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1. Introduction

Standard growth models commonly overlook any pdssimaction of households
relatively to short run economic performance (ite.business cycles). Such growth
models are long term paradigms, where a permar@ntidence between effective
output and potential output is implicitly assumdal.this paper, we reinterpret the
conventional AK endogenous growth model when this is modified mhalude
consumers’ response to previous periods’ deviatwdrautput relatively to its potential
level. This response relates to a simple mechathsininvolves confidence: when the
output gap in the previous periods is systematicpbhsitive, demand side agents
become increasingly confident, and they will consuam amount of resources that is
tendencially higher than the consumption level \aztifrom the benchmark growth
models (the optimal consumption level of a Ramdeydetup or the consumption level
that arises from assuming a constant marginal mifyeto save); if, alternatively, the
observed output gap in the near past correspondsegmative value, then the
contemporaneous level of consumption falls beloswrdference level.

The described mechanism intends to add realisimetgimple growth model. It is
well accepted by the economics profession that étmlds in fact take into account
short term macroeconomic fluctuations in order fanptheir income allocation
decisions. Links between consumer confidence ansinkss cycles have been
extensively reported in the empirical literaturer finstance, McNabb and Taylor
(2002) find evidence of causality between GDP maetis and consumer confidence
indexes, for several of the most important econerimieEurope (UK, France, Italy and
the Netherlands). A similar conclusion is highligthtoy Goh (2003) for the economy of
New Zealand; this author, in particular, state$ tdoasumer confidence reflects current
economic conditions, which confirms the reasongbdf our assumption: households
are influenced by the perceived macro performamu \aill adopt a more or less
enthusiastic attitude towards consumption accofging

Some authors remark that the consumer sentimeoitaa biased and does not
reflect exactly the true amplitude of business eydit is the case of Souleles (2004),
who studies consumer confidence for the Americatesdf Michigan]; nevertheless,
even when the extent of the relation between tletecgnd consumers sentiment and
attitude is questionable, it seems unreasonabldrdp completely this relation as it
happens in most of the contemporaneous growth sisaly
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Note that our argument can be separated in twoataetations: first, cycles
influence consumers’ confidence; second, confideackomatically generates a
reaction in terms of the relative level of consuimptout of income. The second
relation is even less subject to doubt than th&.f8tudies like Bram and Ludvigson
(1998), Souleles (2004) and Dion (2006) clearlyesd\that higher confidence is related
to lower savings, given the logical argument tinatéases in expected future resources
reduce the strength of the precautionary motiveaie. However, some other authors,
like Croushore (2004) have difficulty in finding statistically significant relation
between the measured degree of consumer optimisth edfective levels of
consumption. Even though the evidence on increasimfidence regarding short run
aggregate performance cannot always confirm a tdicrelation with rising
consumption shares out of income, this is an imeitelation that is reasonable to
include in a theoretical framework that aims at bonmg the evidence on cyclical
movements with an explanation of long run growth.

Back to our modelling setup, we should stress ftiwt simple additional
assumption that we introduce provokes relevant gésuiover the way one understands
the growth process. This is no longer invariablytarialized in a steady state positive
constant growth rate that remains unchanged urdesse exogenous disturbance
occurs; instead, the response of the representaivesumer to deviations from
potential output might imply, for reasonable partenealues (e.g., technology level,
savings rate or discount factor), everlasting flations in the growth rate of the main
economic aggregates. Essentially, one may infen fitee analysis that business cycles
are, under certain circumstances, self sustained, because deviations from the
observable growth trend do exist, households wdldify their behaviour, and these
systematic changes on behaviour induce cycles tsigpeoriginating a process that
tends to repeat itself endlessly.

The analysis we develop may be associated withlitb@ature on endogenous
business cycles (EBC), a strand of thought thditfies economic fluctuations through
assumptions that imply nonlinear modelling struesywhich are able to generate long
term cyclical behaviour that commonly arises ateme type of bifurcation (that is
provoked by a change in a parameter value). Ttagalure goes back to the influential
work by Stutzer (1980), Benhabib and Day (1981)y DE982), Grandmont (1985),
Boldrin and Montrucchio (1986) and Deneckere antik&®e (1986), among others.
These authors saw on basic nonlinear mathematiodkl® (like the logistic map) a

fruitful field to explore endogenous fluctuationssaciated with growth processes.
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Responding to the real business cycles (RBC) thebtgse authors found a way to
conciliate into a same theoretical structure bussineycles and growth. The main
criticism relating to these first approaches toagahous cycles had to do essentially
with the somehow unreasonable hypotheses that waderlying the theoretical
structures; it seemed that nonlinearities were gaotconsequence of economic
assumptions, but the other way around: the needn@miinearities forced some
questionable assumptions.

Recently, various routes to endogenous cycles haea explored. The work by
Brock and Hommes (1997) constitutes a fundameetatence because it has initiated a
great deal of discussion on deterministic fluctuagi This work has inspired relevant
contributions, mainly in what concerns financiabbsis [Brock and Hommes (1998),
Gaunersdorfer (2000), Lux and Marchesi (2000), fefie Dieci and Gardini (2002),
Chiarella and He (2003), Westerhoff (2004), De @mauand Grimaldi (2005),
Hommes, Sonnemans, Tuinstra and van de Velden Y2085elevant examples of this
extensive literature]. We find as well relevant edoutions with the same inspiration
relating real analysis, as it is the case of thekvioy Goeree and Hommes (2000) and
Onozaki, Sieg and Yokoo (2000, 2003).

The previous references relate to endogenous cyglserated by agent
heterogeneity, but the most growth oriented refbast on endogenous fluctuations
continue to address a scenario of representatiemtadhese contributions can be
mainly separated in two groups. First, we find tiverlapping generations analysis of
economies with production technologies subject rtoraasing returns; this analysis
comes in the tradition of Grandmont (1985) and besn developed by Cazavillan,
Lloyd-Braga and Pintus (1998), Aloi, Dixon and Ltbdraga (2000), Cazavillan and
Pintus (2004) and Lloyd-Braga, Nourry and Vend006), among others. The second
approach is also based on the presence of produexternalities that generate
increasing returns to scale, but this takes thienigdition setup of the RBC models (i.e.,
an utility maximization control problem, with comaption and leisure as arguments of
the utility function). In this respect, it is wortb mention the work by Christiano and
Harrison (1999), Schmitt-Grohé (2000), Guo and ram$2002), Goenka and Poulsen
(2004) and Coury and Wen (2005), among others.

There are other approaches to endogenous fluahgatio aggregate economic
models that deserve to be mentioned. We refer timbyadditional contributions: the
technical work by Nishimura, Sorger and Yano (199ishimura and Yano (1994,

1995) and related papers, who study extreme conditunder which the competitive
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growth scenario can generate long term non lineatram; and Cellarier (2006), who
drops the optimal plan of conventional growth med®id replaces it by a constant gain
learning mechanism which is capable of producirdpgenous fluctuations.

In the model developed along the following sectjomkich is likely to generate
cyclical behaviour, fluctuations are triggered bi¥@mark-Sacker bifurcation or Hopf
bifurcation in discrete time. This is a type ofusfation that fits well the economic data
on business cycles, in the sense that the bif@arc@tiduces a quasi-periodic movement
(something between period cycles and chaotic mptwhere several periods of
expansion are followed by several periods of slogrewth, which is similar to what
real data time series reveal [see Dosi, FagioloRwoxkentini (2006) for a review of the
main stylized facts concerning business cycles]fakt, the importance of the link
between the Hopf bifurcation (mostly in continudiree) and the inquiry about the
nature of business cycles has been highlightechénliterature, as it happens with
Semmler (1994), Asada and Semmler (1995) and Mdirdred Fanti (2004).

The remainder of the paper is organized as foll@&estion 2 presents the general
properties of the type of dynamic system we intémdapproach; some definitions
concerning nonlinearities, in the specific envir@mhwe consider, are set forth. Section
3 develops the endogenous growth model with conswuoefidence on a scenario
where no optimization by a representative consumassumed. Section 4 repeats the
analysis of section 3 for a model with consumptigiity maximization. In both
sections, the local properties of the model areloegd and global dynamics are

discussed through a numerical / graphical analizmlly, section 5 concludes.

2. Useful definitions

The dynamic systems to consider in the followingtisas correspond to pairs
(X,h), with h a map defined in the state spatiéR (we assume that is a non-empty
and compact subset of R). The map defines theolamiotion of a variabldg[1X, with
t=0,1,2, ..., and the firdt given(i=0,1,2,...n), with n some positive integer. This law
of motion assumes the generic fokgy=h(k;,k:1,..., ken).

Let h®(kykes,...ko) be the first iteration of h, and let
hO(k K. ;,...k,) =hoho...oh®(k ,k ,,...k,) correspond to the iteration of the

map.
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The class of models we propose takes the endogeaoiablek; as a variable that
grows at a constant rate in the long run. Thus,defne a steady state or balanced

growth path of the system as,

Definition 1: Consider thak; grows at a constant rate in the long term, that is

- h(t+1)(knakn—1""’k0)—
ROtk ke)

1} =y, with IR Let |2t = ﬁ A balanced growth path
Y

or steady state corresponds to theEzet{l? |k = h(k, E,...,E)}, i.e., corresponds to a set

of one or more positive constant values that ataioéd through the dynamic system

under the conditiork =K, =k, =k_, =...= k_, .

The previous one-dimensional system can be tramgfrinto a 1i+1)-equations

system and only one time lag in()/ To obtain this system, consider variables

~ A ~

ki=k —K, Z, =K., Z,; =Z, ., -y Zyy = Z, 4. A NEw system, that includesr1

~

difference equations, arisek,,, = h(k, +K,Z, +K,Z,, +K,...Z,, +K) =K, Z., =k,

and Z,,, =7Z_,, i=2,...n. Note that the steady state of this system is dtigin,

K,Z,Z,,....Z,) = (000,...0).
We redefine the initial problem as systeXxXx...xX h), that is, K™**,h), with the

law  of  motion given by zHl=h(IZt,ELt,22Yt,...,Znyt) and  where

~

Zt+l = kt+l

1
1,t+1 ZZ,t+l Zn,t+1] and

N

ja— I

h(K.Zo0 ZyeZo) = |N(K +K, 2, +K, 2, +K, 2 +K) K K 7, o 3

1t n-1t

For the new presentation of the systend? (lzn"zl,n’zzn"" Z,, represents its first

17n,n

iteration and, as beforen® (k,,Z,,,Z,n - Z0n) =hoho..oh® (K., Z 0,2, 00020 0)

n?
relates to the iteration numbter
The trajectory of the endogenous variable and tiit @of the system can be
defined as follows,

Definition 2.

The sequence (K,,Z,,,Z, 11 Znn) = (N (Ko Zins ZynoenZon )i TEPresents the

trajectory ofk, as described by the evolution kf, Zioy Zygy oor Z

n,t

in the space of
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motion (i.e., in time), starting from a given poi(rljt‘n,'z”lyn,'z‘zvn,...,'z*nvn). The orbit of the

system can be formally presented as the set of tgoin
WK 7 Ty Zon) SAK 2 2K, 20 2 Z) =M O (KL 2y g vennnZ ), TOT SOME 21}
. The orbit corresponds to the evolution of theteaysin the state space (i.e., the space

of variables), starting fron(llzn,'z”lyn,'z‘zvn,... Z.. )

' n,n

The map h(IZt,Zlyt,Zzyt,...,Enyt ) might be a nonlinear map (the assumptions

underlying the growth models to discuss afterwgrasduce such kind of map); this
means that its underlying dynamics are tendenciabyphologically rich, i.e., it can
give place to cyclical or complex trajectories the assumed endogenous variable.
Hence, one should emphasize that dynamic resudta@r necessarily limited to fixed
point stability or instability; cycles of differenqgteriodicities, a-periodicity and chaotic
motion may as well reflect the behaviour over tiofevariablek;, depending on the
specification oh()/

Note that we are essentially referring to typeaofy run outcomes (i.e., once the
transient phase is overcome), and thus the notiorstability (or possibility of
convergence to the long term outcome) becomesaténtour argument. With respect

to this point, we take the conventional concemsyimptotic stability.

Definition 3: Let W be an invariant compact subset ¥t*. Asymptotic

stability of the magh towards seW requires:

a) for every neighbourhood of W, there exists a poirtk,”, %" .2, ... Z,," )

n,n

such that any orbit starting &.”,Z_",7,.",...Z,," i3 entirely contained iy, that

is, awik,”,Z2,," .2, 2,0 ) OU
b) the set BW) ={(k.Z,.Z,,...Z,)0X™ | limda(k, 2, Z,,...Z,).W|=0}

is a neighbourhood ad. In this setd is some distance measure between the position of

the endogenous variable, given by its orbit, and\ée

Definition 3 deserves some comments. First,\§at known as an attractor or
attracting set, as long as it is a topologicalnsitive set. As mentioned, we may have
several types of attractors, that range from adfigeint to periodic or a-periodic points.

If chaotic motion is identifiable, the set to whitlke system converges into in the long
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term takes generally the designation of a stramigactor. Second, the stability property
may apply solely to a subset ¥t**, which was presented as &W). This set is the
basin of attraction, that is, the set of all ifit@oints corresponding to orbits that
converge to the attracting set. According to thénd®n, the orbits originating in
points inside the basin will coincide with the attfor in the long term (i.e., the distance
between the orbits and the attractor tends to zeédd)course, by the definition,
WOB(W).

Let us now characterize the several types of ditigsets. Definition 4 relates to

the two simplest categories.

Definition 4. For  the system of  difference equations

Z,, = h(IZt,EM,EZYt,...,ZnYt), a point(lz*,Z*), i=1,...)n, is a periodic point of (minimal)

periodp=1 if h®(k",Z")=(k",Z"). A fixed point is a period 1 periodic point.

Considering the definition, the orbit
ok, 2)={K".Z)I(K,Z)=hP K Z )NV (K2, 0K 2D is a
sequence gb distinct points that are visited repeatedly bygsistem in a given order.

Periodic orbits correspond to a first level of cdexiy that the dynamics of
nonlinear models can contain; a higher degree ofiptexity can be defined as a-
periodic motion, which corresponds to orbits rekly to which no periodicity is
identifiable but where the dynamics are relativalyple to be considered as chaos (we
will deal with chaos below).

A-periodic or quasi-periodic orbits are most of tases the result of a Neimark-
Sacker bifurcation, which contrarily to other typefsbifurcations (e.g., flip) do not
involve a process of period doubling cycles; witte treferred kind of bifurcation,
generally we have a process where a fixed poiftlestaquilibrium gives place to a-
periodic cycles that can eventually degeneratdhaotic motion before the system ends
up in an unstable equilibrium. Thus, while a flipfubcation implies increasing
(doubling) the number of cycles as some parametieleMs changed, a Neimark-Sacker
bifurcation implies a similar process but where g periodicity is replaced by
quasi-periodicity of increasing order, that, agestain the limit can lead to chaos (as
any other bifurcation). We will discuss furtherdlspecific type of bifurcation later, in
the end of this section.
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There is no easy definition of quasi-periodicity,vge describe it by default as the
intermediate case between identifiable periodi@fyany order) and chaotic motion.
To get to chaos, one needs some definitions; on¢hede is the notion of

scrambled set.

Definition 5 (this definition relies on Mitra, Nishimura andr8er (2005)) A
subsetS of X™*! is a scrambled set for the dynamic systéii’{ h) if the following

conditions are satisfied:
i) For any (K, Z,,"Z,n"veorZon ') (K200 Zpn " oo Zen )OS the following

condition is verified:

Ilrtrllﬂfh“)(k Z 0 Zon' e Zan') — h®(k ", 2,2, 0 Z,0")| = 0;

i) For any (lzn"zl,nl’EZ,nI""’zn,n 'S and either
(En-,zln-,zzn, )¢(k Z, " 20" 2y, )OS Or (k " Z." 20" 2y, ) OP
(with P the set of all periodic points of the dynamic spste(””, h)) it holds that:
imsuph® (K, 2", Zon' o Zon) =N O (K, 20" 2o o2 )| > 0.

t> oo

According to the definitionSis a scrambled set in the sense that any orbtirsjar
in this set does not asymptotically converge to peryodic orbit. This means that inside
a scrambled set there is sensitive dependencer@gfiect to initial conditions (SDIC),
which corresponds to stating that nearby orbitsl tendiverge exponentially. This is a
well accepted notion of chaos; a model with SDI@ ba associated with the presence
of chaotic motion, although one should be carefntes this is not a complete and
rigorous notion of chaos. The definition, as asdethby Sarkovskii (1964) and Li and
York (1975), requires the scrambled set to be unizdale (i.e., to be infinite and
without a one-to-one correspondence with the senaifiral numbers); since this
definition has in consideration the topological doetrical properties of sets, it is
known as the definition of topological chaos [apaged to ergodic chaos, which deals
with the statistic properties of ensembles of deieistic orbits; concerning ergodicity
and chaos see Huang and Day (2001) and Huang (2005)

Definition 6: The dynamic systemX{*!, h) exhibits topological chaos if its
orbits are defined in an uncountable scrambledasdtsome of these orbits (at least

one) correspond to periodic points of period teatat a power of 2.
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A practical way to distinguish between periodic leg¢ quasi-periodicity and
chaos consists in computing Lyapunov characterestppnents (LCES); these respect to

a measure of exponential divergence of nearbysyréitd are defined, in the case of our

system, byLCEs=lim E [n , where Dh(k; , 212y 1002y )IS

n-o N

n-1 —
|_(! Dh(k| ’zl,i ’zz,i ""'zn,i)

a (h+1)x(n+1) matrix with the elements given by the derivatsfeeach one of the

equations of the system relatively to each on@@fariables of the system.

In the case of @+1 dimensional systerm+1 LCEs are determinable and their
signs allow to classify types of orbits. In partany it is known that:

i) for an asymptotically stable fixed point, all LEBre negative. This reflects the
fact that for stable fixed points the distance lesworbits originating at different initial
conditions tend to decrease in time, as thesesodmhverge to the same long run
equilibrium value;

ii) for the cases of periodicity and quasi-perioglicdt least one of the LCEs is
equal to zero, while the others remain negativehis case orbits do not approach or
diverge relatively to a same long run locus;

iii) finally, a positive LCE signals that nearby osbéxponentially diverge and,
thus, the presence of at least one positive LC&eaglto the lack of predictability in the

system, which is often a good argument to supperptesence of chaos.

With the computation of Lyapunov exponents it beeenrelatively easy to
distinguish between chaos (which implies unpredititg) and quasi-periodicity, where
the dynamics are predictable, although no ordetestifiable for the underlying cycles.
Another measure that allows for such a distincteometric entropy (a measure of the
degree of unpredictability of a deterministic sysfe only chaotic systems display
positive entropy, because these are the ones w#bceated unpredictable dynamics.
Quasi-periodic systems, as we have defined thebe ta-periodic but not chaotic, will
display zero entropy as any other system with ptatle dynamics.

Measures of complexity and chaos are not our mamcern here. Alongside with
the analytical treatment of the growth models irtrsections, we will look at LCEs as a
way to clarify the qualitative nature of the steatigte of the system. Additional insights
about the general nature of nonlinear systems aasunes of chaos can be found in the
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literature. See, for instance, Alligood, Sauer &fmidke (1997), Lorenz (1997), Elaydi
(2000) or Medio and Lines (2001).

An insightful approach to nonlinear dynamics in misdas the ones we propose
imply the need for an attentive analysis of botbaloand global dynamics. Global
dynamics promote the accurate understanding of twis evolve towards the long
term attracting set, but they are dependent oty &plecifying the array of parameter
values, because each set of parameter values mayplgice to a unique attractor. Local
analysis allows for a more general investigatiorthef properties of the system but it
can only go so far as to distinguish between regionstability (stable node or stable
focus), saddle-path stability and instability (@atdé node or unstable focus); these
regions are separated by bifurcation lines, andrtbeement from one region to another
is made through a varying parameter that gainsiésegnation of bifurcation parameter.
Thus, local analysis hides the possible presencpeabdic, quasi-periodic or / and
chaotic motion that eventually characterizes thelelis dynamics. For instance, in the
growth models of the following sections, a bifuroat separates locally a region of
stability from a region of instability; global awals allows to realize that once the
stable region is abandoned, quasi-periodicity arikg a given interval of some
parameter value, before instability begins to pileva

To close this section, and given that the growtldel® to be developed present
non conventional dynamics (i.e., dynamics besidesdfpoint stability or periodic
stability) as a result of a Neimark-Sacker bifui@at we concentrate in the fundamental
properties underlying this type of bifurcation.

Recover system X(*'h) and assume the following family of maps:
h(K»Zisr Zy1 0201 ), With COR a parameter. Let alsy (7)), 4,(7), ..., A,..({) be
the eigenvalues of the Jacobian matrix of the sgysten the vicinity of

(E,i,?z,...fn) = (000.,...0), for a given value of (¢ = ).

Definition 7: A Neimark-Sacker bifurcation, or Hopf bifurcatidor maps,
occurs when the conditions below are simultaneosesiigfied:
i) Any two eigenvalues of the Jacobian matrix of gestem X"%h) for a

parameter valueZ =¢ , A({) and A, (), are complex conjugate eigenvalues, with

A D) =1;
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d(A () A ()
d{

iii) [Ai (Z)]m #1 and [Aj(Z)]m #1 for m=1, 2, 3 and 4 [according to Medio and

is not a null value;

il) The derivative

Lines (2001), this property is needed in orderdbaigenvalues that are not low roots of

unity].

Therefore, the central condition for a Neimark-Sadbifurcation to occur is that
at least a pair of eigenvalues from the Jacobiamixnaf the linearized dynamic system
in the steady state vicinity has to be a pair ohplex conjugate eigenvalues, with the
corresponding modulus equal to one (this is comditi of definition 7); the other
conditions complete the required properties forréferred bifurcation to take place.

3. The model without optimization

Consider a typical closed economy where governnmatvention is absent. Let
Vi, k., it and ¢; be the levels of per capita output, physical e@pinhvestment and
consumption, respectively, and assume that the throate of population / labour is
zero. Capital accumulation is defined as investmésds capital depreciation,

k., —k =i, =&, with &0 the depreciation rate arkd given. We take as well the

level of investment as corresponding to househadsgings, i.e.j, =y, —c,. Under the

standard Solow capital accumulation equation, conps$ion respects to a fixed amount
of output or income, that is, consumers adopt theplest possible rule: marginal
propensity to consume does not change over timessisome exogenous disturbance
occurs.

Over this basic growth structure, we introduce ti@nge suggested by the

assumption in the following paragraph.

Main assumption Consumers react to recent deviations of incorteively
to the potential income level. If last periods’ jputt gap (difference between effective
and potential output / income) is positive, themgragate consumption will be more
than proportional relatively to today’s income;lakt periods’ output gap is negative,
then contemporaneous aggregate consumption wikdsethan proportional relatively

to the present amount of aggregate income.
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The previous assumption indicates that the framlewa are proposing reflects
the trivial capital accumulation process of growtbdels only if the output gap remains
at a null value; in other words, the Solow accurtioteequation is a particular analysis
of growth when considering that there is a permaneimcidence between effective and
potential levels of output and, even if there i$ siach coincidence, consumers do not
respond to observed gaps.

To formalize the above assumption, Jetbe the output gap measured in logs
(x, =Iny, —Iny,, with y, the potential level of per capita output; thigigariable that

iIs supposed to follow a growth trend correspondinghe balanced growth path).
Consider the case where previous periods’ outpptigaero as the benchmark case, so
thats[J(0,1) defines the marginal propensity to save (ggvirate) whemx.;= Xi.p=...=
X-n=0, with n the number of past periods that households estimatrelevant to base
present consumption decisions. Per capita consamptiis given by

C, = (-9 0y, LO(X_y, X ps--sX%_,) - According to our main assumptiog0,0,...,0F1,
O(Xgs Xi_pse-s %) > 1 if the weighted average ok _,X_,,....X_, IS positive, and
O(X,gs Xioy--n Xy ) <1 if the weighted average of,_, X _,,...,X,_, IS negative; below
we will address the way these averages are compitech an economic point of view,
we are stating that the level of consumption isxad percentage of output g}-f no
output gap is observable in the previous periodsemthe output gap is, on average,
positive then households will react by rising cangtion above the benchmark level in
t; finally, in the circumstance where the output gappredominantly negative in
previous periods, the reaction of consumers willldwering consumption levels in
further and further below the benchmark level &sdutput gap widens.

Therefore, we are basically defining a mechanisnresjpponse of households
relatively to business cycles; in a favourable phaisthe business cycle, agents will be
more optimistic and will react by applying a largérare of their disposable income to
consumption; likewise, if the precedent time pesioddicates a recession phase, the
reaction is to reduce the consumption share oubhadme. This optimism-pessimism
response mechanism to economic fluctuations intresltan important link between
today’'s process of capital accumulation and congiomp and past economic
performance; furthermore, it attributes to housébda role that is commonly absent in
this kind of economic analysis: they are no longel informed agents fully aware of
the economy’s growth trend and insensitive to attmeiofactor; rather, they incorporate
in their decisions about income allocation an ddpest term that reflects how the
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economy moves in the short run. Because this nemdwork is able to produce
endogenous cycles under some circumstances, wet mgh that cycles are self-
fulfilling: they exist as the result of the agentsaction to their existence.

We define functiong(x,_;,X_,,..,X,_, )&S a continuous, positive and increasing
function that obeys to conditiag(0,0,...,0x1. The analytical tractability of the model
requires a specific functional form; the followifignction contemplates the referred
properties:  g(X,_;sXip»-- %) = EXP@ X, T A,X_, +...T8,X_,), ar>ax>...>a,>0.
Parameters;, i=1,2,...n are ordered in a descending way to reflect theeddgdea that
consumers give more importance to recent outpus gam to far in the past deviations
from the potential output, when taking decision®owbconsumption. Thus, these
constant values may be interpreted as the weidlgsconsumer attributes to past
economic performance. To simplify the analysis,omasider a rate of discount for the
mentioned weights; assuming a constant (a8, one defines a new paramegethat
obeys to the conditionaza, =Q+u)@&, =Q+u)’E,=---=Q+u)"'[&,; as a

consequence, we should rewrite function g as

g(&_l,&_z,...,&_n)zexr{atﬁ 1+/JD<t2 . (1+,U) —— X H Recalling the

definition of output gap, an equivalent presentatiof this function comes,

n y aft/(1+ )] 2
91Kz Xr) =[] (yt_j
1= t=i

To close our model, one needs to define a produdtination y, = f(k, ). This

setup corresponds to an endogenous growth framewaork therefore the production

function must exhibit constant returns, that ié',(kt):%:A>O, with this

t
parameter reflecting the technological level coniey the production of final goods.
The above characterization can be synthesized thraugimple one difference

equation system, which is

0 | (5 (K ) alfu/@arm)] ™
Ky = Fk) - @- S)Df(kt)E]'J( j +(1-9) [k, 1)
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We are assuming an endogenous growth setup ars], ttteieconomy is supposed to

grow at a positive and constant rate in the stesidie. Defining this growth rate by
letter ); the potential output corresponds 9 =y [(L+ )", with § a positive

constant. Notice that we are just saying that g@teoutput follows, in every time

moment, the balanced or steady state growth path.

)

. ~ k . . . .
Recover variablek, = o already presented in the previous section. This

new capital variable is not constant fortalbut it should be constant in the steady state.
Replacing variablesy, andk; in equation (1) by the respective detrended valités

straightforward to encounter the following equat{oote that the production function is

homogeneous of degree one),

n

VG

i i a3
Ra =t Mi(k)-A-9MW/ ) =

" . o yafuarg))tt _ -
oy TRl &) a0k | @

Equation (2) takes us to the steady state result,

Proposition 1: The capital accumulation equation with consummptitevels
adjusted to last periods’ economic performance aamique steady state, where the

detrended per capita value corresponds to the vollg expression:

E:y_* A-y-90 %a?;llll(lw)]i‘l
A [ (@1-s)[A '

Proof: see appendix.

Note that conditioPA> 4 J is essential for a steady state result with econom
meaning.

To analyze the dynamics of equation (2) we follow procedure suggested in

~

section 2. Taking variable& =k, -k, Z, =k, Z,, =74, ..., Z,; £Z, 44, We

n,

replace these in the referred equation to obtain
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K+1=171ytﬁ<1+A—6)Eﬂ?t+(A—y—5>ti
3)

aﬂi[uaw)]“l

—(-9)[AQA/§) = [k, +Kk) EI_J [(z,t + k)bl

The dynamics of the model is addressable by studgifgr1)-equation, f+1)-

~

endogenous variables system. Tl equations are (3)7,,, =k, and 7, =7Z_,,,

i=2,....,n, while the endogenous variables are obviod—éland Z,,i=1,...n

3.1 Local dynamics

Local dynamics are straightforward to interprethaligh high dimensions turn
computation of stability conditions and bifurcatipoints a cumbersome task. Hence,
we shortly address the general properties of theahized system in the vicinity of the
steady state and we proceed to the investigatidoaail stability conditions for three
particular cases1=1, n=2 andn=3.

Given the unique steady state point, the lineddmabf the system in the

neighbourhood of such point allows to present etricial form,

— o~ —_ r v v | v T - o~ —
K | |1 —adhV0 @ fiymo @ AyToirg
5 Wy Itp Ity L @ Ity |3
Zy | |- S oo z,
ZZ:I +1 = | i O [] Z.Z,I (4)
: i :
| Zygn | | | Zy |

In system (4)]) is an identity matrix of ordem, andO is a column vector witim
elements. The peculiar shape of the Jacobian mattreystem (4) allows for a direct
computation of its trace, determinant and sumsricgpal minors of any order. The

calculus leads to:

Tr(J)=1;

M, ) =adt Y9,

1+y
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__ a -y-0.
ZMXS(J)_ 1+ILI|:‘A1+V H

__ a -y-0.
ZM“U)_a+yf[ﬁ1+y

ZMxn(J):(—lij oyl

+Uu 1+y

n-1
Det(J) =(_LJ EM,
1+ u 1+y

where> M, (J),i =2,...,n represents the sum of the principal minors of orde

A generic result concerning local stability cansteted as follows.

Proposition 2: The system is locally stable if all the rootstleé characteristic

polynomial
P,(1) = (1™ - @+ )] B—Y o ey e @t )t o
al{A-y-9) al{A-y-0)

+ Sy ] O 4

lie inside the unit circle.
Proof: see appendix.

The expression in proposition 2 does not allow éaplicitly discussing the
specific economic conditions concerning differerddl stability results. Thus, we study

the most straightforward cases.

Case 1 n=1. The simplest case is the one in which the reptasive consumer
considers solely the previous period output gapase consumption decisions. In this

case, the linearized system containg2 2acobian matrix,
ko] [1 —adfV=9| [k
1+y 3 (5)
t

Zua] |1 0
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The trace and the determinant of the Jacobian xnatfi system (5) are,
respectively, Tr(J)=1 and Det(J):Al%_é>O. Depending on the values of
4

parametersa, A, y and ¢, different local dynamic results are obtainablegufe 1

graphically represents the dynamic possibilities.

*** Figure 1 here ***

In figure 1, three bifurcation lines are represdniehe space corresponding to the
area inside the triangle formed by these threeslisghe region of stability. Unstable
outcomes are found outside the bifurcation lines. oke regards, only one kind of
bifurcation is admissible in this framework, theeofor which Det(J)=1, that is, a
Neimark-Sacker bifurcation. The interesting posthat by introducing a slight change
in a basic capital accumulation equation, regardime amount of consumption, one
generates a type of bifurcation that cannot be daarone dimensional systems. As we
will observe through global dynamic analysis, inaat cycles will arise for certain
values of parameters.

Proposition 3 synthesizes the result on local dyosm

Proposition 3: The capital accumulation equation with consumptiewels
adjusted to last period’s economic performance iegpihe following local dynamics:
+

a) A-1+(1 a

a

jEy+5 is the condition that defines the point where the
a

Neimark-Sacker bifurcation occurs;

b) the system is locally unstable fér> = 1 +( jEy +0;
a

c) the system is locally stable fér< — 1 +( jEy+ 0.
a a

Proof: see appendix.

Case 2 n=2. As we increase the number of periods that thresentative
household takes into consideration to form contempEous consumption decisions,

the computation of a stability condition becomerdbafrom a calculus point of view,
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but qualitatively we find that no significant chasgarise: a Neimark-Sacker bifurcation
continues to separate a region of stability foelkatively low technology level and a
region of instability for a relatively high techrgly index. The analysis of this case is

synthesized through proposition 4.

Proposition 4: The model of capital accumulation without optinticza and with
consumption decisions based on the economic peafurenof the last two periods is

locally characterized by the following conditions:

a) A Neimark-Sacker bifurcation exists under
2
2V [Z54) 4120 ey
a 2 2
. 1+y 2+ U ? 2+ U .
b) Local stability holds forA < —=[{1+ u) — +1- +y+0;
a

2
c) Local instability holds forA>1+—yE(1+,u)EF [2;/”[) +1_2;,u}+y+5'
a

Proof: see appendix.

Recalling that, in our model and far2, Det(J) =

—M, we can clarify
1+

the dynamics underlying this specific case by dngwa diagram that relates the sum of
the order two minors ad with the determinant of the matrix. Figure 2 rdsea line
segment near to the origin where stability holdsjley after the bifurcation point,

instability rules.

*** Figure 2 here ***

Case 3 n=3. When consumption decisions are based on theigue\three
periods’ aggregate economic outcomes, the Jacob@nx of the linearized system in
the steady state vicinity will display a trace dgtea 1, a positive sum of principal
minors of order 1, a negative sum of principal msnof order 2, and a positive
determinant. These signs lead to the unquestionabkervation that two of the

eigenvalues of the Jacobian matrix are negative thatl the other two are positive
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values. This information is vital to highlight aability result concerning the three-

period case.

Proposition 5: In the growth model without optimization, takingnsumption
decisions by evaluating the previous three periogdies the following stability result.

a) Local stability:

U2+ 1) aE{%—y—Jf {1—#—#2}[@61[7’%—1/—5]2 L Ar3u il [EaEA—y—qu
@+ p)° 1+y @+ ) 1+y @+ p)? 1+y

and a[—fb‘l_fi_é <L+ p)?;
14

b) Neimark-Sacker bifurcation:

U2+ 1) ad“\—y—5j3+(1—ﬂ—ﬂ2j[EaEA—V—5]2+4+3,U+,U2 [Ead%—y—é}l

L+ 4)° 1+y @+ 1+y L+ ) 1+y
or a Lﬁhé =@+ )7
4

c) Local instability:

U2+ 1) aEﬁ—y—Jf +(1—u—ﬂ2j[EaEA—y—5j2 L A¥3utr [Ead%—y—é}l
@+ 1)° 1+y @+ ) 1+y @+ 4)° 1+y

or a L_y_é > 1+ p)?.

1+y

Proof: see appendix.

To extend the analysis of local dynamics beyor® is not a worthwhile task,
since computation leads to heavy expressions tieapi@gressively less informative.
Nevertheless, we have found a pattern: stabilitiddxdor certain combinations of
parameter values; this stability can only be broksaen the product of two eigenvalues
is equal to one (Neimark-Sacker bifurcation), aftdrahe bifurcation instability will
prevail (next subsection will reveal, through a muiwal example, that after the
bifurcation and before instability sets in it isggtble that an area of quasi-periodic

cycles exist).

3.2 Global dynamics
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Depending on the kind of nonlinearities involvedbiturcation such as the one
just characterized can separate regions of fixewt gtability from regions of instability
or it can produce a region where cycles of diffeqgeriodicities emerge following the
bifurcation and before instability begins to prévé the present model, the Neimark-
Sacker bifurcation gives effectively place to enslogus fluctuations for certain
combinations of parameter values. The followingpbieal analysis concentrates on the
simplest case=1, but since we are not limited by relevant comfpoitaproblems in the
numerical study of the global properties of thetsys we end the section with an
example that assumes-4. We will observe that a same kind of dynamicseigealed
for the two discussed cases (similar dynamics eafobind for any other value oj.

Take the following set of benchmark values, whiepresent reasonable economic

Ak

conditions (in particular, we consider a long rwowgh rate of 4%): § 0 y Yy
a]=[0.25 0.05 0.04 1 10] and letl. We electA as the bifurcation parameter. In
figure 3, we display the bifurcation diagram; iteafly indicates that the system
undergoes a bifurcation that generates a regioeyolical behaviour for a limited

interval of the parameter’s valde.

*** Figure 3 here ***

With figure 4, we take a closer look to the mukiftifurcations that this dynamic

process generates, as the technology parametariésiv

*** Figure 4 here ***

In section 2, one has discussed the possibilityghef cycles arising from the
bifurcation process to correspond either to quasiegic cycles or to chaotic motion. In
particular, quasi-periodicity does not imply a diyence of nearby orbits or SDIC, and
therefore one of the two Lyapunov exponents (ia daise, we have an order 2 Jacobian
matrix and, thus, 2 LCEs exist) can take a nulugabut it will not be positive. With
figure 5, that represents LCEs for different valoéshe indexA, we clarify this point.

In particular, we observe that the upper LCE is,nhost of the values of the parameter,

very close to zero, indicating the presence of gpesodicity; the jumps in the

1 All the figures concerning global dynamics preednin this paper are drawn using IDMC software
(interactive Dynamical Model Calculator). This is #&ee software program available at
www.dss.uniud.it/nonlineaand copyright of Matriji Lines and Alfredo Medio.
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trajectory of both LCEs just signal small regiorisrstability that one can confirm to

exist by looking at the bifurcation diagram in fig.B.

*** Figure 5 here ***

Proceeding with the visual analysis, figure 6 reprags an attracting set for a value
of the technology parameter with which quasi-padidg holds, and in figure 7 a

chaotic attractor is revealed, for another valuthefconsidered parameter.

*** Figures 6 and 7 here ***

The graphical analysis becomes complete with anbafsattraction (figure 8), that

we present forA=0.33, and a time series of the endogenous variablihe model
(figure 9), for A=0.25. Recall that this endogenous variatﬁe, has undertaken a

double transformation: it was detrended and scedezbrrespond to zero in the steady

State.

*** Figures 8 and 9 here ***

With figure 9, we reveal our main result; a simplenge in the conventional
capital accumulation equation, that involves takingp account considerations about
the business cycle when consumption decisions aademresults in endogenous
business cycles. It is, as expressed in the inttiwly the behaviour of households and
their confidence regarding the short run econoroenario that generates and sustains
economic fluctuations over time.

Note, as well, that the steady state value of #recppita physical capital variable,

when the growth of trend is withdrawn, is, for thensidered set of parameters,

_ 1 (A-009\*" . _
k =2V o7eA . Consider one of the assumed technology valugs,A&0.25;

with this value, k =5238. Thus, the true capital variable is given by

k = (k +52390104)', and its growth rate ig/(k ) = (k +5.238)/(k._, +5.238))-1.

As in standard endogenous growth models, the lerg average growth ra(ey(l?)> is
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constant, but unlike the standard endogenous grovattiel deterministic fluctuations
on the growth rate are observable.

Forn>1, a similar type of analysis is possible to uralezt To save in space, we
just considen=4 and present a bifurcation diagram like the onkguare 3 (figure 10).
The same array of parameters is assumed, alongm@t05. In this case, it is clear the

occurrence of the bifurcation, of the same typénabe above example, and therefore
the same kind of time trajectory as in figure ®lgainable for variablézt, whenA is

above 0.105.

*** Figure 10 here ***

4. The model with optimization

The model with an exogenous savings rate can ebsilsophisticated in order to
incorporate consumption utility maximization. Les wmow define the per capita

consumption variable in the following wag; = E,_,c, +¢.

Term E,_.c, is the level of consumption when the output gapeisnanently zero,
that is, if the expected level of output coincieeth the potential level, then individuals
will consume an amounE,_;c, of final goods. To this amount of consumption ved c

expected consumption. In this problem, the reptes®e agent chooses to maximize

expected utility, that is, the objective functian, = ZU (E.,Cc) [B'. Parametef<1

t=1
is the discount factor; note that we consider dinite horizon.
The other component of consumption respects t@etiom to fluctuations. As in
the non optimization case, we consider that ttastion of consumption is measured as

a percentage of per capita output. Lettiagbe a positive parameter, we define
c. =00y, [ﬂg(xt_l,xt_z,...,xt_n) —1]. Functiong is the same as in the previous section.
This expression indicates that if &ll, i=1,2,...n are equal to zero theef = , €hat is,

the problem becomes the standard Ramsey growth Infiadihis case with a constant

returns production function); it is straightforwaal verify that if the weighted average

of X._,X_p,--sX_, IS positive then ¢/ > 0 and, also, if the weighted average of

X1 Xeegre- Xy 1S NEQAtivehency < 0
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Hence, the logic underlying the theoretical struetis exactly the same as in the
case without optimization: households respond tevipus periods’ economic
performance by consuming more (expansions) or (lexessions) than they would if
one considers the benchmark model that is desigm#yg for the case where no
difference between effective and potential outputken into account.

The utility maximization model with consumers réatto deviations of output
from its trend corresponds to the maximization/gf subject to the resource constraint

k., =V, —C +(@-9)Lk,, with ks given, the variable per capita consumption aseefi
above andE,_c, a control variable.

Since the derivation of optimality conditions isrstiard, we neglect the details
that give place to the motion of expected per eapiinsumption in optimal conditions,
and just present this difference equation that earisSrom such computation:

E.c., = L1+ A-9J)L[E,_c,; because the production function is linear, thie that

defines the time path of consumption reflects thistence of a constant growth rate of
this aggregate over time. Thus, contrarily to tba nptimization case, now we have an
explicit growth ratey = [ (1+ A-90) — 1Note that this is the growth rate of expected
consumption, but it is also the steady state gronath of capital and output, as one
easily observes through the examination of the ltrgh condition underlying the

resource constraint.

Hence, we may definetzt = K - as a non growing variable in the
[ra+A-0)]
steady state. We also consider the following comstalues:y" = y - and
[ra+ A-0)]
A E.C . C . .
C= —. The constant ratie= will be designated by lettey, so that we
[ra+ A-0)] k

present the detrended expected consumption valGegsk .

Rewriting the capital accumulation equation takingconsideration the above

variables and values, we get

~ 1
== [
Kiua B+ A=d)
al y [+ (6)

Qo) T (R) -y ko) = Df(l?oqj [f .yl |+ a- 5y ik,
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Because we have transformed the consumption variatd a detrended constant,

we have, as in the previous non optimization casene-dimensional system of the
form IZM = h(I2t , &_l,...,&_n) . Therefore, we must use a same kind of proceduseutly

the dynamics associated with this model. Firststage the balanced growth path result.

Proposition 6: The utility maximization problem with consumpti@action to

short run economic conditions has a unique steatg swhich is found by imposing the

A A

condition Ezlzmzktzlzt_l:...:kt_n to (6). The balanced growth level of

A-p) 1+ A-93)+0A- w:|/a§:[1/(1+/1)] .

accumulated capital is given by =2
pital is given ty AEE A

Proof: see appendix.

We must guarantee a positive long run capital staockl, thus, condition
Y<@-p)[@+A-9)+0A musthold.

~ i ~

As in the non optimization case, take =k, -k, Z, =Ky 2y =7, .

Z,, =7, to present another version of the capital accatiari equation,

o e }m&{l‘ﬁ el
B BLA+A-0I) B Bl+A-0I)

a@ [+ ] (7)
JEAEQA/y )

i\ afL/(1+w)]'~
LG

The system subject to analysis is now constitutgd (D), zm:l{ and

~

7 =Z4,,i=2,...0, with (k,Z,,Z,,....Z,) = (000,...0).
4.1 Local dynamics

Local analysis requires the computation of the Bmco matrix elements. The
calculus of partial derivatives and correspondingl@ation in the steady state vicinity

leads to the following linearized system:
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Kol [, ¢ __(-AU+A-9+dA-¢ _ a (-PHU+A-9+A-y |
Aeal | PUAS)  PWHAZ9)  Lvp BU+A=S) |
Z,l+l = }

s ! |
Z1,t+l - 1
- (7)
__a  (-Pl+A-9+A-y k
Q)T BWrAZY) A

0z,

The Jacobian matrix in system (7) has the sametateiof the Jacobian matrix of

the non optimization case, so we expect to obtaalldynamic results by following a

same analysis’ procedure. As before, the expressibrthe trace, sums of principal

mino
Thes

rs and determinant are obtained straightforlyaitm the @+1) square matrix.

€ are:

TrQ)= 14—

B+ A-0)
SM_()=adlm AL+ A=9) oAy
L+ A-0)

SM_.(J) = - a E(1—,6’)[(1+A—6)+0’A—t//_
ST 1ep B+ A-0)
a_ (-f)lA+A-0)+0A-y
@+ p)? BUL+A-9) ’

Zll\/|><4(‘]) =

LLL+A-0)

Det(J):(—ij_ al- AW+ A-d) +oA-y
1+ BLUL+A-9)

M., (9) =(—ﬁj @l AUA-9+A-y .

With the previous information, we might undertake tanalysis of stability for

any value oin. Proposition 7 presents a generic result simdahé one in proposition

2.
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Proposition 7: The linearized system, of the growth model wikpeeted utility
maximization and consumption decisions based orn pesnomic performance, is

locally stable if all the roots of the charactertst polynomial

» . LBlLA+A-09) n+1
P,(A)=(-1 [ﬁ @+ ,u)] [ﬁ(l L)+ A-9) +0A- l/l]m
. LL+ A-9) PR
+(-D" [ﬁ (1+/J)] [ﬁ(l B) L+ A-9) + oA— [//]EE L+ A—@}m

+ Sy e ] o 1
=1
lie inside the unit circle.
Proof: see appendix.
To save space and to guarantee that we are workihgractable expressions, we

now concentrate exclusively in the simplest aasg.

Forn=1, the linearized system is just

k|14t o ZAUAZO ARG [
l: t+1} = L+ A-9) L+ A-0) [E.Z,j (8)
1 0

+1

The trace and the determinant of the Jacobian xnare, respectively,

T =1+—% 51 and Detd)=adt ALETAZNYAY 4 44
B+ A-0) B+ A-09)
obtain a relation between trace and determinamrdeg]atL =Tr(J)-1
L+ A-09)
and that y _1°5 + oA L [Det(J). Therefore,

BL+A-3) B BHL+A-0)

Det(J) ——Eﬁ T A 5) alTr(J). This relation can be displayed graphically in a

same referential as the one used in figure 1. Campégures 1 and 11, we notice that

the introduction of optimization changes somehosvitital properties of the model.

*** Figure 11 here ***
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Figure 11 allows to realize that optimization egks the dynamic possibilities of
the model. Although a flip bifurcation continuesckxded from the possible outcomes,
another bifurcation (fold) besides the Neimark-Saakne is admissible. Furthermore, if
the slope of the dynamic line is low (a l@) the Neimark-Sacker bifurcation will not
take place, independently of other parameters’ emliProposition 8 synthesizes the
stability results.

Proposition 8: Considerd = (1- 8)[(L+ A-9J) + o A In the optimization growth
model with consumers reaction to the previous pehbosiness cycle position, stability

w<¢,<im.

is guaranteed under the following conditiofi- »
a

Proof: see appendix.
From proposition 8, one can withdraw several carak,

Corollary 1. Because y<€@ is a necessary condition for an economically
. . ) a . .
meaningful steady state, and stability requm&aslTB?, if the system is stable then
a

the steady state capital value is necessarily ecocally meaningful (i.e., positive).

Corollary 2: A Neymark-Sacker bifurcation occurs if when Tx@jhen Det(J»1.

Thus, a Neimark-Sacker bifurcation requir@& W.

Corollary 3: Besides stability (stable node or stable focas)jdentified through
proposition 8, other qualitative local results gressible:
1+ A-0
a

i) Instability (unstable focus)y < 8-
ii) Saddle-path stability: ¢ > —>— 8.
1+a

A numerical example helps to get some further imsign the local dynamics; we

consider the same values of the parameters thabarmon to the non optimization and

to the optimization frameworks, i.e5=0.05, ¥ =1, a=10. To these, we add=0.1



Consumer Confidence, Growth and Cycles 29

(recall that this is a relevant parameter, becauseflects the degree of importance
agents give to previous economic conditions wh&mgatheir consumption decisions),
£=0.86 (a value that corresponds to a discount pialé¢o 16.28%) ang=0.04 (in the
steady state, the representative agent consumedua gorresponding to 4% of the
available stock of capital). As in the non optintiaza case, we leA be the varying
parameter.

Given the assumed array of parameters, the tradetla determinant of the

Jacobian matrix cometr(J) _ 0857+ 086A and Det(J) :M. Condition

0.817+0.8€A 0.817+0.86A
Y< 6, needed for a positive balanced growth stock qfitah is always satisfied,
independently of the value of the positive techgglmdex.
Note that if A=0, then Tr(J)=1.049 andDet(J)=1.628; observe as well that
lim Tr(J) =1 and thatiimw Det(J) =2. 791 These values imply that no bifurcation

Ao +o0
occurs for a positive technology value; the systathlocate in the region where a pair
of complex conjugate eigenvalues associated tdahebian matrix exist, independently
of A. However, this does not mean that cycles and cbansot occur; even though
economically negative values & have no meaning, we should understand that
mathematically it is possible to find the pointtadnsition between stable and unstable
outcomes (i.e., the bifurcation point; in this cabe determinant of the Jacobian matrix
is equal to zero whemi\=-0.333). Figure 12 illustrates local dynamics untiee

discussed example.

*** Figure 12 here ***

Not all positive values oA are meaningful in our analysis. Recall tihats an
argument in the expression of the steady statetbroate, and thus we must guarantee,
through this parameter, a reasonable long run d¢rowdte. Recalling that

y=EpIlAL+A-90)-1, we will work, on the global analysis that followsvith

0.%<A<0.3; this allows for a reasonable growth rate -Kj}©€%.5%. Take in
consideration thaf=0.2 implies ['r(J),Det(J)]=[1.040,1.830] and thaA=0.3 implies
[Tr(J),Det(J)]=[1.037,1.907]

4.2 Global dynamics
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To discuss global dynamics, we assume the set @nper values presented
above. The analysis is basically the same one hdsrtaken for the non optimization
case. We study the casel.

The first step consists in presenting a bifurcatitagram. Figure 13 reveals this
diagram, for values oA capable of producing a reasonable long term groati. In
this case, we encounter essentially an a-perigdreisult. Recall that we are in the
region ‘after’ the Neimark-Sacker bifurcation tive¢ can locate in the curve of figure
12.

*** Figure 13 here ***

Figure 14 represents an attracting set for a vafu& for which a-periodicity is
present (in this case, we choose a valué dhat corresponds to a 4% steady state
growth rate); because cycles come from the same ¢ypbifurcation as in the non-

optimization case, one sees some similarities Witk attractor in figure 6. The
similarities can be regarded also through the seres of the endogenous varialE[e

there is no significant difference between the kaidendogenous business cycles in

figure 9 and the fluctuations one observes in fgl.

*** Figures 14 and 15 here ***

As in section 3, we complete the analysis withlihsin of attraction that indicates
the admissible set of initial values in order foe fong run attracting set to be reached
(figure 16). Note the similarities between this ibaand the one in figure 8. This
resemblance is an additional element that compel® state that the optimization of
consumption utility thus not change significanthg thature of cycles that arise when the
representative agent takes in consideration previeconomic performance in the
moment of evaluation of consumption decisions (ef¢ne weight of such evaluation

is relatively low; recall that the value assumedfarameter is close to zero).

*** Figure 16 here ***
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Remind that the time series in figure 15 correspgotal a transformed capital
variable, and that the original capital variablekjs= (k. +K) [{L+ y)', with k =4.6123
and =0.04.

4.3 Welfare considerations

One important doubt that the analysis may raisevhether the inclusion of
consumer reaction to short run economic fluctuatisnwelfare enhancing or not. To
clarify this point we should look at time serieseeages. Our graphics give some clues
and essentially point to the inefficiency that demsumers’ behaviour may produce.

If one considers the time series generated in oameles, for the assumed
parameter values, fon=1 and A=0.25 (model without optimization) oA=0.2593
(model with optimization), the cases depicted gufes 9 and 15, respectively, we find
the following: for any reasonable number of obseoves (e.g., more than 50 iterations),

the average of each one of the time series is fmumia<lzt> =-06 and <|§> =-02,

respectively.

In both cases, the average of the time seriegl®abzero, which is the steady
state result in the absence of fluctuations. Tlong may infer that the cycles are the
result of an inefficient response of individualsthe economic conditions they perceive
in each moment. The proposed model generatesdimffiendogenous business cycles
over the benchmark growth models, which do not takeonsideration any ability of

consumers to respond to the economic behaviountitegss.
5. Final remarks

In this paper, we have asked a simple questiont iiagents react to last periods’
economic performance when making consumption detsitoday? After all,
economists unanimously consider that economic pedace is directly attached to
consumer confidence. If households are optimidiimua the ability of the economy to
grow above normal standards, they will be moreimglito consume, and therefore the
marginal propensity to consume out of income risiesonsumers are pessimistic, the
opposite effect should be observed. Thus, we csintine standard growth model under
which agents believe that output converges indhg term to its potential level and act

according to such belief, with a framework whererag are essentially myopic in the
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sense they react to observable economic resulisrréttan to a far in time benchmark
that they do not have any guarantee to hold.

The proposed setup leads to endogenous businekss dhat are triggered by
households’ behaviour; if agents did not respondyies, these would just fade out.
Taking this argument seriously means that countdéical economic policy may be
adequate to attenuate the persistence of econtuntadtions; if agents do not perceive
that the economy departs from the potential outpeel, then they will adjust savings
rates obeying only to requisites of optimality undefrictionless scenario. Another
major conclusion is that cycles are inefficient,tie sense that the economy will, on
average, be worse off with than without them (oumerical examples point in this
direction). Cycles penalize long term welfare, dhdrefore private agents should be
educated not to give a strong response to shorflmgtuations with regard to their
decisions on the allocation of income between comgion and savings.

Appendix

Proof of proposition 1: Section 2 has defined the steady state as therlamg
locus that satisfies conditiok = IZM = Izt = Izt_l =.= |2t_n. Applying this condition to

> [1/es0]

equation (2), one gei_s=%/ f(l?)—(l—s)[f(l?)[ﬂf(lz)ly*)a% +(1-9)K |; in our

AK framework, f (k)= Ak, and thus f(k) = Ak. To get to the expression in the

proposition we just have to solve the above exjpass order tok, for the explicit

functional form of the production functituh

Proof of proposition 2: The proposition states a trivial definition of Stay
thus, this prove only involves clarifying that tipeesented characteristic polynomial

P;(4) is in fact the polynomial under which conditioR (A1) = dlows for the

determination of the+1 eigenvalues of matrix(4;, j=1,... n+1).

A characteristic polynomial 5 generically defined as
Q=)™ ™ + (D" Q)" +(-)™ [EM,, () ™ +..+(-D [EM,,(J) (A +De(J).
Dividing all terms by the determinant, we continaenave a polynomial that allows for

Q,(A)

finding exactly the samma+1 solutions; thus, we defin®,; (1) = Det(J)
e

, and present
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(D™ o, DT Lo, (DT EMGQ) e, (DEMLQD)

Rd= DetJ) DetJ) DetJ) De(J)

1.

Replacing the trace, the sums of the principal msiramd the determinant that we have
computed for our linearized system in the abovermmhial, we find the expression in

the propositiofl

Proof of proposition 3: Given the values of the trace and determinant, @ne
verifies that 1#r(J)+Det(J)>0 and 17r(J)+Det(J)<0, independently of parameter
values. Relatively to the condition Oet(J)=0, that defines a Neimark-Sacker
bifurcation, this is equivalent to the expressianitem a) of the proposition. Local
stability and local instability conditions are oioied by solving, respectivelfpet(J)<1
andDet(J)> 1]

Proof of proposition 4: For n=2, the trace of the Jacobian matrix is equal to 1
(and, thus, the three eigenvalues associated Wwe&hJacobian matrix cannot be all
negative values); the determinant is negative (whgtlies that an odd number of
negative eigenvalues exists). The two previous itimmd imply with certainty that
A, <0,A, > 0,4, >0 are the eigenvalues of matdx

With these eigenvalues signs, conditi@ A,) [(1+ A,) [(1+ A;) > hdlds only if
A, >-10A4, >-10A4, > -1; condition (1-A,)1-A,){1-A;)> 0 will be a true
condition if, alternatively, A, <10A, <10A,< 1 or A <10A,>10A4,>1
Furthermore, (1-A, [A,) - A, TA,)[(1-A, [A;)> Ois a condition that requires
A A, <104, A, <104, A, <1.

Considering simultaneously the three above condstiamplies that all the
eigenvalues will lie inside the unit circle, tha, we guarantee stability. The three
conditions may be rewritten as

(@ 1+Tr(J)+ XM, (J) + Det(J) >0;

(b) 1-Tr(J)+2XM,,(J) - Det(J) >0;

(©) 1-XM,,(J) + Det(J) [Tr(J) + Det(J)] > 0.

Conditions &) and p) correspond to relations that hold for any adrbissi

combination of parameter values, while conditioo) (equires the inequality
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2
! ztﬁaEA_y_JJ +(2+’uj[EaEA_y_5J—1<O to hold. Solving this
@+ 4) 1+y 1+u 1+y

inequality, one gets:

_(1+,,,)[ﬁ (Mj i1+ 2+ﬂ]<ag’*1+y;5< (w,)[{ (2”’)2 +1_2+_ﬂ};

2 2 2 2

the first inequality of this solution is an univarsondition, given the boundaries on
parameters values; the second relation can bearegad to give place to the stability
inequality in proposition 4.

A Neimark-Sacker bifurcation will occur when thdldaving equality is observed:
1->M,,(J) + Det(J) [ﬁTr(J) + Det(J)] =0. In such circumstance, we will have a pair
of complex conjugate eigenvalues equal to uniy:[A, = . This condition is
equivalent to the expression presented in propos#i respecting the bifurcation point.
Finally, if the system is not stable and we are owér a bifurcation point, then the

system will be locally unstable, as referred thifopgintc) of proposition 41

Proof of proposition 5: In the casen=3, one has realized that two of the
eigenvalues of matrid are positive while the other two are negative sTdthservation
allows to compile a set of inequalities that ifnity satisfied imply that local stability
holds. These conditions are the following:

i) @+A) [0+ A,) [0+ A,) [0+ A,) >0;

i) @-A)L-A,)01-A,)01-1,)>0;

i) @-A, L) L-A, QL) A-A, ) [A-A, Oh,) - A, Ch,) CL- A, T4,) > 0;

iv) 1-A, 4, (A, 4, >0.

Note that condition i) is satisfied unddf >-10A4, >-1 or A, <-104, <-1.
Likewise, condition ii) requiresl, >104, > br A, <104, <1. Condition iii) is true
for A, 4, >10A; A, >1 or A 04, <104, A, <1 Finally, inequality iv) says that
A A, >10A, 4, >1 is not a feasible condition, and thdstd, <10A; 4, < hdlds;

this last expression guarantees that all eigensadume inside the unit circle, given the
first two conditions (i and ii).

The stability conditions may be transformed, afsmme calculus (that is
particularly tedious for the third condition), intiee following:

i) 1+Tr(J)+>M,,(J) + Det(J) >0;
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i) 1-Tr(J) +XM,,(J) - Det(J) >0;
ii)
1-XM,(3) - [EM ()] +[2E M, (3) - (Tr(9))? | mDet(a) |
+[Tr(3) (EM ,(J) - Det(3)] L+ Det(J)] - =M., (J) {{Det(J))* + (Det(J))* >0’
iv) 1- Det(J) >0.

The first two conditions hold under the system’suasptions; condition iv) is true

for aE:Jr&_é<(l+/,1)2 and condition i) is  compatible  with
4

LR+ 1) aEA-y-JTJr 1- =17 [ﬁaEA-y-JJ2+4+3u+u2 [EaEA-y-qu
@+p)° 1+y @+ p)* 1+y @+p)° 1+y '

These are the conditions for stability; instabijisevails if one of them is not fulfilled.

A Neimark-Sacker bifurcation requires once agaia pinoduct of eigenvalues to be
equal to one, that is), (A, =1 or A, A, =1 (or both)O

Proof of proposition 6: It is straightforward to verify that the balanceshwth

path is unique and that it corresponds to the ahpélue in the proposition. For such,

just solve the following equation in order kg,

R:;D
B+ A-0)
_ _ » ai[l/(lw)]"l _ n _ i _ -
{(1+U)Df(k)—t//[k—0[(1/y) Df(k)q‘J[f(k)aﬁl’W] ]+(1—5)Ek
K L o) Ok K o k15 BT o+ g gy |
= - + - - =1 + (1-
B+ A=9) (1+0) Yk-olAKIY) 1-9)

Proof of proposition 7: By solving equationP, (1) = Pwe obtain then+1
eigenvalues of the system, i, (4 i3 the characteristic polynomial of the system or
any equivalent relation. The notion of stabilitguées those eigenvalues to be above -1
and below 1. Thus, since the expression in the gsmiipn corresponds to

P,(1) = (D™ o, " TMQ) LD EM,(J) g s+ OEMGO) "

we
DefJ) DefJ) DefJ) De(J)

can assert that, as in proposition 2, the eigeegahfJ can be found through the

referred expressiad
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Proof of proposition 8: Just note that the stability condition
1+Tr(J)+Det(J)>0 is always guaranteed; the left inequality in theoposition

(H—M <¢/j holds under Det(J)>0 and the right inequality in the proposition
a

((/l <1+iﬁ9j is satisfied for IFr(J)+Det(J)>0, given the values of the trace and the
a

determinant of the matrix in linearized systeni{8)
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Figures
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Figure 1 — Local dynamics in the model without opthnization (n=1).
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Figure 2 — Local dynamics in the model without opthnization (n=2).
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Figure 3 — Bifurcation diagram (A, kt) for the model without optimization (n=1).
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Figure 4 — Bifurcation diagram (A, kt) for the model without optimization.

A closer look, for 0.253%A<0.276 6=1).
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Figure 5 — Lyapunov exponents in the model withoubptimization (n=1).
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Figure 6 — Attractor for the model without optimization (A=0.25;n=1).
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Figure 7 — Attractor for the model without optimization (A=0.33;n=1).
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Figure 8 — Basin of attraction for the model withod optimization (A=0.33;n=1).

The area in black is the basin.
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Figure 9 — Time series 0ﬂ<t for the model without optimization (A=0.25;n=1).
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Figure 10 — Bifurcation diagram (A, E) for the model without optimization (n=4).
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Figure 11 — Local dynamics in the model with optingation (n=1).
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Figure 12 — Local dynamics in the model with optingation,

for a selected array of parameter values and a vamg A (n=1).
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Figure 13 — Bifurcation diagram (A, E) for the model with optimization (n=1).
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Figure 14 — Attractor for the model with optimization (A=0.2593;n=1).
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Figure 15 — Time series oikt for the model with optimization (A=0.2593;n=1).
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Figure 16 — Basin of attraction for the model withoptimization (A=0.2593;n=1).

The area in black is the basin.



