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1 Introduction

Modern macroeconomics have progressively replaced the notion that agents are fully rational by
a concept of learning, under which individuals and �rms collect information over time, learn with
this information and eventually accomplish a long-term capacity to produce optimal decisions.
Rational expectations / perfect foresight emerge, then, more reasonably as a long-run possibility
and not as an every period underlying assumption. The literature on macroeconomic learning
is extensive and covers almost all the relevant phenomena, like monetary policy, asset pricing
or growth, and the analysis is undertaken both in stochastic and deterministic environments.
Our concern in this paper will be with deterministic economic growth and the aim is to derive

a simple and straightforward condition of stability for the neo-classical Ramsey growth model.
Deterministic models of growth under learning have been analyzed before in the literature,
but essentially in the context of overlapping generations models, e.g. by Bullard (1994) Sorger
(1998) and Schonhofer (1999). A relevant exception is Cellarier (2006) who e¤ectively considers
the intertemporal utility maximization setup; however, the concern of this author is essentially
with the search for endogenous business cycles in a scenario where convergence to rational
expectations is excluded from the start.
Other studies that focus on the implications of learning in the context of simple neo-classical

growth models or real business cycle (RBC) models have concentrated essentially on the impact
of stochastic disturbances over equilibrium results and transitional paths. This is the case of
Huang, Liu and Zha (2009), who assume an RBC environment and conclude that the long-term
equilibrium is the same whether expectations are formed under adaptive learning or, alterna-
tively, expectations are purely rational; the di¤erence is found on the transitional dynamics
in the vicinity of the steady-state, which are substantially di¤erent from one expectations�
formation assumption to the other. The main result of this study is that adaptive learning
may constitute an important source of frictions that tend to amplify and propagate technology
shocks. The referred study is a reply to Williams (2003), who encounters no relevant di¤erences
between learning dynamics and rational expectations dynamics in RBC environments, in the
sense that learning does not in�uence optimizing decisions of the economic agents.
Considering, as well, a real business cycle model, Eusepi and Preston (2008) also address the

implications of learning over the propagation of technology shocks. The main �nding in that
paper is that shifting expectations can be interpreted as a source of business cycle �uctuations;
more precisely, if households and �rms have an incomplete knowledge about the environment
that surrounds them, they will have to form beliefs and the economy becomes self-referential,
i.e., shifts in beliefs about future returns to both labor and capital will have impact in current
prices which, in turn, may reinforce previous beliefs. As a result, current prices can lose
their capacity to inform about future economic conditions and this can constitute a source
of instability that tends to generate and propagate �uctuations in real economic activity. In
short, the argument is that learning and the shifts in expectations it generates tend to amplify
the volatility of economic series making business cycles to become self-ful�lling. An RBC
model where rational expectations are replaced by some sort of learning mechanism is a model
better equipped to explain large volatility episodes (in particular, learning ampli�es technology
shocks).
In Carceles-Poveda and Giannitsarou (2007) we encounter another relevant contribution

relating the role of learning in general equilibrium stochastic models. In this speci�c case, an
example of a growth model is presented (the labor-leisure choices are ignored and the RBC
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environment gives place to a simple stochastic Ramsey growth model). Again, as in the above
cited studies, a central role is attributed to technology shocks; these will be decisive on how
learning in�uences the time paths of the endogenous variables. The main �ndings, directly
attached to the existence of a random disturbance, indicate that the behavior of aggregate
variables depends not only on the selected learning algorithm but also on the initial state of
the system.
The present paper departs from the cited references because it concentrates on a determin-

istic version of the simple neo-classical growth model and considers a constant gain learning
algorithm in order to search for a local dynamics stability condition. By taking the educated
guess that consumption grows at a constant long-term growth rate, the representative agent will
consider a perceived law of motion that allows to estimate the value of such growth rate. The
mechanism through which the estimation is produced consists on a simple regression using or-
dinary least squares. A similar study is undertaken in Gomes (2009) for an endogenous growth
problem (where the production function exhibits constant marginal returns concerning the ac-
cumulation of capital), rather than a neo-classical environment characterized by decreasing
marginal returns on the accumulation of reproducible inputs. In that paper, as in the analysis
to develop in this note, the main result relates to a threshold e¤ect that is found respecting the
quality of the learning process: only a relatively e¢ cient learning process will allow for stability
of the long-term steady-state.
The relevant parameter in the analysis will be the steady-state level of the gain sequence.

This parameter indicates whether the learning process was successful (in the sense that it allows
for asymptotic perfect foresight) or not. Optimal or e¢ cient learning requires the gain sequence
to converge to zero; otherwise, if it remains at any value between 0 and 1 the learning process is
not e¢ cient (the more it departs from 0, the larger is the degree of ine¢ ciency); the mentioned
e¢ ciency concept is related to the ability of agents in avoiding incurring in systematic mistakes
and therefore in producing expectations that, under a fully deterministic environment, are
perfect (are correct with probability 1).
However, the absence of a perfect process of learning must not be interpreted as an uncom-

mon or even an undesired outcome; taking the words of Sobel (2000), �Agents in these models
begin with a limited understanding of the problems that they must solve. Experience improves
their decisions. Death and a changing environment worsen them.�(page 241), and, furthermore,
�An agent will not necessarily learn the optimal decision when the cost of acquiring additional
information exceeds the bene�ts.� (page 244).
An important feature of many learning mechanisms, as the adaptive learning setup we

consider, is that agents do not necessarily need to accomplish the rational expectations long-
term outcome to generate exactly the same steady-state result as if they did. Rather, there is
generally a minimal requirement in terms of the long-term capacity of predicting future values
that produces precisely the same result as under perfect foresight. If learning is costly (and,
e¤ectively, there are always costs in acquiring and processing information), then the e¤ort on
reaching an optimal forecasting capacity does not pay; the agent bene�ts in locating at the
point in which: (i) stability at the perfect foresight level of the considered endogenous variables
holds; (ii) the costs of learning are the lowest possible. Below, we derive a straightforward
condition for stability that reveals that the higher is the level of technology and the lower are
the discount rate of future utility and the depreciation rate of capital, the less the representative
agent will need to learn in order to accomplish the intended long-term result.
The remainder of this note is organized as follows. Section 2 presents the structure of the
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growth model and introduces the adaptive learning mechanism. Section 3 explains how to
transform the model into a linearized system in the neighborhood of the steady-state, allowing
for a local stability analysis. The stability condition is derived in section 4. Section 5 concludes.

2 The Growth Model and the Learning Mechanism

Consider a standard one-sector optimal growth model. A representative agent maximizes con-
sumption utility intertemporally, under an in�nite horizon and taking a positive future utility

discount rate, �. Thus, the agent maximizes V0 =
+1X
t=0

�
1
1+�

�t
U(ct), with U(ct) : R+ ! R

the instantaneous utility function; variable ct represents per capita consumption. The utility
function must obey to trivial conditions of continuity and di¤erentiability, and marginal utility
must be positive and diminishing. To aid on the tractability of the model, we assume a simple
logarithmic utility function U(ct) = ln ct.
The resource constraint of the problem is the conventional capital accumulation equation:

kt+1 = f(kt)� ct+(1� �)kt, k0 given. Variable kt � 0 represents the per capita stock of capital
and � > 0 refers to the rate of capital depreciation. The production function is neo-classical,
i.e., it evidences decreasing marginal returns. Assuming a Cobb-Douglas production technology,
we consider f(kt) = Ak�t , with A > 0 the technology index and � 2 (0; 1) the output-capital
elasticity.
Maximizing V0 subject to the resource constraint, one derives three �rst-order conditions:

Etpt+1 = 1=ct;

[1 + �Ak
�(1��)
t � �]Etpt+1 = (1 + �)pt;

lim
t!+1

kt

�
1

1 + �

�t
pt = 0 (transversality condition):

In these conditions, pt stands for the shadow-price of capital and Etpt+1 is the expected value
of the shadow-price for the subsequent time period. From the �rst optimality condition, we
infer that Et+1pt+2 = 1=Etct+1, and therefore we resort to the second optimality condition to
present an equation of motion for the next period expected per capita consumption level,

Etct+1 =
1 + �Ak

�(1��)
t+1 � �

1 + �
ct (1)

The perfect foresight steady-state for the system composed by the capital constraint and
equation (1) is obtained by imposing k := kt+1 = kt and c := Etct+1 = ct+1 = ct. Straightfor-
ward computation conducts to the unique steady-state pair of values

( k; c) =

"�
�A

�+ �

�1=(1��)
;
1

�
(�+ (1� �)�)k

#
:

Under perfect foresight, the system is saddle-path stable, i.e., if the one-dimensional stable path
is followed, the convergence towards the steady-state point is ful�lled.
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Assume that expectations about the next period level of consumption are formed through
adaptive learning. Following related literature [e.g., Bullard (1994) or Adam, Marcet and
Nicolini (2008)], we consider an estimator variable bt such that Etct+1 = btct. The estimator is

updated taking into account past information and using the rule bt = bt�1 + �t
�
ct�1
ct�2

� bt�1
�
,

b0 given. Variable �t 2 (0; 1) respects to the gain sequence, as characterized in the introduc-
tion. We do not need to explicitly model the time evolution of this variable because we will
concentrate the analysis in the long-run properties of the growth system. It is simply necessary
to know that if �t converges to zero (� = 0), a steady-state perfect foresight result is attained
(i.e., the unique steady-state point is accomplished; in this point, consumption takes a constant
value and, thus, bt = 0), while if �t converges to any positive value lower than 1, then a less
than optimal long-run forecasting ability is evidenced (the higher is �, the lower will be the
steady-state quality of the forecasts).

3 Linear Approximation in the Vicinity of the Steady-
State

The goal is to analyze local stability conditions, i.e., conditions under which convergence to
( k; c) is accomplished, for a given pair (k0; c0) close to equilibrium. Working in the neighborhood
of the steady-state point, we linearize the system of di¤erence equations relating to the motion
of capital and consumption in order to attain stability conditions.
The linearization procedure is undertaken in two steps. First, we linearize function F (kt; ct) :=

Etct+1=ct; this allows to write the estimator as a linear function of the two endogenous variables,
opening the way for explicitly presenting a system of capital-consumption equations de�ned in
terms of contemporaneous and past values of variables. Second, we linearize the obtained sys-
tem in order to build a Jacobian matrix from which stability conditions are straightforward to
derive.
Given the relation between expected consumption, present consumption and the estimator,

in the neighborhood of the steady-state we can write: bt ' 1+Fk( k; c)(kt� k)+ Fc( k; c)(ct� c).
Straightforward computation allows to �nd Fk( k; c) = �(1 � �)(� + �)= k and Fc( k; c) =
(1��)(�+ �)=((1+ �) k). Therefore, de�ning � := 1+ ��(1��)(�+�)

�(1+�)
(1��)(�+ �), one arrives to

bt � �� (1� �)(�+ �)ktk + (1� �)
(�+�)
(1+�)

ct
k
. Replacing this expression in the updating estimator

rule, the following di¤erence equation for consumption is obtained,

ct ' (1� �t)[ct�1 � (1 + �)kt�1] + �t(ct�1=zt�1 � �) + (1 + �)kt; zt = ct�1 (2)

The second step of the linearization procedure consists in taking the capital equation and
the pair of equations (2) and evaluating them in the neighborhood of the steady-state. A three
dimensional matricial system emerges,
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24 kt � kct � c
zt � c

35 '
24 1 + � �1 0
(1 + �)(�+ �) (1� �) + �=c� (1 + �) ��=c

0 1 0

35 �
24 kt�1 � kct�1 � c
zt�1 � c

35 (3)

4 Stability Condition

Let J be the 3�3 Jacobian matrix in (3). For this matrix, it is straightforward to compute
determinant, sum of principle minors and trace. They are all positive values: Det(J) = (1 +
�)�

c
> 0; �M(J) = (2 + �)�

c
> 0; Tr(J) = (1� �) + �

c
> 0.

Stability conditions involving determinant, sum of principle minors and trace of a three-
dimensional linearized system are the following [see Brooks (2004)]:
(i) 1�Det(J) > 0;
(ii) 1� �M(J) + Tr(J)Det(J)� (Det(J))2 > 0;
(iii) 1� Tr(J) + �M(J)�Det(J) > 0;
(iv) 1 + Tr(J) + �M(J) +Det(J) > 0:
In the speci�c case under analysis, we observe that �M(J) = Tr(J) + Det(J) � (1 � �).

Thus, the stability conditions are reduced to:
(i) 1�Det(J) > 0;
(ii) 2� � � Tr(J)�Det(J) + Tr(J)Det(J)� (Det(J))2 > 0;
(iii) � > 0;
(iv) � + 2Tr(J) + 2Det(J) > 0:
Conditions (iii) and (iv) are veri�ed for any values of parameters obeying the imposed

constraints. Condition (i) requires � < c=(1+�) and condition (ii) implies�1+
p
1+4(1+�)(c+�)

2(c+�)
c
1+�

< � <

p
1+4(1+�)(c+�)�1

2(c+�)
c
1+�
. Let � :=

p
1+4(1+�)(c+�)�1

2(c+�)
. Condition (i) will be more restrictive

than condition (ii) if � > 1. This last inequality would imply c < 0, which is not a feasible
outcome. Therefore, the �rst condition can be set aside and, hence, the unique relevant stability
condition is the upper bound of (ii) (note that the lower bound is below zero, and consequently
it can be ignored). This result is presented in the form of a proposition,

Proposition 1 In the neo-classical Ramsey growth model with expectations generated through
adaptive learning, stability holds under condition � < �c=(1 + �), with 0 < � < 1.

The result in proposition 1 is intuitive. It sets a boundary on learning ine¢ ciency or, in other
words, it presents a minimum requirement in terms of information acquisition and processing
needed in order for the steady-state to be accomplished. As discussed in the introduction,
assuming a costly learning process, the representative agent does not need to employ resources
to attain � = 0. She just has to apply a level of e¤ort that is enough to guarantee that � is
close to, but below, �c=(1 + �).
Proposition 2 brie�y states the determinants of the learning boundary.
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Proposition 2 The learning requirements are relaxed (i.e., the representative agent has to
make less learning e¤ort in order to reach the steady-state result) with a relatively higher level
of technology and with lower depreciation and discount rates.

The results in proposition 2 follow directly from observing that @c=@A > 0, @c=@� < 0 and
@c=@� < 0 (and noticing that @�=@c > 0).
To close the analysis, a numerical example is presented. The benchmark values of parameters

are � = 0:3, � = 0:05 (per year), � = 0:02 (per year).1 Parameter A is chosen to guarantee
k = 1, i.e., A = 0:233. In this case, c = 0:183 and the stability condition is � < 0:156. The
gain sequence must possess a steady-state value lower than 0.156 in order to allow for stability
/ convergence to the steady-state pair ( k; c) = (1; 0:183).
Results in proposition 2 can be illustrated by varying some of the parameter values. In table

1, various experiments are displayed.

Parameter values* k c Stability condition
� = 0:02 2:220 0:252 � < 0:205
� = 0:1 0:462 0:139 � < 0:122
� = 0:01 1:244 0:187 � < 0:160
� = 0:05 0:600 0:170 � < 0:142
A = 0:2 0:802 0:091 � < 0:082
A = 0:5 2:971 0:545 � < 0:387

Table 1 - Stability condition for di¤erent values of parameters
(*The other parameters maintain the proposed benchmark values).

The stability conditions in the table con�rm the results in proposition 2: to attain stability,
learning becomes more demanding when the depreciation rate of capital is higher, the discount
rate of future utility is higher and the level of technology regresses.

5 Final Remarks

This note has derived an explicit, simple and intuitive stability condition for the conventional
Ramsey growth model when expectations about future consumption are formed through adap-
tive learning. The relevance of the result is that the representative agent may be boundedly
rational (i.e., she may not be able to treat information with the e¢ ciency needed in order to
achieve a long-run optimal forecasting capability), and still be able to attain the intended long-
run locus (the unique steady-state point). Nevertheless, there is a clear boundary: after some
threshold value of learning ine¢ ciency, stability is lost. A high technological capacity and low
capital depreciation and intertemporal discount rates allow to relax the learning constraint.
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