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Abstract: Endogenous growth models are generally designed to address long term trends of 
growth. They explain how the economy converges to or diverges from a balanced growth 
path and they characterize aggregate behaviour given the optimization problem faced by a 
representative agent that maximizes consumption utility. In such frameworks, only potential 
output matters and all decisions, by firms and households, are taken assuming that any 
output gap does not interfere with the agents’ behaviour. In this paper, we develop growth 
models (without and with optimization) that depart from the conventional framework in the 
sense that consumption decisions take into account output fluctuations. Households will 
raise their propensity to consume in periods of expansion and they will lower it in phases of 
recession. Such a framework allows to introduce nonlinear features into the model, making 
it feasible to obtain, for reasonable parameter values, endogenous fluctuations. These are 
triggered by a Neimark-Sacker bifurcation.     
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1. Introduction 

 

Standard growth models commonly overlook any possible reaction of households 

relatively to short run economic performance (i.e., to business cycles). Such growth 

models are long term paradigms, where a permanent coincidence between effective 

output and potential output is implicitly assumed. In this paper, we reinterpret the 

conventional AK endogenous growth model when this is modified to include 

consumers’ response to previous periods’ deviations of output relatively to its potential 

level. This response relates to a simple mechanism that involves confidence: when the 

output gap in the previous periods is systematically positive, demand side agents 

become increasingly confident, and they will consume an amount of resources that is 

tendencially higher than the consumption level derived from the benchmark growth 

models (the optimal consumption level of a Ramsey-like setup or the consumption level 

that arises from assuming a constant marginal propensity to save); if, alternatively, the 

observed output gap in the near past corresponds to negative value, then the 

contemporaneous level of consumption falls below the reference level. 

The described mechanism intends to add realism to the simple growth model. It is 

well accepted by the economics profession that households in fact take into account 

short term macroeconomic fluctuations in order to plan their income allocation 

decisions. Links between consumer confidence and business cycles have been 

extensively reported in the empirical literature: for instance, McNabb and Taylor 

(2002) find evidence of causality between GDP movements and consumer confidence 

indexes, for several of the most important economies in Europe (UK, France, Italy and 

the Netherlands). A similar conclusion is highlighted by Goh (2003) for the economy of 

New Zealand; this author, in particular, states that consumer confidence reflects current 

economic conditions, which confirms the reasonability of our assumption: households 

are influenced by the perceived macro performance and will adopt a more or less 

enthusiastic attitude towards consumption accordingly. 

Some authors remark that the consumer sentiment is often biased and does not 

reflect exactly the true amplitude of business cycles [it is the case of Souleles (2004), 

who studies consumer confidence for the American state of Michigan]; nevertheless, 

even when the extent of the relation between the cycle and consumers sentiment and 

attitude is questionable, it seems unreasonable to drop completely this relation as it 

happens in most of the contemporaneous growth analysis. 
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Note that our argument can be separated in two causal relations: first, cycles 

influence consumers’ confidence; second, confidence automatically generates a 

reaction in terms of the relative level of consumption out of income. The second 

relation is even less subject to doubt than the first. Studies like Bram and Ludvigson 

(1998), Souleles (2004) and Dion (2006) clearly reveal that higher confidence is related 

to lower savings, given the logical argument that increases in expected future resources 

reduce the strength of the precautionary motive to save. However, some other authors, 

like Croushore (2004) have difficulty in finding a statistically significant relation 

between the measured degree of consumer optimism and effective levels of 

consumption. Even though the evidence on increasing confidence regarding short run 

aggregate performance cannot always confirm a direct correlation with rising 

consumption shares out of income, this is an intuitive relation that is reasonable to 

include in a theoretical framework that aims at combining the evidence on cyclical 

movements with an explanation of long run growth.   

Back to our modelling setup, we should stress that the simple additional 

assumption that we introduce provokes relevant changes over the way one understands 

the growth process. This is no longer invariably materialized in a steady state positive 

constant growth rate that remains unchanged unless some exogenous disturbance 

occurs; instead, the response of the representative consumer to deviations from 

potential output might imply, for reasonable parameter values (e.g., technology level, 

savings rate or discount factor), everlasting fluctuations in the growth rate of the main 

economic aggregates. Essentially, one may infer from the analysis that business cycles 

are, under certain circumstances, self sustained, i.e., because deviations from the 

observable growth trend do exist, households will modify their behaviour, and these 

systematic changes on behaviour induce cycles to persist, originating a process that 

tends to repeat itself endlessly. 

The analysis we develop may be associated with the literature on endogenous 

business cycles (EBC), a strand of thought that justifies economic fluctuations through 

assumptions that imply nonlinear modelling structures, which are able to generate long 

term cyclical behaviour that commonly arises after some type of bifurcation (that is 

provoked by a change in a parameter value). This literature goes back to the influential 

work by Stutzer (1980), Benhabib and Day (1981), Day (1982), Grandmont (1985), 

Boldrin and Montrucchio (1986) and Deneckere and Pelikan (1986), among others. 

These authors saw on basic nonlinear mathematical models (like the logistic map) a 

fruitful field to explore endogenous fluctuations associated with growth processes. 
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Responding to the real business cycles (RBC) theory, these authors found a way to 

conciliate into a same theoretical structure business cycles and growth. The main 

criticism relating to these first approaches to endogenous cycles had to do essentially 

with the somehow unreasonable hypotheses that were underlying the theoretical 

structures; it seemed that nonlinearities were not a consequence of economic 

assumptions, but the other way around: the need for nonlinearities forced some 

questionable assumptions. 

Recently, various routes to endogenous cycles have been explored. The work by 

Brock and Hommes (1997) constitutes a fundamental reference because it has initiated a 

great deal of discussion on deterministic fluctuations. This work has inspired relevant 

contributions, mainly in what concerns financial analysis [Brock and Hommes (1998), 

Gaunersdorfer (2000), Lux and Marchesi (2000), Chiarella, Dieci and Gardini (2002), 

Chiarella and He (2003), Westerhoff (2004), De Grauwe and Grimaldi (2005), 

Hommes, Sonnemans, Tuinstra and van de Velden (2005) are relevant examples of this 

extensive literature]. We find as well relevant contributions with the same inspiration 

relating real analysis, as it is the case of the work by Goeree and Hommes (2000) and 

Onozaki, Sieg and Yokoo (2000, 2003). 

The previous references relate to endogenous cycles generated by agent 

heterogeneity, but the most growth oriented reflections on endogenous fluctuations 

continue to address a scenario of representative agent. These contributions can be 

mainly separated in two groups. First, we find the overlapping generations analysis of 

economies with production technologies subject to increasing returns; this analysis 

comes in the tradition of Grandmont (1985) and has been developed by Cazavillan, 

Lloyd-Braga and Pintus (1998), Aloi, Dixon and Lloyd-Braga (2000), Cazavillan and 

Pintus (2004) and Lloyd-Braga, Nourry and Venditti (2006), among others. The second 

approach is also based on the presence of production externalities that generate 

increasing returns to scale, but this takes the optimization setup of the RBC models (i.e., 

an utility maximization control problem, with consumption and leisure as arguments of 

the utility function). In this respect, it is worth to mention the work by Christiano and 

Harrison (1999), Schmitt-Grohé (2000), Guo and Lansing (2002), Goenka and Poulsen 

(2004) and Coury and Wen (2005), among others.  

There are other approaches to endogenous fluctuations in aggregate economic 

models that deserve to be mentioned. We refer only two additional contributions: the 

technical work by Nishimura, Sorger and Yano (1994), Nishimura and Yano (1994, 

1995) and related papers, who study extreme conditions under which the competitive 
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growth scenario can generate long term non linear motion; and Cellarier (2006), who 

drops the optimal plan of conventional growth models and replaces it by a constant gain 

learning mechanism which is capable of producing endogenous fluctuations. 

In the model developed along the following sections, which is likely to generate 

cyclical behaviour, fluctuations are triggered by a Neimark-Sacker bifurcation or Hopf 

bifurcation in discrete time. This is a type of bifurcation that fits well the economic data 

on business cycles, in the sense that the bifurcation induces a quasi-periodic movement 

(something between period cycles and chaotic motion) where several periods of 

expansion are followed by several periods of slower growth, which is similar to what 

real data time series reveal [see Dosi, Fagiolo and Roventini (2006) for a review of the 

main stylized facts concerning business cycles]. In fact, the importance of the link 

between the Hopf bifurcation (mostly in continuous time) and the inquiry about the 

nature of business cycles has been highlighted in the literature, as it happens with 

Semmler (1994), Asada and Semmler (1995) and Manfredi and Fanti (2004). 

The remainder of the paper is organized as follows. Section 2 presents the general 

properties of the type of dynamic system we intend to approach; some definitions 

concerning nonlinearities, in the specific environment we consider, are set forth. Section 

3 develops the endogenous growth model with consumer confidence on a scenario 

where no optimization by a representative consumer is assumed. Section 4 repeats the 

analysis of section 3 for a model with consumption utility maximization. In both 

sections, the local properties of the model are explored and global dynamics are 

discussed through a numerical / graphical analysis. Finally, section 5 concludes. 

 

2. Useful definitions 

 

The dynamic systems to consider in the following sections correspond to pairs 

(X,h), with h a map defined in the state space X⊆IR (we assume that X is a non-empty 

and compact subset of IR). The map defines the law of motion of a variable kt∈X, with 

t=0,1,2, …, and the first ki given (i= 0,1,2,…,n), with n some positive integer. This law 

of motion assumes the generic form kt+1=h(kt,kt-1,…, kt-n). 

Let h(1)(kn,kn-1,…,k0) be the first iteration of h, and let 

),...,,(...),...,,( 01
)1(

01
)( kkkhhhkkkh nnnn

t
−− = ooo  correspond to the iteration t of the 

map.  
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The class of models we propose takes the endogenous variable kt as a variable that 

grows at a constant rate in the long run. Thus, we define a steady state or balanced 

growth path of the system as, 

 

Definition 1: Consider that kt grows at a constant rate in the long term, that is, 

γ=







−

−

−
+

+∞→
1

),...,,(

),...,,(
lim

01
)(

01
)1(

kkkh

kkkh

nn
t

nn
t

t
, with γ∈ IR. Let 

t
t

t

k
k

)1(
ˆ

γ+
≡ . A balanced growth path 

or steady state corresponds to the set { }),...,,(| kkkhkkE == , i.e., corresponds to a set 

of one or more positive constant values that are obtained through the dynamic system 

under the condition ntttt kkkkk −−+ ====≡ ˆ...ˆˆˆ
11 . 

 

The previous one-dimensional system can be transformed into a (n+1)-equations 

system and only one time lag in h(⋅). To obtain this system, consider variables 

kkk tt −≡ ˆ~
, 1,1

~~
−≡ tt kz , 1,1,2

~~
−≡ tt zz , …, 1,1,

~~
−−≡ tntn zz . A new system, that includes n+1 

difference equations, arises: kkzkzkzkkhk tntttt −++++=+ )~,...,~,~,
~

(
~

,,2,11 , tt kz
~~

1,1 =+  

and titi zz ,11,
~~

−+ = , i= 2,…,n. Note that the steady state of this system is the origin, 

)0,...,0,0,0()~,...,~,~,
~

( 21 =nzzzk .  

We redefine the initial problem as system (X×X×…×X,h), that is, (Xn+1,h), with the 

law of motion given by )~,...,~,~,
~

( ,,2,11 tntttt zzzkhz =+ , and where 

[ ] ′= +++++  ~~~~
1,1,21,111 tntttt zzzk Lz  and  

[ ] ′−++++= −  ~~~
)~,...,~,~,

~
()~,...,~,~,

~
( ,1,1,,2,1,,2,1 tntttnttttnttt zzkkkzkzkzkkhzzzk Lh . 

For the new presentation of the system, )~,...,~,~,
~

( ,,2,1
)1(

nnnnn zzzkh  represents its first 

iteration and, as before, )~,...,~,~,
~

(...)~,...,~,~,
~

( ,,2,1
)1(

,,2,1
)(

nnnnnnnnnn
t zzzkzzzk hhhh ooo=  

relates to the iteration number t. 

The trajectory of the endogenous variable and the orbit of the system can be 

defined as follows, 

 

Definition 2:  

The sequence +∞
== 1,,2,1

)(
,,2,1 ))~,...,~,~,

~
(()~,...,~,~,

~
( tnnnnn

t
nnnnn zzzkzzzk hτ  represents the 

trajectory of kt, as described by the evolution of tk
~

, tz ,1
~ , tz ,2

~ , …, tnz ,
~  in the space of 
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motion (i.e., in time), starting from a given point )~,...,~,~,
~

( ,,2,1 nnnnn zzzk . The orbit of the 

system can be formally presented as the set of points 

{ }1 somefor ),~,...,~,~,
~

()~,...,~,~,
~

(|)~,...,~,~,
~

()~,...,~,~,
~

( ,,2,1
)(

2121,,2,1 ≥== tzzzkzzzkzzzkzzzk nnnnn
t

nnnnnnn hω
. The orbit corresponds to the evolution of the system in the state space (i.e., the space 

of variables), starting from )~,...,~,~,
~

( ,,2,1 nnnnn zzzk .  

 

The map )~,...,~,~,
~

( ,,2,1 tnttt zzzkh  might be a nonlinear map (the assumptions 

underlying the growth models to discuss afterwards produce such kind of map); this 

means that its underlying dynamics are tendencialy morphologically rich, i.e., it can 

give place to cyclical or complex trajectories for the assumed endogenous variable. 

Hence, one should emphasize that dynamic results are not necessarily limited to fixed 

point stability or instability; cycles of different periodicities, a-periodicity and chaotic 

motion may as well reflect the behaviour over time of variable kt, depending on the 

specification of h(⋅). 

Note that we are essentially referring to types of long run outcomes (i.e., once the 

transient phase is overcome), and thus the notion of stability (or possibility of 

convergence to the long term outcome) becomes central in our argument. With respect 

to this point, we take the conventional concept of asymptotic stability. 

 

Definition 3: Let W be an invariant compact subset of Xn+1. Asymptotic 

stability of the map h towards set W requires: 

a) for every neighbourhood U of W, there exists a point )~,...,~,~,
~

( ,,2,1
U

nn
U

n
U

n
U

n zzzk  

such that any orbit starting at )~,...,~,~,
~

( ,,2,1
U

nn
U

n
U

n
U

n zzzk  is entirely contained in U, that 

is, Uzzzk U
nn

U
n

U
n

U
n ⊂)~,...,~,~,

~
( ,,2,1ω ; 

b) the set [ ]{ }0),~,...,~,~,
~

(lim|)~,...,~,~,
~

()( ,,2,1
1

,,2,1 =∈=
+∞→

+ WzzzkdXzzzkWB tnttt
t

n
tnttt ω  

is a neighbourhood of W. In this set, d is some distance measure between the position of 

the endogenous variable, given by its orbit, and set W. 

 

Definition 3 deserves some comments. First, set W is known as an attractor or 

attracting set, as long as it is a topologically transitive set. As mentioned, we may have 

several types of attractors, that range from a fixed point to periodic or a-periodic points. 

If chaotic motion is identifiable, the set to which the system converges into in the long 



Consumer Confidence, Growth and Cycles 8 
 
term takes generally the designation of a strange attractor. Second, the stability property 

may apply solely to a subset of Xn+1, which was presented as set B(W). This set is the 

basin of attraction, that is, the set of all initial points corresponding to orbits that 

converge to the attracting set. According to the definition, the orbits originating in 

points inside the basin will coincide with the attractor in the long term (i.e., the distance 

between the orbits and the attractor tends to zero). Of course, by the definition, 

W⊆B(W). 

Let us now characterize the several types of attracting sets. Definition 4 relates to 

the two simplest categories.  

 

Definition 4: For the system of difference equations 

)~,...,~,~,
~

( ,,2,11 tntttt zzzkhz =+ , a point )~,
~

( **
izk , i= 1,…,n, is a periodic point of (minimal) 

period p≥1 if )~,
~

()~,
~

( ****)(
ii

p zkzk =h . A fixed point is a period 1 periodic point. 

 

Considering the definition, the orbit  

{ })~,
~

(),...,~,
~

(),~,
~

()~,
~

(|)~,
~

()~,
~

( **)1(**)1(**)(******
ii

p
i

p
iii zkzkzkzkzkzk hhh −==ω  is a 

sequence of p distinct points that are visited repeatedly by the system in a given order. 

Periodic orbits correspond to a first level of complexity that the dynamics of 

nonlinear models can contain; a higher degree of complexity can be defined as a-

periodic motion, which corresponds to orbits relatively to which no periodicity is 

identifiable but where the dynamics are relatively simple to be considered as chaos (we 

will deal with chaos below).  

A-periodic or quasi-periodic orbits are most of the cases the result of a Neimark-

Sacker bifurcation, which contrarily to other types of bifurcations (e.g., flip) do not 

involve a process of period doubling cycles; with the referred kind of bifurcation, 

generally we have a process where a fixed point stable equilibrium gives place to a-

periodic cycles that can eventually degenerate in chaotic motion before the system ends 

up in an unstable equilibrium. Thus, while a flip bifurcation implies increasing 

(doubling) the number of cycles as some parameter value is changed, a Neimark-Sacker 

bifurcation implies a similar process but where doubling periodicity is replaced by 

quasi-periodicity of increasing order, that, as stated, in the limit can lead to chaos (as 

any other bifurcation). We will discuss further this specific type of bifurcation later, in 

the end of this section. 
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There is no easy definition of quasi-periodicity, so we describe it by default as the 

intermediate case between identifiable periodicity (of any order) and chaotic motion. 

To get to chaos, one needs some definitions; one of these is the notion of 

scrambled set. 

 

Definition 5 (this definition relies on Mitra, Nishimura and Sorger (2005)) A 

subset S of Xn+1 is a scrambled set for the dynamic system (Xn+1, h) if the following 

conditions are satisfied: 

i) For any )'~,...,'~,'~,'
~

( ,,2,1 nnnnn zzzk , )''~,...,''~,''~,''
~

( ,,2,1 nnnnn zzzk ∈S the following 

condition is verified: 

0)''~,...,''~,''~,''
~

()'~,...,'~,'~,'
~

(inflim ,,2,1
)(

,,2,1
)( =−

∞→ nnnnn
t

nnnnn
t

t
zzzkzzzk hh ; 

ii ) For any )'~,...,'~,'~,'
~

( ,,2,1 nnnnn zzzk ∈S and either 

)'~,...,'~,'~,'
~

( ,,2,1 nnnnn zzzk ≠ )''~,...,''~,''~,''
~

( ,,2,1 nnnnn zzzk ∈S or )''~,...,''~,''~,''
~

( ,,2,1 nnnnn zzzk ∈P 

(with P the set of all periodic points of the dynamic system (Xn+1, h)) it holds that: 

0)''~,...,''~,''~,''
~

()'~,...,'~,'~,'
~

(suplim ,,2,1
)(

,,2,1
)( >−

∞→
nnnnn

t
nnnnn

t

t
zzzkzzzk hh .  

 

According to the definition, S is a scrambled set in the sense that any orbit starting 

in this set does not asymptotically converge to any periodic orbit. This means that inside 

a scrambled set there is sensitive dependence with respect to initial conditions (SDIC), 

which corresponds to stating that nearby orbits tend to diverge exponentially. This is a 

well accepted notion of chaos; a model with SDIC can be associated with the presence 

of chaotic motion, although one should be careful since this is not a complete and 

rigorous notion of chaos. The definition, as assembled by Sarkovskii (1964) and Li and 

York (1975), requires the scrambled set to be uncountable (i.e., to be infinite and 

without a one-to-one correspondence with the set of natural numbers); since this 

definition has in consideration the topological / geometrical properties of sets, it is 

known as the definition of topological chaos [as opposed to ergodic chaos, which deals 

with the statistic properties of ensembles of deterministic orbits; concerning ergodicity 

and chaos see Huang and Day (2001) and Huang (2005)]. 

 

Definition 6: The dynamic system (Xn+1, h) exhibits topological chaos if its 

orbits are defined in an uncountable scrambled set and some of these orbits (at least 

one) correspond to periodic points of period that is not a power of 2. 
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A practical way to distinguish between periodic cycles, quasi-periodicity and 

chaos consists in computing Lyapunov characteristic exponents (LCEs); these respect to 

a measure of exponential divergence of nearby orbits, and are defined, in the case of our 

system, by ∏
−

=
∞→

⋅=
1

0
,,2,1 )~,...,~,~,

~
(ln

1
lim

n

i
iniii

n
zzzkD

n
LCEs h , where )~,...,~,~,

~
( ,,2,1 iniii zzzkDh  is 

a (n+1)×(n+1) matrix with the elements given by the derivative of each one of the 

equations of the system relatively to each one of the variables of the system. 

 

In the case of a n+1 dimensional system, n+1 LCEs are determinable and their 

signs allow to classify types of orbits. In particular, it is known that: 

i) for an asymptotically stable fixed point, all LCEs are negative. This reflects the 

fact that for stable fixed points the distance between orbits originating at different initial 

conditions tend to decrease in time, as these orbits converge to the same long run 

equilibrium value; 

ii ) for the cases of periodicity and quasi-periodicity, at least one of the LCEs is 

equal to zero, while the others remain negative. In this case orbits do not approach or 

diverge relatively to a same long run locus; 

iii ) finally, a positive LCE signals that nearby orbits exponentially diverge and, 

thus, the presence of at least one positive LCE relates to the lack of predictability in the 

system, which is often a good argument to support the presence of chaos. 

 

With the computation of Lyapunov exponents it becomes relatively easy to 

distinguish between chaos (which implies unpredictability) and quasi-periodicity, where 

the dynamics are predictable, although no order is identifiable for the underlying cycles. 

Another measure that allows for such a distinction is metric entropy (a measure of the 

degree of unpredictability of a deterministic system): only chaotic systems display 

positive entropy, because these are the ones with associated unpredictable dynamics. 

Quasi-periodic systems, as we have defined them to be a-periodic but not chaotic, will 

display zero entropy as any other system with predictable dynamics. 

Measures of complexity and chaos are not our main concern here. Alongside with 

the analytical treatment of the growth models in next sections, we will look at LCEs as a 

way to clarify the qualitative nature of the steady state of the system. Additional insights 

about the general nature of nonlinear systems and measures of chaos can be found in the 



Consumer Confidence, Growth and Cycles 11 
 
literature. See, for instance, Alligood, Sauer and Yorke (1997), Lorenz (1997), Elaydi 

(2000) or Medio and Lines (2001). 

An insightful approach to nonlinear dynamics in models as the ones we propose 

imply the need for an attentive analysis of both local and global dynamics. Global 

dynamics promote the accurate understanding of how orbits evolve towards the long 

term attracting set, but they are dependent on fully specifying the array of parameter 

values, because each set of parameter values may give place to a unique attractor. Local 

analysis allows for a more general investigation of the properties of the system but it 

can only go so far as to distinguish between regions of stability (stable node or stable 

focus), saddle-path stability and instability (unstable node or unstable focus); these 

regions are separated by bifurcation lines, and the movement from one region to another 

is made through a varying parameter that gains the designation of bifurcation parameter. 

Thus, local analysis hides the possible presence of periodic, quasi-periodic or / and 

chaotic motion that eventually characterizes the model’s dynamics. For instance, in the 

growth models of the following sections, a bifurcation separates locally a region of 

stability from a region of instability; global analysis allows to realize that once the 

stable region is abandoned, quasi-periodicity arises for a given interval of some 

parameter value, before instability begins to prevail. 

To close this section, and given that the growth models to be developed present 

non conventional dynamics (i.e., dynamics besides fixed-point stability or periodic 

stability) as a result of a Neimark-Sacker bifurcation, we concentrate in the fundamental 

properties underlying this type of bifurcation. 

Recover system (Xn+1,h) and assume the following family of maps: 

);~,...,~,~,
~

( ,,2,1 ζtnttt zzzkh , with ζ∈ IR  a parameter. Let also )(1 ζλ , )(2 ζλ , …, )(1 ζλ +n be 

the eigenvalues of the Jacobian matrix of the system in the vicinity of 

)0,...,0,0,0()~,...,~,~,
~

( 21 =nzzzk , for a given value of ζ ( ζζ = ). 

 

Definition 7: A Neimark-Sacker bifurcation, or Hopf bifurcation for maps, 

occurs when the conditions below are simultaneously satisfied: 

i) Any two eigenvalues of the Jacobian matrix of the system (Xn+1,h) for a 

parameter value ζζ = , )(ζλi  and )(ζλ j , are complex conjugate eigenvalues, with 

1)()( =⋅ ζλζλ ji ; 
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ii ) The derivative 
ζ

ζλζλ
d

d ji ))()(( ⋅
 is not a null value; 

iii ) [ ] 1)( ≠m

i ζλ  and [ ] 1)( ≠m

j ζλ  for m=1, 2, 3 and 4 [according to Medio and 

Lines (2001), this property is needed in order to get eigenvalues that are not low roots of 

unity]. 

 

Therefore, the central condition for a Neimark-Sacker bifurcation to occur is that 

at least a pair of eigenvalues from the Jacobian matrix of the linearized dynamic system 

in the steady state vicinity has to be a pair of complex conjugate eigenvalues, with the 

corresponding modulus equal to one (this is condition i of definition 7); the other 

conditions complete the required properties for the referred bifurcation to take place. 

 

3. The model without optimization 

 

Consider a typical closed economy where government intervention is absent. Let 

yt, kt, i t and ct be the levels of per capita output, physical capital, investment and 

consumption, respectively, and assume that the growth rate of population / labour is 

zero. Capital accumulation is defined as investment less capital depreciation, 

tttt kikk δ−=−+1 , with δ>0 the depreciation rate and k0 given. We take as well the 

level of investment as corresponding to households’ savings, i.e., ttt cyi −= . Under the 

standard Solow capital accumulation equation, consumption respects to a fixed amount 

of output or income, that is, consumers adopt the simplest possible rule: marginal 

propensity to consume does not change over time, unless some exogenous disturbance 

occurs.  

Over this basic growth structure, we introduce the change suggested by the 

assumption in the following paragraph.  

 

Main assumption: Consumers react to recent deviations of income relatively 

to the potential income level. If last periods’ output gap (difference between effective 

and potential output / income) is positive, then aggregate consumption will be more 

than proportional relatively to today’s income; if last periods’ output gap is negative, 

then contemporaneous aggregate consumption will be less than proportional relatively 

to the present amount of aggregate income. 
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The previous assumption indicates that the framework we are proposing reflects 

the trivial capital accumulation process of growth models only if the output gap remains 

at a null value; in other words, the Solow accumulation equation is a particular analysis 

of growth when considering that there is a permanent coincidence between effective and 

potential levels of output and, even if there is not such coincidence, consumers do not 

respond to observed gaps.  

To formalize the above assumption, let xt be the output gap measured in logs 

( *lnln ttt yyx −= , with *
ty  the potential level of per capita output; this is a variable that 

is supposed to follow a growth trend corresponding to the balanced growth path). 

Consider the case where previous periods’ output gap is zero as the benchmark case, so 

that s∈(0,1) defines the marginal propensity to save (savings rate) when xt-1= xt-2=…= 

xt-n=0, with n the number of past periods that households estimate as relevant to base 

present consumption decisions. Per capita consumption is given by 

),...,,()1( 21 nttttt xxxgysc −−−⋅⋅−= . According to our main assumption, g(0,0,…,0)=1, 

1),...,,( 21 >−−− nttt xxxg  if the weighted average of nttt xxx −−− ,...,, 21  is positive, and 

1),...,,( 21 <−−− nttt xxxg  if the weighted average of nttt xxx −−− ,...,, 21  is negative; below 

we will address the way these averages are computed. From an economic point of view, 

we are stating that the level of consumption is a fixed percentage of output (1-s) if no 

output gap is observable in the previous periods; when the output gap is, on average, 

positive then households will react by rising consumption above the benchmark level in 

t; finally, in the circumstance where the output gap is predominantly negative in 

previous periods, the reaction of consumers will be lowering consumption levels in t 

further and further below the benchmark level as the output gap widens.  

Therefore, we are basically defining a mechanism of response of households 

relatively to business cycles; in a favourable phase of the business cycle, agents will be 

more optimistic and will react by applying a larger share of their disposable income to 

consumption; likewise, if the precedent time periods indicates a recession phase, the 

reaction is to reduce the consumption share out of income. This optimism-pessimism 

response mechanism to economic fluctuations introduces an important link between 

today’s process of capital accumulation and consumption, and past economic 

performance; furthermore, it attributes to households a role that is commonly absent in 

this kind of economic analysis: they are no longer well informed agents fully aware of 

the economy’s growth trend and insensitive to any other factor; rather, they incorporate 

in their decisions about income allocation an adjustment term that reflects how the 
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economy moves in the short run. Because this new framework is able to produce 

endogenous cycles under some circumstances, we might say that cycles are self- 

fulfilling: they exist as the result of the agents’ reaction to their existence. 

We define function ),...,,( 21 nttt xxxg −−−  as a continuous, positive and increasing 

function that obeys to condition g(0,0,…,0)=1. The analytical tractability of the model 

requires a specific functional form; the following function contemplates the referred 

properties: )...exp(),...,,( 221121 ntnttnttt xaxaxaxxxg −−−−−− +++= , a1>a2>…>an>0. 

Parameters ai, i= 1,2,…,n are ordered in a descending way to reflect the logical idea that 

consumers give more importance to recent output gaps than to far in the past deviations 

from the potential output, when taking decisions about consumption. Thus, these 

constant values may be interpreted as the weights the consumer attributes to past 

economic performance. To simplify the analysis, we consider a rate of discount for the 

mentioned weights; assuming a constant rate µ>0, one defines a new parameter a that 

obeys to the condition n
n aaaaa ⋅+==⋅+=⋅+=≡ −1

3
2

21 )1()1()1( µµµ L ; as a 

consequence, we should rewrite function g as 


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µµ
. Recalling the 

definition of output gap, an equivalent presentation of this function comes, 
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To close our model, one needs to define a production function )( tt kfy = . This 

setup corresponds to an endogenous growth framework, and therefore the production 

function must exhibit constant returns, that is, 0
)(

)(' >== A
k

kf
kf

t

t
t , with this 

parameter reflecting the technological level concerning the production of final goods. 

The above characterization can be synthesized through a simple one difference 

equation system, which is  
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We are assuming an endogenous growth setup and, thus, the economy is supposed to 

grow at a positive and constant rate in the steady state. Defining this growth rate by 

letter γ, the potential output corresponds to t
t yy )1(ˆ ** γ+⋅= , with *ŷ  a positive 

constant. Notice that we are just saying that potential output follows, in every time 

moment, the balanced or steady state growth path. 

Recover variable 
t

t
t

k
k

)1(
ˆ

γ+
≡ , already presented in the previous section. This 

new capital variable is not constant for all t, but it should be constant in the steady state. 

Replacing variables *
ty  and kt in equation (1) by the respective detrended values, it is 

straightforward to encounter the following equation (note that the production function is 

homogeneous of degree one), 
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 (2) 

 

Equation (2) takes us to the steady state result, 

 

Proposition 1: The capital accumulation equation with consumption levels 

adjusted to last periods’ economic performance has a unique steady state, where the 

detrended per capita value corresponds to the following expression: 

[ ]∑
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ˆ
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Proof: see appendix. 

 

Note that condition A>γ+δ is essential for a steady state result with economic 

meaning. 

To analyze the dynamics of equation (2) we follow the procedure suggested in 

section 2. Taking variables kkk tt −≡ ˆ~
, 1,1

~~
−≡ tt kz , 1,1,2

~~
−≡ tt zz , …, 1,1,

~~
−−≡ tntn zz , we 

replace these in the referred equation to obtain 
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The dynamics of the model is addressable by studying a (n+1)-equation, (n+1)-

endogenous variables system. The n+1 equations are (3), tt kz
~~

1,1 =+  and titi zz ,11,
~~

−+ = , 

i= 2,…,n, while the endogenous variables are obviously tk
~

 and tiz ,
~ , i= 1,…,n. 

 

3.1 Local dynamics 

Local dynamics are straightforward to interpret, although high dimensions turn 

computation of stability conditions and bifurcation points a cumbersome task. Hence, 

we shortly address the general properties of the linearized system in the vicinity of the 

steady state and we proceed to the investigation of local stability conditions for three 

particular cases: n=1, n=2 and n=3.  

Given the unique steady state point, the linearization of the system in the 

neighbourhood of such point allows to present it in matricial form, 
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 (4) 

 

In system (4), I  is an identity matrix of order n, and 0 is a column vector with n 

elements. The peculiar shape of the Jacobian matrix of system (4) allows for a direct 

computation of its trace, determinant and sums of principal minors of any order. The 

calculus leads to: 

 

Tr(J)=1; 

γ
δγ

+
−−⋅=∑ × 1

)(2

A
aJM ; 
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where niJM i ,...,2),( =∑ ×  represents the sum of the principal minors of order i. 

 

A generic result concerning local stability can be stated as follows. 

 

Proposition 2: The system is locally stable if all the roots of the characteristic 

polynomial 

[ ] [ ]

[ ]∑
−

=

−−−

−+−+

+⋅+−⋅−+

⋅
−−⋅

+⋅+−⋅−+⋅
−−⋅

+⋅+−⋅−=

1

1

1111

1)1()1(

)(

1
)1()1(

)(

1
)1()1()(

n

j

jnjnjn

nnnnnn
J AaAa

P

λµ

λ
δγ

γµλ
δγ

γµλ

 lie inside the unit circle. 

 

Proof: see appendix. 

 

The expression in proposition 2 does not allow for explicitly discussing the 

specific economic conditions concerning different local stability results. Thus, we study 

the most straightforward cases. 

 

Case 1: n=1. The simplest case is the one in which the representative consumer 

considers solely the previous period output gap to base consumption decisions. In this 

case, the linearized system contains a 2×2 Jacobian matrix, 
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The trace and the determinant of the Jacobian matrix of system (5) are, 

respectively, Tr(J)=1 and 0
1

)( >
+

−−=
γ

δγA
JDet . Depending on the values of 

parameters a, A, γ and δ, different local dynamic results are obtainable. Figure 1 

graphically represents the dynamic possibilities. 

 

*** Figure 1 here *** 

                                                                                                     

In figure 1, three bifurcation lines are represented. The space corresponding to the 

area inside the triangle formed by these three lines is the region of stability. Unstable 

outcomes are found outside the bifurcation lines. As one regards, only one kind of 

bifurcation is admissible in this framework, the one for which Det(J)=1, that is, a 

Neimark-Sacker bifurcation. The interesting point is that by introducing a slight change 

in a basic capital accumulation equation, regarding the amount of consumption, one 

generates a type of bifurcation that cannot be found in one dimensional systems. As we 

will observe through global dynamic analysis, invariant cycles will arise for certain 

values of parameters.  

Proposition 3 synthesizes the result on local dynamics. 

 

Proposition 3: The capital accumulation equation with consumption levels 

adjusted to last period’s economic performance implies the following local dynamics: 

a) δγ +⋅






 ++=
a

a

a
A

11
 is the condition that defines the point where the 

Neimark-Sacker bifurcation occurs; 

b) the system is locally unstable for δγ +⋅






 ++>
a

a

a
A

11
; 

c) the system is locally stable for δγ +⋅






 ++<
a

a

a
A

11
. 

 

Proof: see appendix. 

 

Case 2: n=2. As we increase the number of periods that the representative 

household takes into consideration to form contemporaneous consumption decisions, 

the computation of a stability condition becomes harder from a calculus point of view, 
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but qualitatively we find that no significant changes arise: a Neimark-Sacker bifurcation 

continues to separate a region of stability for a relatively low technology level and a 

region of instability for a relatively high technology index. The analysis of this case is 

synthesized through proposition 4. 

 

Proposition 4: The model of capital accumulation without optimization and with 

consumption decisions based on the economic performance of the last two periods is 

locally characterized by the following conditions: 

a) A Neimark-Sacker bifurcation exists under 
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c)  Local instability holds for δγµµµγ ++
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Proof: see appendix. 

 

Recalling that, in our model and for n=2, 
µ+

∑
−= ×

1

)(
)( 2 JM

JDet , we can clarify 

the dynamics underlying this specific case by drawing a diagram that relates the sum of 

the order two minors of J with the determinant of the matrix. Figure 2 reveals a line 

segment near to the origin where stability holds, while, after the bifurcation point, 

instability rules. 

 

*** Figure 2 here *** 

        

Case 3: n=3. When consumption decisions are based on the previous three 

periods’ aggregate economic outcomes, the Jacobian matrix of the linearized system in 

the steady state vicinity will display a trace equal to 1, a positive sum of principal 

minors of order 1, a negative sum of principal minors of order 2, and a positive 

determinant. These signs lead to the unquestionable observation that two of the 

eigenvalues of the Jacobian matrix are negative and that the other two are positive 
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values. This information is vital to highlight a stability result concerning the three-

period case.    

 

Proposition 5: In the growth model without optimization, taking consumption 

decisions by evaluating the previous three periods implies the following stability result.  

a) Local stability:  
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b)  Neimark-Sacker bifurcation:  
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c)  Local instability:  
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Proof: see appendix. 

 

To extend the analysis of local dynamics beyond n=3 is not a worthwhile task, 

since computation leads to heavy expressions that are progressively less informative. 

Nevertheless, we have found a pattern: stability holds for certain combinations of 

parameter values; this stability can only be broken when the product of two eigenvalues 

is equal to one (Neimark-Sacker bifurcation), and after the bifurcation instability will 

prevail (next subsection will reveal, through a numerical example, that after the 

bifurcation and before instability sets in it is possible that an area of quasi-periodic 

cycles exist).   

 

3.2 Global dynamics 
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Depending on the kind of nonlinearities involved, a bifurcation such as the one 

just characterized can separate regions of fixed point stability from regions of instability 

or it can produce a region where cycles of different periodicities emerge following the 

bifurcation and before instability begins to prevail. In the present model, the Neimark-

Sacker bifurcation gives effectively place to endogenous fluctuations for certain 

combinations of parameter values. The following graphical analysis concentrates on the 

simplest case n=1, but since we are not limited by relevant computation problems in the 

numerical study of the global properties of the system, we end the section with an 

example that assumes n=4. We will observe that a same kind of dynamics is revealed 

for the two discussed cases (similar dynamics can be found for any other value of n).  

Take the following set of benchmark values, which represent reasonable economic 

conditions (in particular, we consider a long run growth rate of 4%): [ *ŷs γδ  

a]=[0.25  0.05  0.04  1  10] and let n=1. We elect A as the bifurcation parameter. In 

figure 3, we display the bifurcation diagram; it clearly indicates that the system 

undergoes a bifurcation that generates a region of cyclical behaviour for a limited 

interval of the parameter’s value.1  

 

*** Figure 3 here *** 

 

With figure 4, we take a closer look to the multiple bifurcations that this dynamic 

process generates, as the technology parameter is varied. 

 

*** Figure 4 here *** 

 

In section 2, one has discussed the possibility of the cycles arising from the 

bifurcation process to correspond either to quasi-periodic cycles or to chaotic motion. In 

particular, quasi-periodicity does not imply a divergence of nearby orbits or SDIC, and 

therefore one of the two Lyapunov exponents (in this case, we have an order 2 Jacobian 

matrix and, thus, 2 LCEs exist) can take a null value, but it will not be positive. With 

figure 5, that represents LCEs for different values of the index A, we clarify this point. 

In particular, we observe that the upper LCE is, for most of the values of the parameter, 

very close to zero, indicating the presence of quasi-periodicity; the jumps in the 

                                                 
1  All the figures concerning global dynamics presented in this paper are drawn using IDMC software 
(interactive Dynamical Model Calculator). This is a free software program available at 
www.dss.uniud.it/nonlinear, and copyright of Marji Lines and Alfredo Medio. 
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trajectory of both LCEs just signal small regions of instability that one can confirm to 

exist by looking at the bifurcation diagram in figure 3.  

 

*** Figure 5 here *** 

 

Proceeding with the visual analysis, figure 6 represents an attracting set for a value 

of the technology parameter with which quasi-periodicity holds, and in figure 7 a 

chaotic attractor is revealed, for another value of the considered parameter. 

 

*** Figures 6 and 7 here *** 

 

The graphical analysis becomes complete with a basin of attraction (figure 8), that 

we present for A=0.33, and a time series of the endogenous variable of the model 

(figure 9), for A=0.25. Recall that this endogenous variable, tk
~

, has undertaken a 

double transformation: it was detrended and scaled to correspond to zero in the steady 

state. 

 

*** Figures 8 and 9 here *** 

 

With figure 9, we reveal our main result; a simple change in the conventional 

capital accumulation equation, that involves taking into account considerations about 

the business cycle when consumption decisions are made, results in endogenous 

business cycles. It is, as expressed in the introduction, the behaviour of households and 

their confidence regarding the short run economic scenario that generates and sustains 

economic fluctuations over time.  

Note, as well, that the steady state value of the per capita physical capital variable, 

when the growth of trend is withdrawn, is, for the considered set of parameters, 

1.0

75.0

09.01







 −⋅=
A

A

A
k . Consider one of the assumed technology values, e.g. A=0.25; 

with this value, 238.5=k . Thus, the true capital variable is given by 

t
tt kk )04.1()238.5

~
( ⋅+= , and its growth rate is ( ) ( )( ) 1238.5

~
238.5

~
)( 1 −++= −ttt kkkγ . 

As in standard endogenous growth models, the long term average growth rate )(kγ  is 
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constant, but unlike the standard endogenous growth model deterministic fluctuations 

on the growth rate are observable. 

For n>1, a similar type of analysis is possible to undertake. To save in space, we 

just consider n=4 and present a bifurcation diagram like the one in figure 3 (figure 10). 

The same array of parameters is assumed, along with µ=0.05. In this case, it is clear the 

occurrence of the bifurcation, of the same type as in the above example, and therefore 

the same kind of time trajectory as in figure 9 is obtainable for variable tk
~

, when A is 

above 0.105. 

 

*** Figure 10 here *** 

 

4. The model with optimization 

 

The model with an exogenous savings rate can easily be sophisticated in order to 

incorporate consumption utility maximization. Let us now define the per capita 

consumption variable in the following way: c
tttt ccEc += −1 .  

Term tt cE 1−  is the level of consumption when the output gap is permanently zero, 

that is, if the expected level of output coincides with the potential level, then individuals 

will consume an amount tt cE 1−  of final goods. To this amount of consumption we call 

expected consumption. In this problem, the representative agent chooses to maximize 

expected utility, that is, the objective function is t

t
tt cEUV β⋅=∑

+∞

=
−

1
11 )( . Parameter β<1 

is the discount factor; note that we consider an infinite horizon. 

The other component of consumption respects to a reaction to fluctuations. As in 

the non optimization case, we consider that this fraction of consumption is measured as 

a percentage of per capita output. Letting σ be a positive parameter, we define 

[ ]1),...,,( 21 −⋅⋅≡ −−− ntttt
c
t xxxgyc σ . Function g is the same as in the previous section. 

This expression indicates that if all xt-i, i= 1,2,…,n are equal to zero then 0=c
tc , that is, 

the problem becomes the standard Ramsey growth model (in this case with a constant 

returns production function); it is straightforward to verify that if the weighted average 

of nttt xxx −−− ,...,, 21  is positive then 0>c
tc  and, also, if the weighted average of 

nttt xxx −−− ,...,, 21  is negative then 0<c
tc .  
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Hence, the logic underlying the theoretical structure is exactly the same as in the 

case without optimization: households respond to previous periods’ economic 

performance by consuming more (expansions) or less (recessions) than they would if 

one considers the benchmark model that is designed only for the case where no 

difference between effective and potential output is taken into account. 

The utility maximization model with consumers reaction to deviations of output 

from its trend corresponds to the maximization of V1, subject to the resource constraint 

tttt kcyk ⋅−+−=+ )1(1 δ , with k0 given, the variable per capita consumption as defined 

above and tt cE 1−  a control variable. 

Since the derivation of optimality conditions is standard, we neglect the details 

that give place to the motion of expected per capita consumption in optimal conditions, 

and just present this difference equation that arises from such computation: 

tttt cEAcE 11 )1( −+ ⋅−+⋅= δβ ; because the production function is linear, the rule that 

defines the time path of consumption reflects the existence of a constant growth rate of 

this aggregate over time. Thus, contrarily to the non optimization case, now we have an 

explicit growth rate 1)1( −−+⋅≡ δβγ A . Note that this is the growth rate of expected 

consumption, but it is also the steady state growth rate of capital and output, as one 

easily observes through the examination of the long term condition underlying the 

resource constraint. 

Hence, we may define [ ]t
t

t
A

k
k

)1(
ˆ

δβ −+⋅
≡  as a non growing variable in the 

steady state. We also consider the following constant values: [ ]tA

y
y

)1(
ˆ

*
*

δβ −+⋅
≡  and 

[ ]t
tt

A

cE
c

)1(
ˆ 1

δβ −+⋅
≡ − . The constant ratio 

k

ĉ
 will be designated by letter ψ, so that we 

present the detrended expected consumption value as kc ⋅=ψˆ . 

Rewriting the capital accumulation equation taking in consideration the above 

variables and values, we get  
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Because we have transformed the consumption variable into a detrended constant, 

we have, as in the previous non optimization case, a one-dimensional system of the 

form )ˆ,...,ˆ,ˆ(ˆ
11 ntttt kkkhk −−+ = . Therefore, we must use a same kind of procedure to study 

the dynamics associated with this model. First, we state the balanced growth path result. 

 

Proposition 6: The utility maximization problem with consumption reaction to 

short run economic conditions has a unique steady state, which is found by imposing the 

condition ntttt kkkkk −−+ ====≡ ˆ...ˆˆˆ
11  to (6). The balanced growth level of 

accumulated capital is given by 
[ ]∑








⋅
−+−+⋅−⋅= =

−+⋅
n

i

ia

A

AA

A

y
k 1

1)1/(11* )1()1(ˆ
µ

σ
ψσδβ

. 

 

Proof: see appendix. 

 

We must guarantee a positive long run capital stock and, thus, condition 

AA σδβψ +−+⋅−< )1()1(  must hold. 

As in the non optimization case, take kkk tt −≡ ˆ~
, 1,1

~~
−≡ tt kz , 1,1,2

~~
−≡ tt zz , …, 

1,1,
~~

−−≡ tntn zz , to present another version of the capital accumulation equation, 
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The system subject to analysis is now constituted by (7), tt kz
~~

1,1 =+  and 

titi zz ,11,
~~

−+ = , i= 2,…,n, with )0,...,0,0,0()~,...,~,~,
~

( 21 =nzzzk . 

 

4.1 Local dynamics 

Local analysis requires the computation of the Jacobian matrix elements. The 

calculus of partial derivatives and corresponding evaluation in the steady state vicinity 

leads to the following linearized system: 
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(7) 

  

The Jacobian matrix in system (7) has the same structure of the Jacobian matrix of 

the non optimization case, so we expect to obtain local dynamic results by following a 

same analysis’ procedure. As before, the expressions of the trace, sums of principal 

minors and determinant are obtained straightforwardly from the (n+1) square matrix. 

These are: 

 

Tr(J)=  
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. 

 

With the previous information, we might undertake the analysis of stability for 

any value of n. Proposition 7 presents a generic result similar to the one in proposition 

2. 
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Proposition 7: The linearized system, of the growth model with expected utility 

maximization and consumption decisions based on past economic performance, is 

locally stable if all the roots of the characteristic polynomial 
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lie inside the unit circle. 

 

Proof: see appendix. 

 

To save space and to guarantee that we are working with tractable expressions, we 

now concentrate exclusively in the simplest case n=1.  

For n=1, the linearized system is just 
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The trace and the determinant of the Jacobian matrix are, respectively, 

1
)1(

1)( >
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ψ
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obtain a relation between trace and determinant regard that 1)(
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JDet
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. Therefore, 

)(
1

1)( JTra
A

Aa
JDet ⋅−




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



−+
+⋅=

δ
σ

β
. This relation can be displayed graphically in a 

same referential as the one used in figure 1. Comparing figures 1 and 11, we notice that 

the introduction of optimization changes somehow the local properties of the model. 

 

*** Figure 11 here *** 
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Figure 11 allows to realize that optimization enlarges the dynamic possibilities of 

the model. Although a flip bifurcation continues excluded from the possible outcomes, 

another bifurcation (fold) besides the Neimark-Sacker one is admissible. Furthermore, if 

the slope of the dynamic line is low (a low a), the Neimark-Sacker bifurcation will not 

take place, independently of other parameters’ values. Proposition 8 synthesizes the 

stability results. 

 

Proposition 8: Consider AA σδβθ +−+⋅−≡ )1()1( . In the optimization growth 

model with consumers reaction to the previous period business cycle position, stability 

is guaranteed under the following condition: θψδθ ⋅
+

<<−+−
a

a

a

A

1

1
. 

 

Proof: see appendix. 

 

From proposition 8, one can withdraw several corollaries, 

 

Corollary 1: Because ψ<θ is a necessary condition for an economically 

meaningful steady state, and stability requires θψ ⋅
+

<
a

a

1
, if the system is stable then 

the steady state capital value is necessarily economically meaningful (i.e., positive). 

 

Corollary 2: A Neymark-Sacker bifurcation occurs if when Tr(J)=1 then Det(J)≥1. 

Thus, a Neimark-Sacker bifurcation requires 
a

A )1( δβθ −+⋅≥ .  

 

Corollary 3: Besides stability (stable node or stable focus), as identified through 

proposition 8, other qualitative local results are possible:  

i) Instability (unstable focus): 
a

A δθψ −+−< 1
; 

ii) Saddle-path stability:  θψ ⋅
+

>
a

a

1
. 

 

A numerical example helps to get some further insights on the local dynamics; we 

consider the same values of the parameters that are common to the non optimization and 

to the optimization frameworks, i.e., δ=0.05, *ŷ =1, a=10. To these, we add σ=0.1 
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(recall that this is a relevant parameter, because it reflects the degree of importance 

agents give to previous economic conditions when taking their consumption decisions), 

β=0.86 (a value that corresponds to a discount rate equal to 16.28%) and ψ=0.04 (in the 

steady state, the representative agent consumes a value corresponding to 4% of the 

available stock of capital). As in the non optimization case, we let A be the varying 

parameter. 

Given the assumed array of parameters, the trace and the determinant of the 

Jacobian matrix come: 
A

A
JTr

86.0817.0

86.0857.0
)(

+
+=  and 

A

A
JDet

86.0817.0

4.233.1
)(

+
+= . Condition 

ψ<θ, needed for a positive balanced growth stock of capital, is always satisfied, 

independently of the value of the positive technology index.  

Note that if A=0, then Tr(J)=1.049 and Det(J)=1.628; observe as well that 

1)(lim =
+∞→

JTr
A

 and that 791.2)(lim =
+∞→

JDet
A

. These values imply that no bifurcation 

occurs for a positive technology value; the system will locate in the region where a pair 

of complex conjugate eigenvalues associated to the Jacobian matrix exist, independently 

of A. However, this does not mean that cycles and chaos cannot occur; even though 

economically negative values of A have no meaning, we should understand that 

mathematically it is possible to find the point of transition between stable and unstable 

outcomes (i.e., the bifurcation point; in this case, the determinant of the Jacobian matrix 

is equal to zero when A=-0.333). Figure 12 illustrates local dynamics under the 

discussed example. 

 

*** Figure 12 here *** 

 

Not all positive values of A are meaningful in our analysis. Recall that A is an 

argument in the expression of the steady state growth rate, and thus we must guarantee, 

through this parameter, a reasonable long run growth rate. Recalling that 

1)1( −−+⋅≡ δβγ A , we will work, on the global analysis that follows, with 

0.2≤A≤0.3; this allows for a reasonable growth rate -1.1%≤γ≤7.5%. Take in 

consideration that A=0.2 implies [Tr(J),Det(J)]=[1.040,1.830] and that A=0.3 implies 

[Tr(J),Det(J)]=[1.037,1.907] 

 

4.2 Global dynamics 
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To discuss global dynamics, we assume the set of parameter values presented 

above. The analysis is basically the same one has undertaken for the non optimization 

case. We study the case n=1. 

The first step consists in presenting a bifurcation diagram. Figure 13 reveals this 

diagram, for values of A capable of producing a reasonable long term growth rate. In 

this case, we encounter essentially an a-periodicity result. Recall that we are in the 

region ‘after’ the Neimark-Sacker bifurcation that we can locate in the curve of figure 

12.  

 

*** Figure 13 here *** 

 

Figure 14 represents an attracting set for a value of A for which a-periodicity is 

present (in this case, we choose a value of A that corresponds to a 4% steady state 

growth rate); because cycles come from the same type of bifurcation as in the non-

optimization case, one sees some similarities with the attractor in figure 6. The 

similarities can be regarded also through the time series of the endogenous variable tk
~

; 

there is no significant difference between the kind of endogenous business cycles in 

figure 9 and the fluctuations one observes in figure 15. 

 

*** Figures 14 and 15 here *** 

 

As in section 3, we complete the analysis with the basin of attraction that indicates 

the admissible set of initial values in order for the long run attracting set to be reached 

(figure 16). Note the similarities between this basin and the one in figure 8. This 

resemblance is an additional element that compels us to state that the optimization of 

consumption utility thus not change significantly the nature of cycles that arise when the 

representative agent takes in consideration previous economic performance in the 

moment of evaluation of consumption decisions (even if the weight of such evaluation 

is relatively low; recall that the value assumed for parameter σ is close to zero). 

 

*** Figure 16 here *** 
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Remind that the time series in figure 15 corresponds to a transformed capital 

variable, and that the original capital variable is t
tt kkk )1()

~
( γ+⋅+= , with =k 4.6123 

and γ=0.04. 

 

4.3 Welfare considerations 

One important doubt that the analysis may raise is whether the inclusion of 

consumer reaction to short run economic fluctuations is welfare enhancing or not. To 

clarify this point we should look at time series averages. Our graphics give some clues 

and essentially point to the inefficiency that the consumers’ behaviour may produce. 

If one considers the time series generated in our examples, for the assumed 

parameter values, for n=1 and A=0.25 (model without optimization) or A=0.2593 

(model with optimization), the cases depicted in figures 9 and 15, respectively, we find 

the following: for any reasonable number of observations (e.g., more than 50 iterations), 

the average of each one of the time series is found to be 6.0
~ −≈tk  and 2.0

~ −≈tk , 

respectively. 

 In both cases, the average of the time series is below zero, which is the steady 

state result in the absence of fluctuations. Thus, one may infer that the cycles are the 

result of an inefficient response of individuals to the economic conditions they perceive 

in each moment. The proposed model generates inefficient endogenous business cycles 

over the benchmark growth models, which do not take in consideration any ability of 

consumers to respond to the economic behaviour they witness.  

 

5. Final remarks 

 

In this paper, we have asked a simple question: what if agents react to last periods’ 

economic performance when making consumption decisions today? After all, 

economists unanimously consider that economic performance is directly attached to 

consumer confidence. If households are optimistic about the ability of the economy to 

grow above normal standards, they will be more willing to consume, and therefore the 

marginal propensity to consume out of income rises. If consumers are pessimistic, the 

opposite effect should be observed. Thus, we contrast the standard growth model under 

which agents believe that output converges in the long term to its potential level and act 

according to such belief, with a framework where agents are essentially myopic in the 
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sense they react to observable economic results rather than to a far in time benchmark 

that they do not have any guarantee to hold.  

The proposed setup leads to endogenous business cycles that are triggered by 

households’ behaviour; if agents did not respond to cycles, these would just fade out. 

Taking this argument seriously means that countercyclical economic policy may be 

adequate to attenuate the persistence of economic fluctuations; if agents do not perceive 

that the economy departs from the potential output level, then they will adjust savings 

rates obeying only to requisites of optimality under a frictionless scenario. Another 

major conclusion is that cycles are inefficient, in the sense that the economy will, on 

average, be worse off with than without them (our numerical examples point in this 

direction). Cycles penalize long term welfare, and therefore private agents should be 

educated not to give a strong response to short run fluctuations with regard to their 

decisions on the allocation of income between consumption and savings. 

 

Appendix 

 

Proof of proposition 1: Section 2 has defined the steady state as the long run 

locus that satisfies condition ntttt kkkkk −−+ ====≡ ˆ...ˆˆˆ
11 . Applying this condition to 

equation (2), one gets 
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AK framework, tt Akkf =)( , and thus kAkf =)( . To get to the expression in the 

proposition we just have to solve the above expression in order to k , for the explicit 

functional form of the production function� 

 

Proof of proposition 2: The proposition states a trivial definition of stability; 

thus, this prove only involves clarifying that the presented characteristic polynomial 

)(λJP  is in fact the polynomial under which condition 0)( =λJP  allows for the 

determination of the n+1 eigenvalues of matrix J (λj, j= 1,…,n+1).  

A characteristic polynomial is generically defined as 

)()()1(...)()1()()1()1()( 1
2

111 JDetJMJMJTrQ n
nnnnnn

J +⋅∑⋅−++⋅∑⋅−+⋅⋅−+⋅−= ×
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×
−++ λλλλλ . 

Dividing all terms by the determinant, we continue to have a polynomial that allows for 

finding exactly the same n+1 solutions; thus, we define 
)(
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JDet

Q
P J

J

λλ ≡ , and present 
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Replacing the trace, the sums of the principal minors and the determinant that we have 

computed for our linearized system in the above polynomial, we find the expression in 

the proposition� 

 

Proof of proposition 3: Given the values of the trace and determinant of J, one 

verifies that 1+Tr(J)+Det(J)>0 and 1-Tr(J)+Det(J)<0, independently of parameter 

values. Relatively to the condition 1-Det(J)=0, that defines a Neimark-Sacker 

bifurcation, this is equivalent to the expression in item a) of the proposition. Local 

stability and local instability conditions are obtained by solving, respectively, Det(J)<1 

and Det(J)>1� 

 

Proof of proposition 4: For n=2, the trace of the Jacobian matrix is equal to 1 

(and, thus, the three eigenvalues associated with the Jacobian matrix cannot be all 

negative values); the determinant is negative (what implies that an odd number of 

negative eigenvalues exists). The two previous conditions imply with certainty that 

0,0,0 321 >>< λλλ  are the eigenvalues of matrix J. 

With these eigenvalues signs, condition 0)1()1()1( 321 >+⋅+⋅+ λλλ  holds only if 

111 321 −>∧−>∧−> λλλ ; condition 0)1()1()1( 321 >−⋅−⋅− λλλ  will be a true 

condition if, alternatively, 111 321 <∧<∧< λλλ  or 111 321 >∧>∧< λλλ . 

Furthermore, 0)1()1()1( 323121 >⋅−⋅⋅−⋅⋅− λλλλλλ  is a condition that requires 

111 313121 <⋅∧<⋅∧<⋅ λλλλλλ . 

Considering simultaneously the three above conditions implies that all the 

eigenvalues will lie inside the unit circle, that is, we guarantee stability. The three 

conditions may be rewritten as  

(a) 0)()()(1 2 >+∑++ × JDetJMJTr ; 

(b) 0)()()(1 2 >−∑+− × JDetJMJTr ; 

(c) [ ] 0)()()()(1 2 >+⋅+∑− × JDetJTrJDetJM . 

Conditions (a) and (b) correspond to relations that hold for any admissible 

combination of parameter values, while condition (c) requires the inequality 
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inequality, one gets: 
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the first inequality of this solution is an universal condition, given the boundaries on 

parameters values; the second relation can be rearranged to give place to the stability 

inequality in proposition 4. 

A Neimark-Sacker bifurcation will occur when the following equality is observed: 

[ ] 0)()()()(1 2 =+⋅+∑− × JDetJTrJDetJM . In such circumstance, we will have a pair 

of complex conjugate eigenvalues equal to unity: 132 =⋅ λλ . This condition is 

equivalent to the expression presented in proposition 4 respecting the bifurcation point. 

Finally, if the system is not stable and we are not over a bifurcation point, then the 

system will be locally unstable, as referred through point c) of proposition 4� 

 

Proof of proposition 5: In the case n=3, one has realized that two of the 

eigenvalues of matrix J are positive while the other two are negative. This observation 

allows to compile a set of inequalities that if jointly satisfied imply that local stability 

holds. These conditions are the following: 

i) 0)1()1()1()1( 4321 >+⋅+⋅+⋅+ λλλλ ; 

ii) 0)1()1()1()1( 4321 >−⋅−⋅−⋅− λλλλ ; 

iii) 0)1()1()1()1()1()1( 434232413121 >⋅−⋅⋅−⋅⋅−⋅⋅−⋅⋅−⋅⋅− λλλλλλλλλλλλ ; 

iv) 01 4321 >⋅⋅⋅− λλλλ . 

Note that condition i) is satisfied under 11 21 −>∧−> λλ  or 11 21 −<∧−< λλ . 

Likewise, condition ii) requires 11 43 >∧> λλ  or 11 43 <∧< λλ . Condition iii) is true 

for 11 4321 >⋅∧>⋅ λλλλ  or 11 4321 <⋅∧<⋅ λλλλ . Finally, inequality iv) says that 

11 4321 >⋅∧>⋅ λλλλ  is not a feasible condition, and thus 11 4321 <⋅∧<⋅ λλλλ  holds; 

this last expression guarantees that all eigenvalues are inside the unit circle, given the 

first two conditions (i and ii). 

The stability conditions may be transformed, after some calculus (that is 

particularly tedious for the third condition), into the following: 

i) 0)()()(1 2 >+∑++ × JDetJMJTr ; 
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ii) 0)()()(1 2 >−∑+− × JDetJMJTr ; 

iii) 

[ ] ( )[ ]
[ ] [ ] ( ) ( ) 0)()()()(1)()()(

)()()(2)()(1
32

23

2
2

2
32

>+⋅∑−+⋅−∑⋅+

⋅−∑+∑−∑−

××

×××

JDetJDetJMJDetJDetJMJTr

JDetJTrJMJMJM
; 
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These are the conditions for stability; instability prevails if one of them is not fulfilled. 

A Neimark-Sacker bifurcation requires once again the product of eigenvalues to be 

equal to one, that is, 121 =⋅ λλ  or 143 =⋅ λλ  (or both) � 

 

Proof of proposition 6: It is straightforward to verify that the balanced growth 

path is unique and that it corresponds to the capital value in the proposition. For such, 

just solve the following equation in order to k , 
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Proof of proposition 7: By solving equation 0)( =λJP , we obtain the n+1 

eigenvalues of the system, if )(λJP  is the characteristic polynomial of the system or 

any equivalent relation. The notion of stability requires those eigenvalues to be above -1 

and below 1. Thus, since the expression in the proposition corresponds to 
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J , we 

can assert that, as in proposition 2, the eigenvalues of J can be found through the 

referred expression� 
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Proof of proposition 8: Just note that the stability condition 

1+Tr(J)+Det(J)>0 is always guaranteed; the left inequality in the proposition 








 <−+− ψδθ
a

A1
 holds under 1-Det(J)>0 and the right inequality in the proposition 








 ⋅
+

< θψ
a

a

1
 is satisfied for 1-Tr(J)+Det(J)>0, given the values of the trace and the 

determinant of the matrix in linearized system (8)� 

 

References  

 

Alligood, K. T.; T. D. Sauer and J. A. Yorke (1997). Chaos – an Introduction to 

Dynamical Systems. New York: Springer-Verlag. 

Aloi, M.; H. D. Dixon and T. Lloyd-Braga (2000). “Endogenous Fluctuations in an 

Open Economy with Increasing Returns to Scale”, Journal of Economic Dynamics 

and Control, vol. 24, pp. 97-125. 

Asada, T. and W. Semmler (1995). “Growth and Finance: an Intertemporal Model.” 

Journal of Macroeconomics, vol. 17, pp. 623-649.  

Benhabib, J. and R. H. Day (1981). “Rational Choice and Erratic Behaviour.” Review of 

Economic Studies, vol. 48, pp. 459-471. 

Boldrin, M. and L. Montrucchio (1986). “On the Indeterminacy of Capital 

Accumulation Paths.”, Journal of Economic Theory, vol. 40, pp. 26-39.   

Bram, J. and S. Ludvigson (1998). “Does Consumer Confidence Forecast Household 

Expenditure? A Sentiment Index Horse Race.” Federal Reserve Bank of New York 

Economic Policy Review, vol. 4, pp. 59-79.   

Brock, W. A. and C. H. Hommes (1997). “A Rational Route to Randomness.” 

Econometrica, vol. 65, pp.1059-1095. 

Brock, W. A. and C. H. Hommes (1998). “Heterogeneous Beliefs and Routes to Chaos 

in a Simple Asset Pricing Model.” Journal of Economic Dynamics and Control, 

vol. 22, pp. 1235-1274. 

Cazavillan, G.; T. Lloyd-Braga and P. Pintus (1998). “Multiple Steady-States and 

Endogenous Fluctuations with Increasing Returns to Scale in Production.” Journal 

of Economic Theory, vol. 80, pp. 60-107. 

Cazavillan, G. and P. Pintus (2004). “Robustness of Multiple Equilibria in OLG 

Economies.” Review of Economic Dynamics, vol. 7, pp. 456-475. 



Consumer Confidence, Growth and Cycles 37 
 
Cellarier, L. (2006). “Constant Gain Learning and Business Cycles.” Journal of 

Macroeconomics, vol. 28, pp. 51-85. 

Chiarella, C.; R. Dieci and L. Gardini (2002). “Speculative Behaviour and Complex 

Asset Price Dynamics: a Global Analysis.” Journal of Economic Behaviour and 

Organization, vol. 49, pp. 173-197. 

Chiarella, C. and X.-Z. He (2003). “Heterogeneous Beliefs, Risk and Learning in a 

Simple Asset Pricing Model with a Market Maker.” Macroeconomic Dynamics, 

vol. 7, pp. 503-536. 

Christiano, L. and S. Harrison (1999). “Chaos, Sunspots and Automatic Stabilizers.” 

Journal of Monetary Economics, vol. 44, pp. 3-31.  

Croushore, D. (2005). “Do Consumer-Confidence Indexes Help Forecast Consumer 

Spending in Real Time?” The North American Journal of Economics and Finance, 

vol. 16, pp. 435-450. 

Coury, T. and Y. Wen (2005). “Global Indeterminacy and Chaos in Standard RBC 

Models.” University of Oxford and Cornell University working paper. 

Day, R. H. (1982). “Irregular Growth Cycles.” American Economic Review, vol. 72, 

pp.406-414.  

De Grauwe, P. and M. Grimaldi (2005). “Heterogeneity of Agents, Transactions Costs 

and the Exchange Rate.” Journal of Economic Dynamics and Control, vol. 29, pp. 

691-719. 

Deneckere, R. and S. Pelikan (1986). “Competitive Chaos.” Journal of Economic 

Theory, vol. 40, pp. 13-25.  

Dion, D. P. (2006). “Does Consumer Confidence Forecast Household Spending? The 

Euro Area Case.” MPRA Paper, University Library of Munich, Germany.  

Dosi, G.; G. Fagiolo and A. Roventini (2006). “An Evolutionary Model of Endogenous 

Business Cycles.” Computational Economics, vol. 27, pp. 3-34. 

Elaydi, S. (2000). Discrete Chaos. Boca Raton, FL: Chapman & Hall / CRC Press.  

Gaunersdorfer, A. (2000). “Endogenous Fluctuations in a Simple Asset Pricing Model 

with Heterogeneous Agents.” Journal of Economic Dynamics and Control, vol. 

24, pp. 799-831.  

Goenka, A. and O. Poulsen (2004). “Factor Intensity Reversal and Ergodic Chaos.” 

Working paper 04-13, Aarhus School of Business, Department of Economics. 

Goeree, J. K. and C. H. Hommes (2000). “Heterogeneous Beliefs and the Non-linear 

Cobweb Model. Complex Nonlinear Dynamics and Computational Methods.” 

Journal of Economic Dynamics and Control, vol. 24, pp. 761-798. 



Consumer Confidence, Growth and Cycles 38 
 
Goh, K. L. (2003). “Does Consumer Confidence Forecast Consumption Expenditure in 

New Zealand?” Treasury Working Paper Series 03/22, New Zealand Treasury. 

Grandmont, J. M. (1985). “On Endogenous Competitive Business Cycles.” 

Econometrica, vol. 53, pp. 995-1045. 

Guo, J. T. and K. J. Lansing (2002). “Fiscal Policy, Increasing Returns and Endogenous 

Fluctuations.” Macroeconomic Dynamics, vol. 6, pp. 633-664. 

Hommes, C. H.; J. Sonnemans; J. Tuinstra and H. van de Velden (2005). “A Strategy 

Experiment in Dynamic Asset Pricing.” Journal of Economic Dynamics and 

Control, vol. 29, pp. 823-843. 

Huang, W. (2005). “On the Statistical Dynamics of Economics.” Journal of Economic 

Behavior and Organization, vol. 56, pp. 543-565. 

Huang, W. and R. H. Day (2001). “On the Statistical Properties of Ergodic Economic 

Systems.” Discrete Dynamics in Nature and Society, vol. 6, pp. 181-189.  

Li, T. and J. Yorke (1975). “Period Three Implies Chaos.” American Mathematical 

Monthly, vol. 82, pp. 985-992. 

Lloyd-Braga, T.; C. Nourry and A. Venditti (2006). “Indeterminacy in Dynamic 

Models: When Diamond Meets Ramsey.” Journal of Economic Theory, 

forthcoming.   

Lorenz, H.-W. (1997). Nonlinear Dynamical Economics and Chaotic Motion, 2nd 

edition, Berlin and New York: Springer-Verlag. 

Lux, T. and M. Marchesi (2000). “Volatility Clustering in Financial Markets: a Micro-

Simulation of Interacting Agents.” International Journal of Theoretical and 

Applied Finance, vol. 3, pp. 675-702. 

Manfredi, P. and L. Fanti (2004). “Cycles in Dynamic Economic Modelling.” Economic 

Modelling, vol. 21, pp. 573-594. 

McNabb, B. and K. Taylor (2002). “Business Cycles and the Role of Confidence: 

Evidence from Europe.” Discussion Papers in Economics nº 02/3, University of 

Leicester. 

Medio, A. and M. Lines (2001). Nonlinear Dynamics: a Primer. Cambridge, UK: 

Cambridge University Press.  

Mitra, T.; K. Nishimura and G. Sorger (2005). “Optimal Cycles and Chaos.” Cornell 

University, Kyoto University and University of Vienna working paper. 

Nishimura, K.; G. Sorger and M. Yano (1994). “Ergodic Chaos in Optimal Growth 

Models with Low Discount Rates.” Economic Theory, vol. 4, pp. 705-717. 



Consumer Confidence, Growth and Cycles 39 
 
Nishimura, K. and M. Yano (1994). “Optimal Chaos, Nonlinearity and Feasibility 

Conditions.” Economic Theory, vol. 4, pp. 689-704. 

Nishimura, K. and M. Yano (1995). “Nonlinear Dynamics and Chaos in Optimal 

Growth: an Example.” Econometrica, vol. 63, pp. 981-1001.  

Onozaki, T.; G. Sieg and M. Yokoo (2000). “Complex Dynamics in a Cobweb Model 

with Adaptive Productive Adjustment.” Journal of Economic Behavior and 

Organization, vol. 41, pp. 101-115. 

Onozaki, T.; G. Sieg and M. Yokoo (2003). “Stability, Chaos and Multiple Attractors: a 

Single Agent Makes a Difference.” Journal of Economic Dynamics and Control, 

vol. 27, pp. 1917-1938. 

Sarkovskii, A. N. (1964). “Coexistence of Cycles of a Continuous Map of a Line Into 

Itself.” Ukranichkii Matematicheskii Zhurnal, vol. 16, pp. 61-71.   

Schmitt-Grohé, S. (2000). “Endogenous Business Cycles and the Dynamics of Output, 

Hours, and Consumption.” American Economic Review, vol. 90, pp. 1136-1159.  

Semmler, W. (1994). Business Cycles: Theory and Empirical Methods. Dordrecht: 

Kluwer. 

Souleles, N. S. (2004). “Expectations, Heterogeneous Forecast Errors, and 

Consumption: Micro Evidence from the Michigan Consumer Sentiment Surveys.” 

Journal of Money, Credit and Banking, vol. 36, pp. 39-72. 

Stutzer, M. J. (1980). “Chaotic Dynamics and Bifurcations in a Macro-Model.” Journal 

of Economic Dynamics and Control, vol. 2, pp. 353-376.  

Westerhoff, F. H. (2004). “Multiasset Market Dynamics.” Macroeconomic Dynamics, 

vol. 8, pp. 596-616.  

 



 

Figures 

 

 
Figure 1 – Local dynamics in the model without optimization (n=1). 

 

 

 
Figure 2 – Local dynamics in the model without optimization (n=2). 
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Figure 3 – Bifurcation diagram (A, tk
~

) for the model without optimization (n=1). 

 

 

 

Figure 4 – Bifurcation diagram (A, tk
~

) for the model without optimization.  

A closer look, for 0.253<A<0.276 (n=1). 

 

 

 

 

 

 

 

 



Consumer Confidence, Growth and Cycles 3 
 

 

 

 
Figure 5 – Lyapunov exponents in the model without optimization (n=1). 

 

 

 

 
Figure 6 – Attractor for the model without optimization (A=0.25; n=1). 
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Figure 7 – Attractor for the model without optimization (A=0.33; n=1). 

 

 

 

 
Figure 8 – Basin of attraction for the model without optimization (A=0.33; n=1).  

The area in black is the basin. 
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Figure 9 – Time series of tk
~

 for the model without optimization (A=0.25; n=1). 

 

 

 

 

Figure 10 – Bifurcation diagram (A, tk
~

) for the model without optimization (n=4). 
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Figure 11 – Local dynamics in the model with optimization (n=1). 

 

 

 

 

 
Figure 12 – Local dynamics in the model with optimization,  

for a selected array of parameter values and a varying A (n=1). 
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Figure 13 – Bifurcation diagram (A, tk
~

) for the model with optimization (n=1). 

 

 

 

 
Figure 14 – Attractor for the model with optimization (A=0.2593; n=1). 
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Figure 15 – Time series of tk
~

 for the model with optimization (A=0.2593; n=1). 

 

 

 

 
Figure 16 – Basin of attraction for the model with optimization (A=0.2593; n=1).  

The area in black is the basin. 

 

 


