into a framework
able to characterize endogenous business cycles. Id¢al analysis allowed for
concluding that in the parameters’ space we eneourgions of full stability and
saddle-path stability, which are separated bypatifurcation line. The global dynamic
analysis reveals a much more profound set of plessibtcomes. Cycles of various

orders and a-periodic / chaotic motion describeitiberaction between the two R&D
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sectors that is imposed by the external effects, diferent parameter values.
Combinations of parameter values leading to cha@s marticularly meaningful,
indicating that the process through which the otstpof R&D sectors stay close
conducts to an everlasting process of rise andirdecelatively to some benchmark
average value (that in the case represents abatween a technology variable and the
level of human capital, this one growing at a canstate in time).

On a second stage, we have taken the technologxesdtime series into a
conventional production function for goods, withhdar augmenting technical progress.
Immediately one verifies that the dynamic propertiderlying innovation are passed
to a Solow-type capital accumulation constraint,aasla result, endogenous business
cycles gain a candidate explanation.

We must emphasize that the obtained results ageuttder the specific externality
functions that were presented. While these sem@tinpose at hand, it is true that they
are not subject to direct generalization when otiyees of external effect functions are
considered. The undertaken model structure shoailohterpreted as a possible way to
combine the perfectly competitive growth setup t(tlsavery useful to characterize
growth trends but that seems unable to jointly diescthe fluctuations that occur
simultaneously with the growth process), and a lohdmarket imperfection’ able to
introduce fluctuations. The presence of negativeerarlities affecting the leading
technology sector, as well as positive externalitieat make it possible for slow growth
innovation sectors to catch up was characterizedsssible mean to combine the long
run growth analysis with the short run presencéuatuations that are determined only

by real factors and not by any type of nominal hetary phenomenon.
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