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Abstract 

We assume an environment where the current value of an aggregate nonstationary variable is generated by weighting 
the behavior of a large set of agents who choose to form expectations resorting to more or less outdated information 
concerning the state of the economy. Agents using recent information are able to produce expectations with a strong 
component of perfect foresight; agents resorting to outdated information will use predominantly the time series of the 
assumed variable to learn its long-term value. The main result is that a strong degree of information stickiness may 
imply a departure from stability (a Neimark-Sacker bifurcation occurs).
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1 Introduction

Following the literature on learning equilibria [Bullard (1994), Schonhofer (1999), Tuinstra and
Wagener (2007)], we address the dynamics of a simple deterministic model involving expecta-
tions. A large set of agents is considered, all possessing knowledge about past realizations of the
assumed endogenous variable; this allows them to learn, resorting to a least squares estimation,
the expected long-term growth rate of the variable (which is assumed to be non-stationary).
Besides the knowledge on the time series of the aggregate, agents have access to additional

information on the state of the economy; at this level we �nd heterogeneity: each agent updates
this second set of information only sporadically, at some random time moments. If this infor-
mation is recent, it allows to form expectations with a strong component of perfect foresight;
if such information is outdated, then agents cannot rely on it to make an accurate forecast on
the current value of the variable and, therefore, they will instead resort to the time series of the
endogenous variable to learn its steady state growth rate (the present moment is seen as the
long-run, a state that the agent knows to be characterized by a constant growth rate, although
the value of this rate is not known, and hence it has to be learned).
The information updating setup will be similar to the sticky-information framework used

in Mankiw and Reis (2002, 2006, 2007) to study agents� inattentiveness in monetary policy
settings. A given parameter, representing the share of agents that in some moment update
their information set, will translate the degree of information stickiness.1

The relevant presented result is that combining inattentiveness and least squares learning
allows to encounter a Neimark-Sacker bifurcation separating, in the parameters space, a region
where stability holds from an area where local instability is evidenced. A global inspection of
the dynamic properties in the unstable area indicates that endogenous �uctuations are likely to
arise after the bifurcation line is crossed. Given the chaotic nature of such �uctuations, one may
expect them to persist if one accounts for the self-ful�lling mistake argument of Grandmont
(1998).2 Loss of stability will require a high degree of information stickiness, i.e., a small share
of agents updating their information set at each time moment.
The remainder of this note is organized as follows. Section 2 characterizes the way in

which information stickiness changes an otherwise simple constant growth setting. Section 3
introduces the least squares regression and presents the derived dynamic system. Section 4
highlights the main dynamic results and, �nally, section 5 discusses the implications of the
analyzed setup.

2 The Sticky-Information Framework

Assume an economy where agents need to know the current value of some non-stationary
variable x 2 R+. Under perfect foresight, this variable will grow over time at a rate  > 0.
To generate a forecast on xt, each agent has two sets of information: (i) every agent possesses

knowledge about past values of x: xt�1; xt�2; :::; (ii) agents have other information on the state

1It is important to clarify that, in the development of the analysis, the Mankiw-Reis framework will simply
provide the notion of information stickiness. We then depart from such framework by assuming that expectations
are not, in every circumstance, formed under an environment of perfect foresight / rational expectations (this
environment constitutes the setting under which all the results of the Mankiw-Reis monetary policy setup are
built upon).

2We refer to this argument in section 5.
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of the economy that helps on predicting the true value of x at time t. Regarding this second
information set, heterogeneity on the timing of information updating is assumed; an agent that
last updated her information set j periods ago, will form an expectation that in terms of the
knowledge about the economic environment goes back to t� j. We denote this expectation by
Et�jt (xt). It should be emphasized that E

t�j
t (xt) is the evaluation made at the beginning of

period t concerning the current value of x, when the agent knows all past realizations of x and
she has gathered, j periods ago, information concerning the forces governing the evolution of
the variable. One may think of information that is easy to process (the observed time series of
the variable) and information that requires additional e¤ort to obtain, and therefore is collected
only sporadically in time.
In this information stickiness scenario, at each past time period, a share of agents � 2 [0; 1]

collects information on the state of the economy and forms expectations accordingly (i.e., using
such past information). The closer the value of � is to 1, the more �exible or less sluggish is
information dissemination. Reis (2006) demonstrates that if the economy is populated by many
agents then the distribution of information updating converges to a Poisson distribution. Such
�nding implies that each agent has an equal probability of being one of the agents updating
information at a given moment, independently of the timing of the last update.
Under the Poisson process, the weighted average of the expectations of each agent, which

constitutes the truly observed value of the variable at t, will be

ext = � 1X
j=0

(1� �)jEt�jt (xt) (1)

Two extreme situations are admissible. First, agents will update their information today.
This implies that they have full knowledge about the current state of the economy and, thus,
they know that the value of x is e¤ectively xt (there is perfect foresight): Ett(xt) = xt. On
the other extreme, agents have updated their information set in�nitely far in the past and
consequently they have no knowledge on the current state of the economy except for the observed
time series of x through t� 1. Thus, they will attempt to learn the long-term growth rate of x,
which is assumed constant. We have initially stated that the variable should grow over time at
rate , if perfect foresight prevails. Thus, agents will believe that the true dynamic process is
such that the system converges in the long-run to a constant growth rate result; however, they
do not know the value of this rate and therefore they will estimate it. The adopted perceived
law of motion (PLM) is bxt+1 = �tbxt, with bxt+1=bxt the expected gross rate of growth of variable
x; � is the parameter to estimate (convergence to the perfect foresight equilibrium implies
� = 1 + ). The referred second limit case is, thus, lim

J!1
Et�Jt (xt) = bxt.

Between the two assumed limit cases, one might conceive a continuum of possibilities, where
the more j is close to zero the more forecasts approach perfect foresight and where, on the
contrary, the higher is the value of j the stronger will be the in�uence of learning. The equation
that follows intends to translate this reasoning,

Et�jt (xt) = x
1=(1+j)
t bxj=(1+j)t (2)

Expression (2) attributes di¤erent weights to a perfect foresight component and to a learning
component in the prediction of x, given the time moment in which information about the state
of the economy was last collected.
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By noticing that

1X
j=0

 
(1� �)

�bxt
xt

�1=(1+j)!j
'
�bxt
xt

�1��,
� (3)

we can write expression (1) as

ext ' x�t bx1��t (4)

The displayed approximation, (3), is a good approximation under the assumption that bxt
does not depart signi�cantly from xt. In fact, if bxt = xt, then 1P

j=0

(1 � �)j = 1
�
. For values of

bxt di¤erent from xt, the quality of the approximation falls as the values of the two variables
diverge. Consider, as an example, the cases where bxt is 1% above and 1% below xt (and let
� = 0:75; any other value of � conducts to the same type of results); in these cases we obtain,
respectively,

i)
� bxt
xt

�1���
� = 1:3366;

1P
j=0

�
(1� �)

� bxt
xt

�1=(1+j)�j
= 1:3352.

ii)
� bxt
xt

�1���
� = 1:3300;

1P
j=0

�
(1� �)

� bxt
xt

�1=(1+j)�j
= 1:3315.

We observe that if bxt and xt possess values close to each other, equation (3) provides a
reasonable approximation. Thus, (3) arises under the assumption that the considered agents
are able to generate forecasts on xt through learning that are not too divergent from the observed
value. Since the learning mechanism allows bxt to approach xt as additional data is collected,
then the quality of the approximation is guaranteed by assuming that the initial value bx0 is
located in the vicinity of x0.
Equation (4) reveals that the degree of information stickiness is vital in determining the

observed value of x (i.e., ex). Complete information �exibility (� = 1) is synonymous of perfect
foresight / rational expectations; complete information stickiness (� = 0) implies that no in-
formation exists besides the knowledge on the past behavior of x, and therefore only learning
about the growth rate of x matters. The reasonable assumption that some intermediate degree
of information stickiness exists implies that the observed value of the variable is a weighted
geometrical average of a perfect foresight forecast and of a value obtained through learning; the
weights relate to the extent of inattentiveness.
Because the true observed value of the considered variable is ext, it will be this value that

will presumably grow at rate  in the steady state; thus, we should take ext+1 = (1 + )ext as
the actual law of motion (in the long-run). This is equivalent to (5), given (4),

xt
xt�1

' (1 + )1=�
�bxt�1bxt

�(1��)=�
(5)

Note that, at the beginning of this section, one has stated that under full perfect foresight,
variable xt grows at rate ; at this stage, we realize that xt will not in fact grow at this rate
because only a share of agents form expectations under perfect foresight. Thus, if it is the
aggregate value of x (i.e., ex) that grows at rate , according to equation (4) variable xt will
grow at rate

�
1+

�1��t

�1=�
�1; this rate will e¤ectively be equal to  in the long-run, if the rational
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expectations equilibrium is attained (i.e., if all agents form rational expectations in the steady-
state). As long as a share of the existing agents forms expectations through learning, the growth
rate of xt simply adjusts in order to guarantee that the observed level of the variable grows at
the speci�ed rate.
In the next section, we present the learning mechanism.

3 The Adaptive Learning Mechanism

We consider least squares learning. The agents will collect data on the time series xt�1, xt�2, ...
and then run a regression to estimate �. Agents believe in a constant � but they are unaware
about its true value. The estimate is updated at each time moment as new information on the
value of x becomes available.
The regression yields

�t =

"
t�1X
s=1

x2s�1

#�1
�
"
t�1X
s=1

xs�1xs

#
(6)

Replacing the estimated value into (5), one obtains

xt
xt�1

' (1 + )1=���(1��)=�t�1 (7)

Equations (6) and (7) form an expectations feedback system, where the observed growth rate
of x in�uences the expected growth rate and this also exerts in�uence over the actual growth
rate.
To present the system in recursive form, as a three-dimensional set of �rst-order di¤erence

equations, one needs to de�ne the gain sequence, �t := x2t�1 �
�
t�1P
s=1

x2s

��1
. The system comes8<:

�t ' �t�1 + �t�1(�t�1 � �t�1)
zt = �t�1
�t =

�
�2t�1�t�1

�
=(1 + �2t�1�t�1)

(8)

with �t := (1 + )1=�z
�(1��)=�
t . A unique steady state point exists: (��; z�; ��) = (1 + ; 1 +

; (2 + )=(1 + )2). The analysis in the next section will show that a local bifurcation
occurs implying that some combinations of parameters (; �) allow for stability, while other
combinations will lead to a local instability result.

4 Dynamics

The linearization of (8) in the vicinity of point (��; z�; ��) yields the following matricial system,24 �t � ��zt � z�
�t � ��

35 '
264

1
(1+)2

�1��
�

(2+)

(1+)2
0

1 0 0

0 �2(1��)
�

(2+)

(1+)5
1

(1+)2

375 �
24 �t�1 � ��zt�1 � z�
�t�1 � ��

35 (9)
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Applying the center manifold theorem, the stability analysis can focus on the sub-matrix
of the matrix in (9) containing the two �rst rows and the two �rst columns; let this matrix
be J . Stability conditions 1 + Tr(J) + Det(J) > 0 and 1 � Tr(J) + Det(J) > 0 are satis�ed
8� 2 (0; 1);  > 0. The remaining necessary condition for stability, 1�Det(J) > 0, holds under
� > (2+)

3+2(2+)
. A Neimark-Sacker bifurcation occurs at point � = (2+)

3+2(2+)
(for this combination

of parameters the eigenvalues of matrix J become a pair of complex conjugate values with
modulus equal to 1). Figure 1 presents the areas of local stability and local instability in the
space of parameters; a bifurcation curve separates the two areas.3

In �gure 1, the role of sticky-information becomes clear: if � is low (high degree of informa-
tion stickiness), then convergence to the constant growth rate steady state may not occur; the
larger the steady state growth rate of x, the more this result is likely to be evidenced.
Regarding global dynamics, one should inquire about the possible generation of endogenous

cycles arising immediately after the bifurcation point. In fact, the Neimark-Sacker bifurcation
produces a small region of irregular cycles for relatively high values of . In �gure 2, we take a
100% growth rate ( = 1) and � = 0:4225 (each time period, 42:25% of the agents update their
information concerning economic performance). The displayed attractor corresponds to the set
to which the pair (�t�1; �t) converges in the long-term.

4

For the chosen values, we can con�rm the existence of chaotic motion by computing the
corresponding Lyapunov characteristic exponents. A positive Lyapunov exponent indicates the
presence of sensitive dependence on initial conditions, a basic property of any chaotic system. In
fact, in the case in appreciation the system involves three Lyapunov exponents and the largest
one is positive: `1 = �1:597; `2 = �0:032; `3 = 0:004.

5 Discussion

The proposed model intends to provide a framework that combines the behavior, in terms of
expectations formation, of relatively well informed individuals (the ones who have updated their
information set recently) with the behavior of the agents that have an outdated notion about
how the economy truly performs. The �rst are able to form expectations with a signi�cant
component of perfect foresight; the second ones will, alternatively, resort to a learning process
trying to predict the long-term growth rate of the considered variable. The analysis of the
dynamic system has revealed that a high degree of information stickiness may imply a loss of
stability: convergence to the �xed point in which the assumed variable grows at a constant
rate no longer holds if learning signi�cantly prevails over the formation of expectations under
perfect foresight. Moreover, nonlinear dynamics arise when the Neimark-Sacker bifurcation is
crossed; these endogenous �uctuations indicate that for speci�c levels of information stickiness
and learning requirements, the expected value of the variable under consideration will display
a bounded instability behavior.
The bifurcation and the endogenous �uctuations outcome arise, in this particular setup,

because we have considered a non-stationary variable. As Tuinstra and Wagener (2007) high-
light, the ordinary least squares learning algorithm is a decreasing gain algorithm; this means
that as one adds progressively more data on the value of the variable, the new observations
will have a decreasing or progressively small impact. For a stationary series, this reasoning

3Figure 1 is presented at the end of the paper.
4Figure 2 is presented at the end of the paper.
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means that the gain sequence (�t de�ned in section 3) will asymptotically fall to zero, imply-
ing a long-run outcome of perfect foresight. In this case, the learning process is e¢ cient or
optimal: as new information is collected, the expectations are improved and convergence to a
rational expectations �xed point result is ful�lled. A departure from stability and the possible
formation of endogenous cycles in the long-run [the outcome that Bullard (1994) designates
as learning equilibria] is possible only if one takes a non-stationary endogenous variable; non-
stationarity implies that in the long-run the gain sequence remains constant above zero, i.e.,
even after many observations, one additional observation is still relevant in the formation of
expectations. In this case, learning is not perfect, it involves an everlasting e¤ort on evaluating
past observations to adjust expectations as the result of incoming new information. Thus, the
analysis in the previous sections allows for evaluating stability of a variable that is supposed
to grow at a constant rate in the steady state; otherwise, we would have a trivial process of
convergence to the steady state independently of parameter values, i.e., independently of the
degree of sticky-information.
The previous argument is better illustrated by applying the regression over the stationary

series yt := xt+1=xt. In this case, the perceived law of motion is byt = �. The estimation of �
(resorting, again, to OLS) yields now �t+1 =

1
t

tP
s=1

ys
ys�1

=
�
1� 1

t

�
�t +

1
t
yt�1. Rearranging the

expression one gets: �t+1 = �t +
1
t
(yt�1 � �t). This di¤erence equation is similar to the �rst

equation of the learning system in (8); the di¤erence is that the gain sequence assumes now a
speci�c value �t = 1=t. This gain sequence decreases in time and falls asymptotically to zero:
lim
t!1

1
t
= 0. Therefore, we con�rm that the regression over the stationary variable implies a fully

successful learning result: in the long-term there is perfect convergence towards the rational
expectations equilibrium.
A last remark involves the issue of forecast errors. Learning procedures are intended to

eliminate systematic forecast errors. If these occur, then agents will try to improve their fore-
casting results by switching to a learning algorithm that performs better or by changing the
adopted PLM. However, as argued by Schonhofer (1999), when the outcome of learning is a
chaotic time series, forecast errors will be irregular and complex becoming hard to distinguish
from pure noise. Deterministic series originating in chaotic processes have some basic proper-
ties (e.g. sample average and sample autocorrelation coe¢ cients) that are similar to the ones
generated by stochastic processes, and thus agents may be unable to perceive that errors are
systematic, interpreting them just as random behavior. In this case, agents cannot learn the
perfect foresight long-run outcome and �uctuations persist over time. In the words of Schon-
hofer (2001), agents cannot learn their way out of chaos. Also Grandmont (1998) calls the
attention to this fact: agents incur in self-ful�lling mistakes because they interpret the reality
in a simple way (variables would presumably follow simple stochastic processes), when reality
is in fact complex (�uctuations are, at least partially, the outcome of complicated deterministic
dynamics). Mistakes are self-ful�lling because although systematic errors indeed persist, the
regularities that agents are able to extrapolate resorting to simple stochastic rules are similar
to the ones of the deterministic process, and thus errors are never perceived as possible to
be removed. The literature on consistent expectations equilibria [Sorger (1998), Hommes and
Sorger (1998), Hommes and Rosser (2000), among others] makes use of the self-ful�lling mistake
concept to analyze the implications of applying simple rules to generate forecasts in a complex
world.
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Relatively to the model in this short note we can, in the light of the above arguments, claim
that the observed �uctuations are likely to persist in time if information is su¢ ciently sticky to
push the model into the chaotic zone. One can illustrate this argument by looking directly at
the forecast errors of the speci�ed model, which are et := xt��t�1xt�1. Recovering relation (7),

we re-write the expression as et
xt
' 1 �

�
�t�1
1+

�1=�
. Forecast errors will grow over time without

bound (this is a direct implication of running a least squares regression on a non-stationary time
series); thus, to con�rm that under chaos no signi�cant autocorrelations are found in forecast
errors, we assume the stationary ratio et

xt
. Resorting to the numerical example in section 4, we

consider a series with 1; 000 consecutive observations on � and compute sample autocorrelations
with various lags; the results are presented in the following table:

lag autocorrelation
1 �0:01211
2 �0:01667
3 �0:01667
4 �0:01648
5 0:33708
6 0:02265
7 �0:01634
8 �0:01665
9 �0:01661
10 �0:00640

The autocorrelations in the table are negative or positive but, in both cases, very low; thus,
we conclude that no structural pattern exists in the forecast errors and therefore self-ful�lling
mistakes are likely to be found in the agents�behavior.

References

[1] Bullard, J. B. (1994). �Learning Equilibria.� Journal of Economic Theory, vol. 64, pp.
468-485.

[2] Grandmont, J.-M. (1998). �Expectation Formation and Stability in Large Socio-Economic
Systems.�Econometrica, vol. 66, pp. 741-781.

[3] Hommes, C. H. and J. B. Rosser Jr. (2001). "Consistent Expectations Equilibria and
Complex Dynamics in Renewable Resource Markets." Macroeconomic Dynamics, vol. 5,
pp. 180-203.

[4] Hommes, C. H. and G. Sorger (1998). �Consistent Expectations Equilibria.�Macroeco-
nomic Dynamics, vol. 2, pp. 287-321.

[5] Mankiw, N. G. and R. Reis (2002). "Sticky Information versus Sticky Prices: a Proposal
to Replace the New Keynesian Phillips Curve." Quarterly Journal of Economics, vol. 117,
pp. 1295-1328.

7



[6] Mankiw, N. G. and R. Reis (2006). "Pervasive Stickiness." American Economic Review,
vol. 96, pp. 164-169.

[7] Mankiw, N. G. and R. Reis (2007). "Sticky Information in General Equilibrium." Journal
of the European Economic Association, vol. 5, pp. 603-613.

[8] Reis, R. (2006). "Inattentive Producers." Review of Economic Studies, vol. 73, pp. 793-821.

[9] Schonhofer, M. (1999). �Chaotic Learning Equilibria.�Journal of Economic Theory, vol.
89, pp. 1-20.

[10] Schonhofer, M. (2001). �Can Agents Learn Their Way Out of Chaos?�Journal of Economic
Behavior and Organization, vol. 44, pp. 71-83.

[11] Sorger, G. (1998). �Imperfect Foresight and Chaos: an Example of a Self-Ful�lling Mis-
take.�Journal of Economic Behavior and Organization, vol. 33, pp. 363-383.

[12] Tuinstra, J. and F. Wagener (2007). �On Learning Equilibria.�Economic Theory, vol. 30,
pp. 493-513.

8



 
 

Figures 
 
 
 
 

 
 

Fig. 1 – Stability in the space of parameters. 
 
 
 
 
 
 

 
 

Fig. 2 – Attractor (βt-1,βt); γ=1, λ=0.4225. 
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