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Abstract

We investigate the asymptotic stability of solutions to the characteristic initial value prob-
lem for the Einstein (massless) scalar field system with a positive cosmological constant. We
prescribe spherically symmetric initial data on a future null cone with a wider range of decaying
profiles than previously considered. New estimates are then derived in order to prove that, for
small data, the system has a unique global classical solution. We also show that the solution
decays exponentially in (Bondi) time and that the radial decay is essentially polynomial, al-
though containing logarithmic factors in some special cases. This improved asymptotic analysis
allows us to show that, under appropriate and natural decaying conditions on the initial data,
the future asymptotic solution is differentiable, up to and including spatial null-infinity, and ap-
proaches the de Sitter solution, uniformly, in a neighborhood of infinity. Moreover, we analyze
the decay of derivatives of the solution up to second order showing the (uniform) C?-asymptotic
stability of the de Sitter attractor in this setting. This corresponds to a surprisingly strong
realization of the cosmic no-hair conjecture.
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1 Introduction

1.1 Motivation and previous results

The Einstein field equations are non-linear second order partial differential equations for a Lorentzian
metric of a 4-dimensional manifold called spacetime. They constitute the basis of General Relativity
theory and are some of the most fascinating and challenging differential equations that originate
from physics. A main difficulty in analyzing these equations is that they are defined on a manifold
while, at the same time, they determine the metric of the manifold itself as they evolve.

An important conjecture in the theory of General Relativity is the so-called cosmic no-hair
conjecture which roughly says that generic expanding solutions to the Einstein equations with a
positive cosmological constant A asymptote to the de Sitter solution — the maximally symmetric
vacuum solution of Einstein’s field equations with a positive cosmological constant. In turn, the
inclusion of A > 0 is motivated by current observations in cosmology (see [30] for a mathematically
inclined introduction to the subject).

This conjecture is usually attributed to Gibbons and Hawking [19] and its earlier history was
mostly concerned with the study of homogenous and isotropic cosmologies, whose dynamical content
is encoded on ODEs; a notable example of this period are the celebrated results of Wald [34]. In
the meantime, far reaching results, concerning more general dynamics, have been produced, with
considerable increase of activity in recent years. Most of these results concern the analysis of
geometric PDEs in the context of the study of perturbations of spatially homogeneous cosmological
models, see e.g. |2, 5 9] 13, [14] 16, 17, 18, 211, 24 26l 28] [30L BT, B3] and references therein.

The cosmic no-hair conjecture can be rephrased more precisely as a statement about the existence
of a global attractor, the de Sitter solution, for a generic class of solutions to the Einstein equations
with a positive cosmological constant, coupled to appropriate matter fields. Global attractor here
meaning that, all solutions, in a generic class, become close to the de Sitter solution, near (null)
infinity. A stronger version of the conjecture emanates from the expectation that, in some cases, the
attractor is moreover asymptotically stable, meaning that all solutions, in the generic class, converge
to de Sitter, in some appropriate norm, as they approach inﬁnityﬂ

Most of the previously referred results, directly or indirectly, provide a realization of the first
(weaker) version of the conjecture. Notably, the recent results of Fournodavlos [14], also concern-
ing the Einstein-scalar field system, but without symmetry assumptions, provide a very clear and
detailed description of the asymptotic behavior of solutions: in particular, they show that the space-
time metric of such solutions approaches, along a specific spacelike foliation, a metric that, near
infinity, can be made arbitrarily close to de Sitter metric, if we choose the initial data to also be
arbitrarily close to de Sitter ]

The asymptotically stable version of the conjecture has also seen some relevant developments
recently, propelled by a reformulation of the conjecture proposed, and very clearly formulated,
in [5]. The main insight of this new formulation can be seen as a weakening of the concept of
asymptotic stability, where one “only” demands that the approach to de Sitter happens along the
causal past of every observer (timelike curve) that reaches infinity. Although not as strong as a
version of cosmic no-hair where the approach to de Sitter happens uniformly, in a neighborhood
of infinity, this might correspond to a necessary compromise to truly capture, in full generality,

Tt is well known that the Nariai solution provides a simple counterexample for these claims; but since this solution
is known to be unstable [13], cosmic no-hair is expected to hold generically.
*We refer to this excellent paper [I4] for clarifications concerning all missing details.



the generic asymptotic behavior of solutions to the Einstein equations with a positive cosmological
constant P

In contrast to this latter trend, in this paper, we will present results where the (C?) asymptotic
stability of de Sitter is established uniformly in a neighborhood of infinity. This corresponds to
a particularly strong realization of the cosmic no-hair conjecture. Nonetheless, our results are
restricted to the spherically symmetric setting and explore the possibilities created by the Bondi
gauge which, in particular, provides a natural foliation of a neighborhood of null infinity in terms
of surfaces of constant area radius

Among the physically interesting source fields that we can couple to the Einstein equations
are scalar fields, which can be motivated by particle physics [3], but also by the fact that, in our
spherically symmetric setting, they provide extra dynamical degrees of freedom that mimic those
of vacuum in the non-symmetrical case.

Following the pioneering work of Christodoulou [12] on the analysis of the spherically symmetric
massless Einstein-scalar field system in Bondi coordinates, a series of papers has started in [7] with
the goal of analysing the system with a positive cosmological constant [8, 9, [10]. However, regarding
asymptotic stability, the end result of this series was restricted to a C° analysis, which is manifestly
unsatisfactory. In fact, since the spacetime curvature involves second order derivatives of the metric,
a C? analysis is important for a full geometric characterization of the spacetime. This is achieved
in the current paper.

As was already mentioned, the global existence and uniqueness, and the C°—asymptotic stability
of solutions to the Einstein-scalar field system was proved in [10] for small, spherically symmetric
initial data, with radial decay of O(r27%), § > 0, along a characteristic initial surface. The main goal
of the current paper is to upgrade these results by showing the (uniform) C?—asymptotic stability of
solutions. It turns out that our techniques to control some second order derivatives seem to require
initial data with faster decay, that is O(r2_5), with § < 0. Therefore, a considerable amount of new
work (see Section[I.4) has to be done in order to revisit the global well-posedness results of [10] and
more so to control the asymptotic behavior of solutions and their derivatives up to second order.
By enlarging the set of initial data and doing a C?—asymptotic analysis we are also testing the
robustness of the methods developed in [10] to establish the C? stability.

We will describe in section the main technical challenges that emerge in this problem but,
before that, let us present the integro-differential system that we will be using throughout this

paper.

1.2 The Einstein-scalar field integro-differential system

Consider a Lorentzian 4-dimensional manifold (M, g) and a massless scalar field ¢ defined on M.
The Einstein-scalar field system with a cosmological constant A > 0 is given by

1 1
R'u,y - iRguV + AgNV = 8ﬂ¢8V¢ - igll"/g’ypa,yqbap(b
Oy = 0,

(1)

3 An heuristic argument corroborating this view, based on solutions to the linear wave equation and the phenomena,
of “cosmic silence”, was proposed in the introduction to [9]. Moreover, in this paper, a version of the conjecture at
hand was established in the context of spherically symmetric de Sitter black hole spacetimes.

4The fact that a natural choice of foliation, like the one provided by the Bondi gauge in spherical symmetry,
does not seem to exist for general solutions creates an obstacle to extend our results to the non-symmetrical setting.
See [32] for a discussion of this particular issue in a related context.



where R is the Ricci scalar curvature, R, denotes the components of the Ricci tensor and g, the
components of the metric g. Without loss of generality we will assume that A = 3. We consider
spherically symmetric spacetimes (M, g) with a metric in the so-called Bondi coordinates as

g=—f(u, r)f(u, T)du2 —2f(u,r)dudr + 7‘2082, (2)

where og2 = df? + sin?(0)dp? is the metric on the 2-sphere and the coordinate rangesﬂ are
(u,r) € [0, +00[x[0, +00[. Then the system (/1)) becomes

1 r 9
00 = 5(0r9)

on(rf)=(1—3r2)f (3)

1 f _1,7
. (au - 28r> or(re) = iarfar(z)'

An important particular case of metric is the de Sitter metric g% given by the choice f(u,r) =
B, r):=1and f(u,r) = fS(u,r) :=1— Ar?/3, ie.

g = — (1 — 7“2) du? — 2dudr + r’oge. (4)
We recall that following [12] and setting
h := 0,(r¢),

the system can be reduced to the integro-differential equation

Dh = G(h — h), (5)
with the definitions )
D Z:au - if&«
1 -
G ::iarf (6)
h(u,r) ::1/ h(u, s)ds.
™ Jo

We will assume, without loss of generality, that f(u,0) = 1 which corresponds to a rescaling of
the time coordinate u. In the following lemma we summarize some basic properties of the above
quantities.

® In this paper we restrict ourselves to u > 0 which corresponds to an expanding phase of spacetime. In our
framework using Bondi coordinates, u < 0 does not correspond to a contracting phase, in the usual sense (see Figure
, nonetheless it could be worth a new separate study since it would provide a characterization of the whole .7,
which is of both mathematical and physical relevance [4]. We also note that there has been interesting works about
spacetimes in the contracting phase, including the study of the dynamics near Big Bang singularities, although in
coordinates different from ours, see e.g. I} [15] 20]



Lemma 1.1. If system is satisfied, then the following hold:

A(u,r) = 9(u,1) 7

.5 — h;h (8)
" (h(u, s) — h(u, s))?

f(u,r) = exp (;/0 (h(u, ) . (u,5)) ds> 9)

~UT :} ' —82 u,Ss 8:7’LL7'—§ TS2 u,s)as

Flur) =+ [[0=3) s = Fur) =3 [ s)a (10)

G= gl f=F=3) =5 (F =7+ [ 2 fu s =3p). (1)

It is known [7, [12] that if (g, ¢) satisfy the system (1), then h defined by h = 9,(r¢) satisfies
equation . Conversely, if h solves then ¢, f, f satisfy and are related to h by , @D, ,

respectively.
If we now differentiate equation with respect to r we obtain

1, - 1. 1o o 1_ - _
Ourh = 50 fOrh — §f8§h = 5aZf(h = h) + 50:f (Orh — 0,h).
Rearranging and using we obtain
(D —2G)(9;h) = —J(9,h), (12)

where )
e TPopr Loz
J = 20Tf—|—28rf.

By using the above definitions we arrive at the useful expression:

1 — 3r2
J=G—-r0,G=3G+3rf— 5 orf, (13)
which will be used later to estimate J.
1.3 Main results
Given 6 € R we define
6, ifo>0 1, ifé=0 1, ifd>0
=3 X@ =47 HE) =4 (14)
0, ifé<o, 0, ifd#0, 0, ifoé<O.

The following three theorems constitute the main results of this paper:

Theorem 1.1 (Global existence). Let —1 < & < 1/2. Suppose that ¢pog € C*+2([0, +o0[) satisfies
sup (101 (r60) (r) |+ (147?207 (rgo) ()] + |(1+ )"0 (rd0) (r)]) < ox.

There exists some €9 > 0 such that, when

sup |(1+7)27902(re) (r)| < 0, (15)



then there exists a unique solution (M = Rg X R({ x S%,g,¢) to the Einstein-scalar field system
({1). Here (M, g) is a C¥*T' spherically symmetric spacetime in Bondi coordinates and ¢ € C*+1(M)
satisfies the initial condition

¢(0,7) = ¢o(r), Vr > 0.

Theorem 1.2 (Estimates for the matter field). Under the conditions of Theorem 1|, of we set Bondi
time to be the proper time of the observer at the center of symmetry, i.e. f(u,r =0) =1, then there
exists a continuous function ¢ : [0, +oo[— R which is differentiable in |0, +oo[ and v = v(J) > 0
such that

logX(®) (¢ +r w

[p(u, r,w) — d(u)| S W (1+6/2) (16)
©) e+r

0rp(u, )| < ()25+)€ (1+6/2) (17)
10up(u, )| < (14 7)°" 1ogX® (e 4 r)e~(1+0/Du (18)

logX® (e + 1) _ w
1026 (u, )| < We (14+5/2) (19)
026 (u,m)| S (1+7) e [log (e + ) XOH=HO) (20)

Also, there exists p(c0) € R such that, given R > 0, if eg < e(R), with the latter sufficiently small,
then there exists a constant C'r > 0 such that

sup(|(u, ) — ¢(00)| + [0 (u, )| + |07 b(u, 7)]) < Cre™". (21)

r<R

Remark 1.1. Note that the estimates for |0,¢(u,r)| and |02¢(u,r)| do not show decay in r. This
is due to the fact that the vector field 0, has a diverging norm, when r — 400, in fact guy ~ 12 in
that asymptotic regime.

Theorem 1.3 (C? - asymptotic stability). Assume the conditions of Theorem- Let R> 1. Fix
Bondi time by imposing di = f(u,r = oo)du. Then, there exists an orthonormal frame (er)r=0.1,2.3,
in the {r > R} region of de Sitter spacetime, and a diffeomorphism mappmg this region to the region
{r > R} in our spacetime such that, by writing gr;(,7) = gler,ey) and g% = g% (e, es) = n1J, ﬁ
we have o (6)
log"X\ (e +7r) 54 N
N ds < 2(1—e)(146/2)a
\gr (@, 1) — %3 (11 )29 © : (22)
where € > 0 can be made arbitrarily small by decreasing the size of the initial data.
Furthermore, we have

[log(e + r)]?x(6)+1—H(5)

Peogrsl S e~ (1+3/2)(1=2)a
- (23)
10, 917] S [IOg(? + T)]ZX(ZH(S e o~ (146/2)(1—2)i
~ 1+7)207-

SRecall the usual convention oo = —1, 73 = 1, for i = 1,2,3 and ;5 = 0, if T # J.
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Figure 1: Left panel: Penrose diagram which depicts the characteristic initial surface u = 0 used
in our paper and two (spacelike) Cauchy surfaces ¥1 and ¥o: (i) The surface ¥; has S? topology
and is appropriate for the study of the future dynamics of a closed universe model. In this case
the evolution will determine the profile of the data at u = 0; (ii) X5 has R? spatial topology and is
appropriate for the study of an open universe model. In such case the data on 9 and u = 0 can
be chosen “freely” to have the same decaying profile. Right panel: Penrose diagram depicting the
u < 0 region of de Sitter spacetime in Bondi coordinates.

and, for —1 < 6 < 0, there exists v = ~y(d,¢) > 0 for which

log(e +7) -
102,917, 10e00er 91| < (1g+(r)25)e vé
(24)
log(e +7) _.;
fazogu\ S—F——se
~o(1+47)?

Moreover (M, g) is geodesically complete towards the future.

Remark 1.2. The previous theorem provides a surprisingly strong realization of the cosmic no-hair
congecture by establishing that the spacetime metric of our solutions converges, uniformly in a
neighborhood of null infinity (r = +00), to the de Sitter metric, in a C* norm.

The proof of Theorem Theorem and Theorem can be found in Section [3| Section
[ and Section [ respectively. By inspection of the presented results we see that, most of them,
improve when we have a faster initial radial decay rate, corresponding to 6 < 0. These improvements
include, higher regularity of the scalar field at null infinity, asymptotic stability in a stronger C?
norm and faster spacetime radial decay rates, for all relevant quantities. Nonetheless, using a simple
domain of dependence argument, we can extend all these properties to an arbitrarily large domain
of all (global) solutions, even those starting from slower decaying initial data: To do that, assume
we are dealing with a solution emanating from data with decay parametrized by ¢ € (—1,1/2) and
for every R > 0, denote the initial null cone truncated at r = R by Cr := {u =0} N {r < R}. Now,
let Ry > R > Ry, with Ry sufficiently large and depending on the value of £( in , and modify
the initial data by imposing a faster decaying rate of O(r>~%"), with 6, < 0, while preserving the
original data in Cg,. In view of our estimates for the ingoing light rays, established in Section
we see that, by enlarging By — R if necessary, we have DJ (Cg) C D;; (Cgr,), where Dy represents



“_~Cr

Figure 2: Penrose diagram showing the future domain of dependence D}l(e R, ), corresponding to

the entire shaded region, and D;(G r) corresponding to the light gray region only. In particular
Df(Cg) C D;E(GRI), where Cg denotes the set {u =0} N {r < R}.

the future domain of dependence, seen as a subset of the (u,r) plane, with respect to the metric of
the original solution (with decay parametrized by ) and D5+1 is the future domain of dependence of
the modified solution (with decay parametrized by d1). See Figure 2| By uniqueness, both solutions
coincide in Dgr(@ r) and the desired result holds. For future reference we collect these conclusions
in the following:

Corollary 1.1. Under the conditions of Theorem there exists Ry depending on the value of

go in (19), such that, for all R > Ry and all 61 € (—1,0), all the conclusions of Theorem and
Theorem hold in D;(GR), with 6 replaced by 01.

Remark 1.3. The last discussion may raise the question of what is the “correct” initial radial decay
rate. The answer depends on the problem under consideration. If one is interested in solving a
Cauchy problem with (reqular) initial data posed on a hypersurface with S® topology (See Figure ,
then our results suggest that this should evolve into characteristic data, posed in u = 0, with radial
decay rate with § arbitrarily close to —1. But if one is interested in an open universe model with R3
topology, then the initial radial decay can be prescribed freely and, in that spirit, it is interesting to
study solutions with a wider range of initial decays which is, in essence, what we do.

1.4 Challenges and outline of the paper

The C? stability analysis requires substantial new work with respect to the previous results in [10].
In particular we note that:

1. We require more general initial data than [I0] with a wider range of radial decay. In particular,
0 is now allowed to be zero or negative, which corresponds to a faster decay. Note also that
the § = 0 case introduces logarithmic factors in the estimates of most relevant quantities; a
nuisance that one has to deal with, in this particular case.

2. We need new estimates for some crucial quantities, for example for 9,..J, where J is defined in
(13). This is now necessary, for example, in the existence proof of Theorem . In fact, in



order to close the contraction argument, one needs to propagate the faster decay rate of the
initial data (in our setup, this corresponds to the § < 0 case) to the entire spacetime, which,
in turn, requires a more careful control of several key quantities.

3. We need to derive new estimates for the derivatives of the metric and related quantities up to
second order. As already discussed this translates into stronger asymptotic stability results
for the future attractor solution (the de Sitter solution).

4. We prove new differentiability properties of the asymptotic solution, up to and including
r = 400, which corresponds to future null-infinity. However our differentiability proof requires
stronger initial decay rates than what was considered in [10]. Nonetheless, as already discussed,
using a simple domain of dependence argument, we can extend this property to all (global)
solutions, even those starting from slower decaying initial data.

The outline of the paper is as follows: In Section [2] we give preliminary estimates of some crucial
quantities as well as new estimates along the characteristics involving the new logarithmic terms.
In Section [3| we revisit the global existence results of [I0] by including the more general decay. In
Section [d] we prove new global decay estimates for the matter and geometric quantities and establish
important asymptotic properties of the solutions such as its differentiability. Finally, in Section [5]
we show the asymptotic convergence of the solutions to the de Sitter spacetime as well as their
C?—asymptotic stability.

2 A Priori Bounds

2.1 Basic estimates and norms

Consider U € ]0,+400],6 € R and w : [0,U[X[0,+oc[— R a continuous function. In what follows
we will make use of the norms

[w(u, )| pooe—s := sup|(1+ r)*w(u,r)|
r r>0

and
ol gt 2= 5D o)l

As a matter of notation we will often write L2 instead of Ly>*.

Lemma 2.1. Let § €] — oo, 1[. For a sufficiently regular function w we have

x(6)
fwu,r) — w(u,r)| < CTE (e ET)

< W||arw(ur)HLgo»2—év

for some constant C = C(0) > 0.
Proof. In general, for p € R, we have

(e, r) — B, 7)| = =

1
r

/OT[UJ(U,T) —w(u, s)]ds /Or /Sr dyw(u, p)dpds

T T 1
———dpds||0yw(u, -)|| foor
|| cpinastotu s

10

r
1
r



In particular, when p = 0 we get
r
w(u, ) = @(u,7)| < 0wy, )| e (25)

One can explicitly compute
1/ (" 1 log(1 1
[ s =00
rJo Jo (1+p) r 1+

i) — )] < A D

to obtain
[Orw(u, )| ooz, (26)

where

A(r) =

(1+7)2 [log(1+7) 1
rlog(e + r) r 1+7r

One can check that lim, o, A(r) = 1, so there is some 7y such that

r>rg = OSA(T’)S%.

In particular from

3rlog(e+r)

r>r) = \w(u,r) —w(u,r)l SQW

[0, ) -

On the other hand, when 0 < r < r(, by continuity there is some C’ such that

(1+47)?

<C'v 0,79].
2log(e +7r) — , V7 € {0, 79)

Also, note that |0,w(u, )|z < [|0pw(u,)|| ;0.2 Therefore, when 0 < r < 7y we have, using (25),

< C,rlog(e +7)

|w(u,7‘) — U_)(U,TH < 5”87"71)(“7 )”L$° (1 + T')2

10w, | e

The result now follows with C' = max{C”,3/2}. The proof for the cases 0 < 6 < 1 and § < 0 is
analogous. O

2.2 Estimates for the crucial quantities G and J

Using Lemma [2.1] we have

r2 log2X(5)(e +7)

(h(u, ) = h(u,1))* < C (1 4 r)i-267

[

00,2—4 *
L%OL,.

Throughout this paper we use the convention that the constant C' may change from step to step.
To ease the notation we set
X(S = HathL?L;fo,Qfé

11



From @, we get

L< Flur) = exp <; /Or (h(u,s) ;h(u78))2d8) < oCX3 <1+ex;, (27)

where € x; denotes a positive expression such that ey, — 0 asﬂ X5 — 0. He_nce there is some v > 0
such that, if X5 <+, then f < 2. Also from (9)), we have 0 < 9, f = f(h — h)?/(2r), so we obtain

r logQX(‘s)(e +7)
(14 r)a=207 70

0<9,f<C (28)

Proposition 2.1. Let § € [—1,1/2[. Then, there is some v > 0 such that, if Xs < -y, the following
estimates hold: Bl

G(u,r) < —(1 —ex,)r (29)
|G(u,r)] < (1+ex,)r (30)
lOg e+r 2x(8)+1—H(J)
)| 5 P — 3 1)
log(e + r)]2X@)+1-H(®)
‘arj(ua T)| S/ [ ( (1 +)i)2_25+ X627 fOT T Z 1 B (32)

where 67, x(8) and H () are defined in ([14)).

Proof. The proof of and mimics the one in Lemma 1 of [10] by using and and
noting that, since 0, f > 0, we have

- plog e+p
f://afupdpd5<c // +p425+)X§dpds

gCTX(;/ / pdpdsSCX(;r
0 Js

So now we turn to (31)). Since f is increasing in r, we get

i TSZ u,Ss) — u, S
A (Flus) — Flu,))d

r2

[F(r)| :=

<3 [ P - fs)s

For s < r there is some s < p < r such that f(u,r) — f(u,s) = 0, f(u, p)(r — s). So, we have the
estimate

plog? (6)(6 + ) oo r logQX(‘s) (e+1)
f(uar)_f( ) C (1+p)4 25+ X(;TSC (1+S)3—25+ -

"The use of the notation e x; is similar to the usage of the little-o notation, in that it may represent different
expressions from step to step and even in different appearances in the same step.
8Here the notation X <Y means X < CY, where C is a positive constant.
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We can now use this to get an estimate for F' as

r 2x(6) 2x(6) r 2
|F(7')\<3/ SQCrlog (6+T)X§ds:CX§IOg (e+r)/ : s
0 0

" (1+5)> 2 : 4oy
10g2X(®) (¢ 4 1) H() +
< glog 7 lerrT) . 20t
< OX? - (1= H@)os(1+ 1)+ 55— 5551 — 35757 ((1+r) 1)
_ 1 72 n 1 T
2—20F (1 47)2-267  (1—4§1)(201 — 1) (1 4 7)t-20"

(1 + r)26+ [10g(€ + r)]ZX((S)‘Fl*H((S)

< OX?
,

For r > 1 we have 1/r < 2/(1+r), and so

[log(e + T)]Qx(é)—&-l—H(&)

[F(r)|<C (1 +r)i-20% ng r2 1
On the other hand, for 0 < r <1,
3 T
PO <5 [ S0 r) = fus)ds
L [" 2 ox? CX3? [log(e + 7)1 =H()
=3 ; s2(e“%5 —1)ds < (Y% —1)r < % 2 X2,

where here the implicit constant depends on v and §. Therefore,

’F(r)’ _ C[log(e + T)]Qx((S)—I—l—H(é)

2
< (1+T)1—25+ Xé" Vr > 0.

Now, using , we see that
”8TfHL%<>L$°’2—5 < Cng

hence
log(e 4 )] 2x(O)+1-H(9)

(1 + ,r-)1725+

1 - logX®) (e + r
Ypop<olE et

WH@J”HL%@L?O,M <C

X3

as well as

r3 long((s) (e+1)
(14 7)4-20"

Combining these estimates with and we get

[log (e + r)]XO)+1-H0)
(14 7r)1=207 =i

r2o.f < C Xi<cC

11— 3r2]
2

[log(e + r)]QX(5)+1—H(5)
(14 7r)1-207 =

Finally we turn our attention to 0,J which, using , can be written as

3 P
1< oo lf = FI+ 51 + 0.f<C

3 P =T s :
vl (&f ot T f _omr) - Tzarf> . 7“4; F(h—h)? -
3 = R 24— )0 — 0,7).

4r
Then using the estimates we’'ve seen above we get estimate , for r > 1 and « small enough. [
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2.3 Estimates along the characteristics

We now consider the estimates along the characteristics of , which we denote by x(u) =
x(u;ui,m) = (u,r(u;ur,r1)), where r is the unique solution to

dr 1
= _ = 34
L ), (34)
such that r(u;) = r1. To obtain estimates for these solutions we can estimate f. Using (T0) and

we have .
1—(14ex,)r? < flu,r) <1+ex, — 12 (35)

From this observation we can easily show the next useful result:

Lemma 2.2. Consider a characteristic x(u) = (u,r(u;uy,r1)) with r1 > R. For X5 small enough
and R large enough we have that

2(1 B €X6,R) dr N 2 dr 2(1 + €X57R) dr
W@—l_m@SW@7 for u € [up,w], (36)

where ur = max({u € [0,u;] : r(u) = R} U{0}) and where H ex;p > 0 represents a quantity which
goes to zero as X5 — 0 and R — co. Moreover, the expression €x; , on the left hand side of
can be chosen so that r1 > (1 —ex; ,)(1+71).

Now we recall that in [7] it was established:

Lemma 2.3. Consider a characteristic x(u) = (u,r(u;ui,r1)), with 11 > R. For R > 0 large
enough we have

1
r(u) > (1 — ex,) coth <+2€X‘5(c - u)) Yu < ug,
where ¢~ is chosen such that

1
r1 = (1 — ex,) coth (+2€X6(c - u1)> .

Using the previous lemmas we will now show a generalisation of Lemma 2 of [I0] by including
an extra log factor. This result will be crucial in what follows as it represents a gain of a unit power
of polynomial decay for our estimates.

Proposition 2.2. Letm >0, k>0 and 0 < p < 2m — 1. Then, there exist v,C > 0 such that, if
X5 <7, then

u1 k “ k
/ log (e £ (W) m 1 Glsrtsurmisg, < I8 eI Fw) oo g
o (A+r(u)p (L4 r)ptt

Proof. The proof is analogous to that of Lemma 2 of [10] so we just summarize some differences.
Since the function
logk (e 4 )
(7

The use of the notation ex; , mirrors that of ex;.
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is continuous on [0, co[ with a finite limit as r — oo, it must be bounded over [0, c0[. So we have,
for v small enough,

" log (e 4+ r(w) s s,y [ logbe tr(u))
A L+ () I SA L@y M=

Then, the estimate follows for r1 < R, for a sufficiently large R.
In the case r; > R we use similar estimates as in Lemma 2 of [I0] together with Lemma and
Lemma [2.3] to get

uR logk(e + r(u)) [ Gd 1+ EXs n /uR N am(1e .
o A\ AT om, Sdu < : 1 1 m Xs,R) TP
/0 (I+7(u)P € = (1 +r)2m(0=ex5) g og"(e+r(u))(1+7(u)) u

(1+T1)p+1 UR

k 2m(l—e )—p
Slogh(e +r)(1+R)™ on (1+ 71)2m(x5) (14 Pt

1+ ug
~ (1 + frl)P+1’

with up as defined in Lemma [2.2] Finally,
u Jogh u 2(1+¢ 1 _ o
/ g err (et 1) em bt Gds gy, < ( X‘S’I;) i ] / logk (e +7)(1 + r)2m(1 X5.0) P72
UR (1_|_r)p (1 _5X5,R)(1+7"1) MU R r(ur)

< logk(e +71)
~ (1 + T1)2m(1_EX5’R)

< log (e + 1) (1 4 uy)
~ (1+7’1)p+1 ?

which concludes the proof. O

3 Global existence of classical solutions

In this section we generalise the global existence results of [10] which were valid only for 0 < § < 1/2.
The strategy of the proofs are similar but harder since new log terms appear in some crucial
expressions and sharper estimates are necessary. Furthermore, new estimates for d,J are necessary
in order to close the iteration method.

3.1 Local existence results

We begin by stating a local existence theorem whose proof can be found in appendix A of [10].

Theorem 3.1. Given 19 > 0 and hy € C*([0,70]),k € N, there exists a positive

TzT(mm|mvm wpmam)Sm

0<r<mo 0<r<mo

and a unique solution h € C*([0,7]?) to

{Dh:Gm—h)
h(0,7r) = ho(r).

15



We will now use this theorem together with the estimates we saw in the previous section to
prove the existence of a solution to the Einstein-massless scalar field system that is local in Bondi
time but global in radius. The main result of this subsection is:

Theorem 3.2. Let —1 < < 1/2 and k € N. Suppose that hg € C*T1([0, 00[) N L>®([0, 0o|) satisfies
1 -5 < 00 and [ e.s-s < o0.
Then, there exists v > 0 independent of hg such that, when
Vil oz < 7,
there exists U = U(7,8) > 0 and a unique solution h € C*+1([0, U] x [0, 00]) to

Dh =G(h—h)

h(0,7r) = ho(r). (38)

Moreover, ||0ph||} o ;oo2-s can be made as small as we want by decreasing 7.
U T

The proof of this theorem is summarised at the end of this section and follows from the coming
Proposition Proposition and from recycling some parts of the proof of Theorem 2 in [10].
The proof is based on showing that a certain sequence (h,,) defined below contracts in LgP LY. We
now explain how we construct this sequence. Following [10] we define the functions:

fn =exp <: /OT (n = fon)” B")2d5> (39)

s
1
Fom iy [ 0= 3aus)ds (40)
0
1 .
G, = iarf” (41)
Jp = Gy —r0,Gp,. (42)
We consider also the operator 3
0  fnO
D,=— -2
ou 2 0r
and its corresponding characteristics xn(u) = (u, r(u;u1,71)), where 7, is the unique solution to
dry, 1
du —ifn(uﬂ"n(u))
with 7, (u1) = r1. Now we define h,, as
ho(u,) = o (0,0) + [ (a5}, (43)
0

where hy is the unique solution to which, according to Theorem , exists for small enough
U, and where w,, is the sequence defined recursively by setting wy (u,r) = hj(r) and defining wy,+1
to be the solution to

{ann—H = 2ann+1 - Jn@ (44>

wp+1(0,7) = hy(r).
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So, we will start by showing that for small enough initial data, the sequences (hy,), (w,) and (9,wy,)
are bounded uniformly in n, in appropriate spaces. First we observe that by integrating the
following relations hold:

s (. 7) = (0l 26t [ eIl Ot 1 2t
0

Tn(u)

u ul u
Oyt (ur,m1) = hj(ra(0)elo 36nds 42 /0 0, Grwnyrehs 3 b du (45)

ul _ A “ ul _ — }
[ gty g [ [thhn . wn} i 3Gads g,
0 Tn 0 Tn n

The next proposition generalises Lemma 3 of [10], nevertheless its proof is more delicate as now the
integrals involving J have to be estimated in different regions of the characteristics and, furthermore,
shaper estimates for 0,J are needed due to the more general decay considered for the initial data.

Proposition 3.1. Under the same assumptions as in Theorem[3.9, there exists some x{, > 0 such
that, if
s < 2,

then there are constants C,x',x" > 0 for which
1hnllrgeree < sup |hy(u,0)] 4 Ca’
0<u<U

Hwn”LEoLgo’?*tS < (46)

uniformly on n € N. Furthermore, ' can be made as small as we want by decreasing xj, and
similarly " can be made as small as needed by decreasing both xq and ||h|| ;o.3—s.

Proof. The proof is done by induction on n. For n = 1 we have wy (u,r) = h{(r), so ||w; HLOUoLgo,z_a =

"

thHLgo,zfs =: z(,. Also, Orw;(u,r) = h{j(r) and thus HarU}lHLgoLgoﬁfé = |6l poois—s = xy. If we set

Iz

bo = sup |hy(u,0),
0<u<U

we also have

1

Therefore the result holds for n = 1. Now we suppose that the result holds for some n € N, i.e. we
have the estimates

()] < bo + / (1+ 52wy (u, 3)]
0

ol e £ < bo + C!
lall oo s < @”

10rwall e -5 < ",
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for some constants ', 2" to be fixed below. First we note that

A1 (u, )| < bo +/ [wn+1(u, s)|ds (47)
0
T 1
< s | —————
P =1 (43)
< bO + CHwn-i-luLoUoLgon—‘sa (49)

so the estimate for hyy1 follows from the estimate for wn,4+1. Now we turn to the estimation of
w o ro0,2—5. Using (45)) we see that
H n+1”LU L5028 g

|wny1(ur,m1)| < Ar + Ag,

where
Ay = |hy(rn(0))] o 2Gnds (50)
Ul A “
Ay —/ Wefulmndsdu. (51)
0 n

We now estimate these individually. For A; we can apply Proposition 2.2} in view of the induction
hypothesis, possibly by decreasing the value of 2/, and then use (37)) with 1 small enough to obtain

4
(L+71)% A1 S (14 71)?7 |y (ra(0))] (W) 77

r 2—n+48
S (14O o)) ()

2—n+6 2—n+6
< Hh/ H s 1+ Tn(o) " < o 1+ 7’n(o) r
~ ol 147 ~ON 14 '

Noting that for r,(0) large, r(u) is increasing in u we see that the sequence (1 + r,(0))/(1 4 r1) is
bounded uniformly on n and rq, so

(14r)2°A; < 2.
To estimate Ay we use Proposition 2.1 and Proposition 2:2] to get

uy 3x(8)+1—-H(§
2-6 2-6, 13 [log(e + )X
(1+T1) A2 S (1+T1) (.Z') /0 (1+rn)3735+
log(e + rl)]Sx(J)JrlfH(é)

(1 + T1)4_36+_77

)
uy
efu QGndsdu

< (14 m)2()? ] (14 w) < ()

In this way we have
Hwn+1HLoUoL$°3*5 S/ :L'6 + (x/>3' (52)

We now turn our attention to estimating the norm of 9,w,11. To this end we use (45]) to obtain

‘arwn+1(u1,7"1)’ < By + By + B3 + By,
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where w
By = [ ra (0))|efi" 36

ul u
B2 =2 / |8an| |wn+l lefu ' 3Gndsdu
0

“ hyp — Bn “
By = / Oyt =Pl 2 Gt gy
0

n

“ n hn - Bn u
By :/ [l [2' . | + w| | elu’ 3Gnds gy,
0

Tn n
At this point we estimate these individually. Note again that, using the induction hypothesis, we
may apply Proposition and Proposition , reducing the value of 2’ if needed. First we estimate
B as
(1 -+ 7"1)376
(14 75(0))37

< (4™ (147(0) o
MU+ r(0))30 0 147

3—n+6
< m/l 1 + Tn(O) K < .CL'”.

Now before estimating By we first observe some facts:

(1+r1)° "B = (L -+ 7 (0))* | (r (0) e 2nc

1. Since |f,| < 1, we have that

’arfn| - (1‘,)2.

fn(hy — hy)? < n logz’((‘;)(e + )
2y, N (4 )2

2. From Proposition [2.1) we know that |G| < ry, so
|Gl

Tn

<1,

3. Using ,

1og?X©) (e + 7,

| Jn] |G, 1+3r2
— <3 +3 +
> ‘f’n‘ (1+Tn)2725+

Tn Tn 2ry,

0rful S14+1+ (z")? S 1.

4. Putting these estimates together and noting that 0,G,, = (G, — J,)/r, we obtain

‘a'an‘ < 376 + (1_/)3

0, G =(1 20 :
10, Grl|lwnt1| = (1 +10) |wn+1’(1+rn)2_5 ~ (1+Tn)2—6

Now we can use Proposition [2.2] to estimate By as

“ 1 u

(1471)2°By < (1 +71)%0(z) + (2')?) / 72_(56[“ 13Gnds g,,
0 (1 + Tn)

1 + (75}

S (L+71)*0ah + (w/)s)m Sz

0+ ()%
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Next we estimate By. To do this we split the integral in two parts.
Let Q<; = {u € [0,u1] : rp(u) <1} and Q51 = {u € [0, u1] : rp(u) > 1}. If u € Q< we have

_ B x () /
| Jn| [Py — I 4 |Jn|’wn‘ < log (€+T_7:)x/—|— x —
T T T (1+7,)29 (14 7ry)%~
ClogWetr)Abr)” 0, 2 o
~ (14 7y,)290 (14+7,)270 ™~ (14+7,)29"

On the other hand, when v € Q251 we will use estimate for J,. This is in contrast to what is
done in [I0], where such care was unnecessary. In this case we obtain,

| Tu [ — | |, [log(e + )] PX(O+1=H()

| Jn|
+ wn| S
T T T ol S (14 7y, )4=307F

(a')°.

Equipped with these estimates and using Proposition [2.2] we see that

<1 rn n

Jn hn_En w
[ R ] s,
Q1 r

Tn n

_ e 1 u “ [log(e + r
<1 36 // S 8Ginds g /3/ n
~ ( + 7"1) (x 0 (1 + rn)g_(se U + (.’I,' ) 0 (1 + T_n)4735+

(1 —|—’r1)3_6B4 — (1 +7“1)3_5 </ | ‘ |:2‘ g ’ + |wn’:| €fu13G"d8du
Q

)|BX@+1-H

@ 1 3Gad
efut 3Gnds gy,

[log(e + 7,1)]3x(5)+1—H(6)
(1 + 7“1)57364—

14wy
(1 + 7"1)3_5

5(L+nﬁ”<ﬂ + (af)? u+un>sxwwﬂﬁ

Finally, we estimate B3 using an analogous splitting as above. Note that we have

1—3r? > 1+ 3r -
IWM=F&@HBR+%&E—@hMfﬁm—mﬁ+h LfUm—MF
1 — 372 _ hyp — hn
T n hn - hn n <1.
o ) (= )
So, for u € Q2<; we have the estimate
EA |hy, — o < logX(® (e + Tn)x, < logle+1) o< @ ‘
o Y (L4r)?2 0 T Y (T 4rp)2 0T Y (14120

On the other hand, if u € 251 we can use . We remark that the estimate is sharper than
the estimate used in [10], when » > 1. While in [I0] this wasn’t necessary, here it is crucial. We
then have

7 3x(0)+1—H ()
O, |, — ha| _ [log(e + 70)] (')

o (14 7, )4=35"
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With these estimates we get

(1+T1)3_5Bgz (1+T1)3 / |arJn||hn_hn|6f$13Gndsdu+/ |8rJn’|hn_hn|€f:13G"dsdu
Q r Qo1 r

<1 n n

_ w 1 u “ [log(e + 7| XOHTHON a5
< (14 3-4 // Y Iy 3Gnds g /3/ i1 3Gy 54
S ( A e o L

3 [log(e + r)|XOHHO (1 4 4y)
(1 + 7a1)5—35Jr

1+w
(1 + 7"1)376

S (1+ r1)3_5 <x/ + (2) <o+ (1:’)3.

Putting these estimates together we see that
Ha?“w”HHLOU%?O’S"S < xf +ap + o’ + (o). (54)

Denote by C the constant implicit in and by C the one implicit in . Since these constants
do not depend on n we can choose z{, and 2’ to be small enough such that Cy(z} + (2/)3) < 2.
Moreover, these can be chosen so that z{, < 2’ and 2’ can be made smaller by decreasing xj,. With
these choices we now put 2" := max{Ca(zf + x{ + 2’ + (z/)?), 2] }. So we get

th+1||L[°J°ng° < SUPg<y<tr |hy (u,0)] + Ca’
Hwn+1HL;}OL$"’2’5 <z

|0r w1 HL%"Lﬁo’g_‘; <a,

thus concluding the induction step. O

Proof of Theorem[3.2 From Proposition in the appendix we see that (hy,), defined above con-
verges uniformly to some continuous function A : [0,U] x [0,00[— R. Using estimates similar to
those we’ve already deduced in Proposition one can show that the sequences (fy), (fn), (Gn) and
(J) converge uniformly to functions f, f, G, J, where the convergence f,, — f is over [0, U] x [0, ool
whereas the others converge uniformly over all intervals of the form [0, U] x [0, R]. Moreover, the
characteristics ry,( - ;u1, 1) also converge uniformly over [0, U] x [0, R] to characteristics r( - ;uy, 1)

of D = 9, — f&, /2. We can now use a uniqueness result and methods analogous to those of
Proposition 2 of [10] to finish the proof of Theorem O

3.2 Global existence of the solutions in time and radius

Theorem 3.3. Let —1 < & < 1/2 and suppose that hg € C**+1([0,00]) N L>([0, 00[), k € N, is such
that hjy € L>27°([0, 00[) and h{j € L>379(]0,00]). In this case, there evists some &g > 0 such that,

if

1Bl -5 < Fo

then the problem
Dh = G(h —h)
h(O,r) = hO(T)

has a unique solution h € C**1([0, 0o[x [0, ocl).
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Proof. Taking into account the results of the previous section, the proof of this theorem now follows
from using a strategy similar to the proof of Theorem 3 of [10] with small modifications. So we just
give a brief sketch of the proof while providing results that will be used in the sequel.

Let —1 < § < 1/2 and consider hg in the same conditions as in Theorem [3.2] According
to Theorem there is some vy > 0 such that, if Hh{)”L;ZOQ < 7, then the system has a
unique solution h € C*1([0,U] x [0,00[), for some U > 0. Now consider some Zy < 7 and
suppose that ||hg| poe2-s < To. Then we obtain some U = U(iy) coming from Theorem
Here we define U* € [U, 00| to be the maximal time of existence of solutions. So there is some
h € C*1([0, U*[x [0, 00[) satisfying (55).

Note that, if we take the derivative with respect to r of the differential equation in , then
consider it along the characteristics (u, r(u;u1, 1)), multiply it by an appropriate integrating factor
and then integrate in u we obtain

u u1l _ ”
87~h(u1, Tl) = h6(T(O))ef0 1 2Gds _ / %(h _ h)ef“ 1 2Gdsdu7
0

where (u1,r1) € [0, U*[x][0, 00[. The proof of global existence of solutions is now based on providing
estimates on the energy function

Er(u) = sup |(1+7)*°0h(u,r)|,
r€[0,R]

for a fixed R > 1. Since the supremum is being taken over a compact set, g is continuous. In
particular, the set
Ur = {u1 € [0,U"[: sup Eg(u) <2}
u€[0,u1]

is closed, where 2/ €)%, | is specified during the proof (see [I0]). It is also clearly non-empty
(0 € Ugr) by our assumption on ||ag||,«.2—s. The goal of the proof is to show that this set is also
open (in the relative topology) and therefore equal to [0, +00[. To do that we show that for u; € Ug
we can improve the estimate Eg(u1) < 2/. An important point is that for u; € Ug, using an
argument analogous to that of Lemma [2.3] one can show that there is some

T, =1—¢y (56)

such that if 7y > r_ then r(u;u1,r1) > r, for uw < wuy, and if r; <r_ then

r(u) > (1 — &) tanh (1 UL u)> ,

which allows us to provide estimates for small values of r. From this we obtain

Ul ul 1 , Ite,,
_/ rw)dv < —(1- 5»’”’)/ tanh ( —1_2% (¢ — U)) dv < 2(1 — g4) log (262(“_“1)> .

So, for r1 < r_ we have that

€f:1 2G(s,r(s))ds < e 2 i (1—eyr)rds g 62(175x/)(u7u1)‘ (57>
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In this way we see that, for ry < r_,

u U1 _ "
0 )P0 0h )] < (1 71 O™ 26 (122 [ el 26,
0

T
e + r)]3Xx@)+1-H(9)

(14 7)3-307

S Er(0)e 2 4o /“1 € p(u)e2(1—ea)u=u) gy,
0

SR(U)62(1_Ez/)(U_u1)dU

S SR(O)G—Q(l—eI/)ul +2 /Ul [log(
0

where we used the fact that 7(u) < 1 for u < wu; < U* in the case when r; < r, which follows from
estimate (30) of [7]. In this way we can take R large enough so that r(u) < R, 0 < u < u;. Also,
in the second step we used a modified version of Lemma [2.1] for r € [0, R] instead of r € [0, 00[. In
turn, the proof for case r; > r_ follows the steps of section 7 of [10].

We now have the necessary new estimates to conclude the proof using the argument presented
in [10]. In fact, by Gronwall’s inequality we can now show that, by decreasing ' if necessary, there
exist constants C7, H1 > 0 such that

8R(U1) < Cli'oe_Hlul .

Then we choose Z( so that C1Zg < 2'/2, to obtain Ep(u1) < 2/2. This implies that Up is open in
[0, U*[. By connectedness it follows that Ur = [0,U*[. Since our last estimate is independent of R,
we can show that

|0rh(u, -)HL?,zﬂs <z <y, Vuel0,U*,

from which we can then conclude, using Theorem [3.2] that U* = co and global existence follows. [

4 Improved decay and global properties of the solutions

The goal of this section is to prove Theorem [I.2] We divide the proof in three steps where we
estimate the solution h of the integro-differential system along side with the solution ¢ of the
original system and its derivatives up to second order.

4.1 Preliminary decay estimates
We start by proving decay properties of solutions to the integro-differential problem ([55)):
Lemma 4.1. Under the assumptions of Theorem [3.3:

Oph(u, )|, coz—s < e~ (1H9/2)u 58
L

and
|02h(u,r)| S e U2 for0 < <y, (59)

where v, was defined in . Also, given R > 0, if &9 < z(R), with x(R) small enough, then there
exist constants Cg, CT; > 0 such that

sup |0ph(u,r)| < Cre™2*, and (60)
r<R
sup |8T2h(u,7“)| < C’Tc—e_Qu. (61)
r<r¢
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Moreover there ezists h(oo) such that
|h(u,r) — h(co)| < Cre™", (62)
where r < R.

Proof. The proof of and follows a similar strategy as in the proof of Theorem 3 of [10]
with small changes so we omit the details.
Now let us establish estimate (59)). From we have

u u1 u
a?h(’ljd? 7"1) :hg(r(o))efo 1 3G($,T(5))d5 _|_ 2 / aTG(u, T(u))arh(u, r(u))efu 1 SG(S,T(S))deu
0

/8Ju7" h

Jr/Ou1 J(u 7n(u(u)) [Qh h 5, h]( (1)) 36 (s)ds g,

r

: |

(u, 7(u))elu" 3G ()ds gy, (63)

and write
02h(uy, )| S I 4 200 + I3 + I,

where

_ ’h//( ( )) foul 3Gds
h:/ 10,G||0xh|elu" 354 qy,
0

“ h—h| pu
I3 = / ]8TJ|7’ |efu1 3Gds gy
0 r

wJ| [ |h—h
e [P (B ) s,
0 T T

From we obtain for small r

(64)

u1 e—(1+5/2)u u1
I < / e TR e (ww) gy < €—3u1(1—azl)/ [ (146/2) 4302, gy, < o~ (145/2)ua
~Jo (1+r)20 ~ 0 ~

Similarly, we have
[ u
I < /“1 log¥® (e + 7“)6 (145/2)u 1 3Gds gy, < / b (145/2)u B, ) (umu) gy < o (146/2)ur
“Joo (L+r)reT 0 -

These two estimates imply
I4 < 6—(1-‘1—5/2)%1

Finally,
L<(1+ r(o))3—5|h6’(7«(0))|e—3(1—ezl)u1 < o~ (146/2)u1_

Hence, we see that estimate holds. An analogous argument can be used to prove estimate .
Now for » < R, Theorem implies that

1 SR
|Ouh| = |Dh + 5 fO:h] < |G(h = h)| + 5| f]|0:h|

2
r 1 - _
S +ex)s sup [0rh(u; )| + 5|1 sup |0rh(u, )| < Cre™?".
r< rs

24



Since exp(—2u) is integrable in [0, 400, it follows that the limit of h(u,r), as u — 400, exists and
is equal to

400
h(0,7) +/ Ouh(u,r)du =: h(co,r), for r < R.
0

For r1 <ry < R we have

r2
|h(u, 1) — h(u, )| < / |0,h(u, p)|dp < Cre2v
1
Taking the limit as u — 400 we see that h(co,r1) = h(co,r3). So, actually h(co,r) = h(c0), for
r < R. Moreover,

“+o00 “+o00

|h(u, ) — h(c0)| < / |0uh(s,r)|ds < CR/ e 2%ds = Cre 2" (65)

u u

and then follows. O

Lemma 4.2. There is some v = v(d) > 0 so that we have the estimates

O30S ks llog(e + r)NOH 6 (66)
|(9£h| < W[log(e+T)]3X(5)+1_H(6)€_7“ (67)
B2 S (L4 7)o log(e + )| IXOH1-H ), (69)

Proof. By the definition of D we have that d,h = Dh + f8,h/2 = G(h — h) + f0.h/2. Therefore,

h—h 1

h—h 1 _

+ §f6§h = 2GO,h—J

8, 0uh = 0,G(h — h) + 2Gd,h — G

r r

where we used 0,G = (G — J)/r.
So far we have useful estimates for all the terms of the previous equation except for 92h. We may
use and and estimate separately each term Iy, I, I3 and I4. From the proof of Theorem

3.3l we have that
em L2 G(syr(s))ds < em(l—e)(u—ul)’

for some £ > 0. Using this together with Proposition [2.2] we find uniform estimates in r and u as

6g—n
L = 355 o5t 3aGis o J§' 8(1-)Gds < 1 s <1 + 7"(0)> e—31-9)(1—-2)u
(14 7r(0))3— (1+7r(0))3~ 14+m
e—3(1—q)(1—a)u1

(1 + 7‘1)376

choosing n = 6g — 3 + 0 and ¢ € [0, 1] large enough, for instance ¢ > 2/3. For I» we use Theorem
[3:3] the proof of Proposition and Proposition [2.2] to obtain

uy equl 3qGds

u —(1+6/2)u
I 5/ ' Meﬁfl 8qGds [ 3(1—q)Gds gy, 5/ —(146/2)u 3(1-q) L) (u—u1) gy,
0

(1+7r)20 o @+r2a°

< ~3-a)(1-gju_1T W

(1 + T‘l)g*é’
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as long as —(1+6/2) +3(1 —¢)(1 —¢) <0 and 2 — 6 < 6¢ — 1. But this can be achieved if ¢ is
sufficiently close to 1. Similarly, we can estimate I3 and I as:

u 3x+1-H
I SJ/ ! [log(e + T)] X . 67(1+6/2)u€f;1 3Gds g,
0 (14r)t=%

3 1-H
[log(e Jr(fll] X;_gﬁ(l +u1) o—30-a) (12w
1

Iy < /ul log(e + r)]2XH—H <1ng(€ +7) e—(146/2)u | W) elu ! 3Gds gy,
0

S

(14 7)2-207 (1+7)23" s
< o-30-g-eu ([logle )T [log(e 4 )T
- (1+7p)5-307 (14 71)5-267-0

which provide the estimate (67]). Putting everything together we get

llog(e + )X 1= H (1 + u)
(1+r)t=0

|0rOuh| S e 1, (69)

for 4 > 0 small enough. Finally, an expression for 92h is given by

%&«h + faZ h

921 — %airf(h “h) + G(Ouh — Buh) + 5 O

and we can estimate this as
02h] S (1+7) 0 (1 + w)e " [log(e 4 ) X O H=HO),

Note that we can absorb the factor 1 + u by taking a smaller . O

4.2 Decay of the matter field

Proof of Theorem[I.3 The differentiability of ¢ follows from the coming Proposition We now
prove the estimates —. To do that we use decay results for h from the previous subsection
41l

Assume ¢g € C*+2(]0, +oc[) as in Theorem Put ho = 0r(r¢o). By our assumptions on ¢g
we know that h € C*T1([0, +oc), ho € L>¥([0, 4+00]), hfy € L>279([0, +o0]), by € L37%([0, +o00]).
From Theorem we conclude that there exists some Zy such that, if ||hg|| poo2-s < Zo, then the
problem has a unique global solution h € C*~1(]0, +00[x[0,+0oc[). But then the function
¢ := h solves the Einstein-scalar field system with the Bondi spherically symmetric metric g with
associated functions f, f. Note also that ¢ = h € C*~1(][0, 4-00[x [0, +00]).

We now proceed to prove the estimates on ¢. From we get

|p(u, ) —h(c0)| < |h(w, ) —h(u,7)|+|h(u,r)—h(c0)| < L sup |9, h(u, )|+ Cre 2" < Cre™2". (70)
r<R

Noting that d,¢ = (h — h)/r, we get

1
00 < 5 sggl&h(u,r)\ < Cre " (71)
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Also, from

87?¢ = %[&“h - 28r¢]

we see that
0%¢| < Cre 2, for r; <r < R. (72)

To get such an estimate for small r we need to be more careful in computing 92¢. We have that
02 0(us, ) = 10, (1) — 20,8 (u, )] = 210 (s 7) — > ((u,r) — B, )]

2 (7 1
Z [8 h(u,r) — 2/ (h(u,r) — h(u,s))ds } = [8 h(u,r) — / / Orh(u, p)dpds]

//8hur — Orh(u, p) dpals—i///a2 (u, t)dtdpds.

A quick computation shows that 7% I [7 f: dtdpds = § and therefore

Hﬁ\)—l

1076 (u,m)| < sup [07h(u, ).
0<t<r

If r <r_ we can use to obtain
076 S C -, (73)

which allows us to show estimate (21)), if we put ¢(co) = h(c0).
Now we turn to the proof of estimates , and . We know from that

O:h(u,7)] < Cem0+0/2m(1 4 )32,

for —1 < 6 < 1/2. Tt follows that, for every u > 0, 0,h(u,-) is integrable in r from 0 to +oo. So,
the limit of h(u,r) as r — 400 exists. We set

o(u) = lim h(u,r).

r—-+00

With this definition we have

- < < s M uge < 2 —(145/2)u
[h(u,7) = ¢(u)| < /r |Orh(u, s)|ds < /T P ds < =

Therefore we get

- 1 /7 1
8w, ) — ()| = A7) — plu)] < = / Ih(u, s) — d(u)|ds < T/O e 0y

0gXO (e + 7
S (x(0) + A(r)[1 — X(a)})me—ummu’

where

Ay = LD [u - ) ;] |
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which is only relevant when § # 0. It is easy to check that

lim A(r) =1and lim A(r)=—

r—0 r—+00 |(5‘ ’

SO
x(6)
B, ) — (u)] < We(ua/z)u’
o r

which corresponds to estimate of Theorem
We can now use this estimate to show that ¢ is continuous. Let u, — u and let ¢ > 0. For r
large enough, say r > M, we have

1 €

@(U) — h(u, )| S m <3z

, Yu > 0.

By continuity of h there is some N such that n > N = |h(up,r) —h(u,r)| < 5. Thus, forn > N
and r > M we have

|9(un) = ¢(u)] < |P(un) = hun, )| + |h(un, 1) = hu, r)| + [A(u, 1) = G(u)] <e.

Hence ¢ is continuous. Also we have from Lemma @ that

~ o |h=h] _ log® loeX(®)
|a7‘¢| = |87~h| — | | SJ (zf n ()62—::) Ha’/‘hHLDOaQ—‘S S W6(1+6/2)u,
r r r

so we have shown estimate . Taking one more derivative and assuming that r > r_ we obtain
0261 = Lok — 20,6] £ 1EEED) —aavrn
T - r T T ~ (1 4 T)3_6+ :
For r < r_ we can use to get

1926 (u, )| < sup |92R(u,t)]| < e~ (1+0/Du,
0<t<r

These two estimates taken together imply .

For the proof of we simply use 0, ¢ = fg Ouh(u, s)ds and the estimate for Oyh. In turn,
the proof of follows from the estimate for |02h| in Lemma Finally, (21)) follows directly
from the above estimates — and this completes the proof of Theorem O

4.3 Properties of the asymptotic solutions

In this subsection we prove some properties of the asymptotic solution ¢ in particular its differen-
tiability as part of Theorem We show:

Proposition 4.1. Let § €] — 1,1/2[. Then, 92,h(u,-) € L'(]0,+o0]), Yu € [0, +oc[. Moreover,
¢ € C(]0, +0]) and

+o0o
Oup(u) = 0yh(u,0) + / 02 h(u, p)dp.
0
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Proof. Let —1 < § < 0. The fact that 92 h(u,:) € L'(]0,+oc[) follows immediately from the
estimate in Lemma . From the definition of ¢ we have that

Q(u+t)—g(u)_h(u+to h(u,0) /+°°1/
, =
Using the estimate from Lemma 4.2 we see that

2+u

1 u+t 9
A e

when |t| < 1. Since, for § < 0, (1 + )21 € L'(]0, +00]), it follows by the dominated convergence
theorem that

(s, p)dsdp.

S

400
0.0(w) = ub(,0) + [ 8 h(u. p)dp.
0

Then, the continuity of 9,¢ follows immediately from the fact that 92.h is continuous and from
Lemma (4.2 B

We can now extend the result to the remaining values of & by using the simple domain of
dependence argument presented before Corollary O

We end this subsection by proving two further properties of ¢:
Corollary 4.1. As a consequence of Proposition [{. 1]

1. limy 400 @(u) = ¢(00).
2. limy 400 Oud(u) = 0 when § < 0.

Proof. Recall that for fixed r,
¢(o0) = lim h(u,r).

Uu——+00

In particular, limy o h(u,0) = ¢(c0). Now, note that

“+oo oo —(1+6/2)u (1+6/2)
Orh(u, p)dp| < —————dp Se” v 0.
/0 (u, p) P’N/O 1+ p)2? PE ot

In this way we see that

U—>+00 — U—+00

+oo
lim ¢(u) = lim h(u,0)+ /0 Orh(u, p)dp = ¢(00).

Since ¢ has a limit at infinity, we expect that its derivative goes to zero. Indeed this is the case, at
least when § < 0. In that case

+oo
‘/ h(u, p)dp| <

Also, from the equation d,h = G(h—h)+ fd.h/2, which comes directly from the integro-differential
equation , we can use Lemma , Proposition and estimates and to obtain

r2 logX(‘s)(e +7) e—(1+6/2)u

o [
0 (1 + p)1_5 p u——+oo

|Ouh(u, )| < 11 e—(1+8/2)u (1+ T)QW (74)
In particular,
18uh(u,0)| < e~ (1F0/2u —0
U—r+00
and thus the second property follows. O
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5 Asymptotic convergence to the de Sitter solution

The objective of this section is to prove Theorem We split the proof into three subsections
corresponding to the convergence of the metric and its first and second order derivatives.
5.1 Convergence of the metric

We start by showing statement of Theorem following the steps of [10].
Since f is bounded and increasing in 7, the limit of f(u,r) as r — 400 exists, for each u > 0.
Set

flu,00) = lim f(u,r).

r—+00

Define a new coordinate 4 by di = f(u,00)du or equivalently the function

u
a(u) = / f(s,00)ds.
0
Using
u
(u) — a(ug) = / f(s,00)ds
ug
and 1 < f(u,r) <1+ ex;,, we see that
U(up) —up +u <u < (I+ex,)u+ a(ug) — (1 + ex;,)uo.
Choosing up = 0 and 4(0) = 0 we get
u<u<(1+ex,)u.
Since 4 is strictly increasing it is invertible, so we often write u = u(@). In this way we define the

functions (w(@), ) ~( (@)
R ~ flu(a),r _ flu(w),r
A = (@), o) f(u(i). o)
In these coordinates, the metric becomes

and fa(t,r)

g = —f1(t,7) fa(t, 7)d0? — 2f1 (0, r)dadr + roge.

Now we let

1 1
eozﬁaﬁ‘i‘ V TZ—lar and 61:78{“

which together with some orthonormal basis e, e3 of S? forms an orthonormal basis of de Sitter
spacetime. For this to be well defined we assume from now on that » > 1. Now we write our metric
in this basis. If we set grj(a,r) = g(er,ey) we get

f1 (ﬂ, ’r‘)fg(’lft, T‘)

goo(t, 1) = =2 —2f1(a,r)
gon i) = 8D gy — (1 -2
911(’&, 7’) _ fl(ﬂ,’l“)fg(’&, T).

1—1r2
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Our goal is to prove convergence of a?gaffgu(a, ) to 853)86’811g‘]i§(ﬂ,r), where gds = —1,¢47 = 0,
gilf =1 and 8y, 51 > 0 with By + 51 < 2. In this subsection we just deal with the metric itself whose

convergence can simply be seen through

F () — f(u, 00)] = |exp (; /0 (h_j)st) exp <; /00o (h_sﬁ)stN

% (h — h)? Cray [ log™ (e + 5)
SJ/r Y ds < e /r —(1+$)3_25+ ds (75)

_ log™@(e+ 1) - (2+0)(1-0)a
ST ’

where we used Lemma [2.1] and

) — (1) f(u,00)| = —

r

/0 "1 - 35%) (Flus) — F(u,00))ds

L _ovs)a-oya [ QIOgQX(é)(€+5)
S ;6 ( )( E) o (]."‘S) st

S; log2x(6) (6 + 7”‘)(1 + 7,)25*’e*(2+(5)(175)ﬂ7

which can then be used to prove statement of Theorem [1.3] (see also [10]).

5.2 Asymptotic C'-stability

In this section we prove estimates of Theorem To start with, we collect a number of
estimates for the first derivatives of f and f that will be needed in the sequel:

Lemma 5.1. Given 0 €] — 1,1/2[, there is some v = v(d) > 0 such that the following estimates
hold:

(1= r2)f — f| < [log(e + r)|PXOHIH @) o= CFdup2 () 4 2072 (76)
rlog2X(5)(e +7r) _ 948

0-f1 < T (2+9) (77)

10, f + 21| < (1 +7)e” Hou (78)

10, f| S e (34 (79)

10uf] S (1472 0Fat0w, (80)

Proof. Estimate follows directly from Lemma equation (b8) and

T2
o.f= My

Now differentiating f with respect to u we see that

Ouf(u,r) = f(u,r) /OT hu, p) ; . p) [Ouh(u, p) — Oyh(u, p)]dp.
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We can estimate |0, h — 0, h| using

< sy(o)+1—m () (L +we ™ /T r—p
/ / |02, h(u, s)|dsdp < [log(e + 1)) " ; (1+p)1_5dp7

which comes from (69)). If § = 0 then the last integral is just equal to rlog(1 +r) —r + log(1 +

which can be estimated by r2(1 + )~ !log(e + ). If § # 0, then the integral equals

(147)oH 1 r

s0+1)  6(6+1) &

which is estimated by r2(1 + )%=, Therefore we get
|0uh(u, ) — Ouh(u,r)| S [log(e + r)XOTI=HO (1 4 yp)e™rp (1 )0
We can now use this to obtain an estimate for 9, f and show as

" [log(e + p)]Sx(5)+1—H(6)
(1+p)>o0

r&ﬂsu+wk*”*ﬂf/ dp S (1+u)e(H50m,
0

Recalling that

- 1 ("

Flur) = 3 [ 0= 3. o).
we find

- 1 [
WJWmMSr/Wl—wmajwmmws0+wfﬂ+uk*”*“%
0
Finally, we estimate |0, f+ 27| using

_ 1 _
0f +2r] < —[(1=r*)f = fl+2r[f = 1].

From

1

r

_2_~:r_2r
(1—r2)f— ] A(l %)K:@ﬂwyMWm

we see that

log?X®) (e +-y) _ u
=i -115 7 / - /p y(lg—Fy)Zf 25+y>e 0 dydp

S log™ (e + r)e= ) 7“/0 11— 3p2lmdﬂ
< [log(e 4 r)|PXOFI=H9) o =(+0)up2(7 4 7")25+_2

and therefore

10, f + 27| < [log(e + )| XOHHO =@ (q 4 ) 20771 4 gm0 < (] 4 )= (@O,
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We now have the tools to estimate 0,.gg1. First observe that

2
ar.g[)l = 1%1742[8,,]’2 + 2r] + [f2 _ (1 _ 7“2)] arfl(zl _Trg)—;— 27"f1 .

We can estimate 0y fa + 2r using and as

1 ~ 1 -
|00 f2 + 27| = ml@f +2rf(u,00)| S (1= 1) f = fl+7(f(u,r) = f(u,00)]

[log(e_‘_r)]ZX(é)JrlfH(é) _21)
(A+ri2r  °

1—e)t

S

Furthermore, using we have that
1

|a1“f1(1 - T2) + 2’/“f1| = f(U,OO)

|arf(1 - 7’2) + 2Tf‘ S T

Therefore, putting these together we get

2x(0)+1—H(§
[10g(€(41rjr’)] )’;(;; ( )e—(2+5)(1—5)a.
T

\argoﬂ S

Now we turn our attention to d3go1. We have that

Oq
dagor = 1_7{}2”2 - (1= + 1{71735an-

To obtain an estimate for this derivative we need to control 0y f1 and 03 fo. We have that

_ Ouf — J0uf(u,00) _ Ouf — Buf(u,00) — [f — 10w (u, 00)

Oult = w0 ORSE
First we estimate
"lh—h _
0w f(u, 1) — Ouf(u,00)| < [f(u,r) — flu, OO)!/O | 5 ‘|8uh_auh|dp

—|—f(u,oo)/ ’h_ph‘muh—@uﬁldp

[log(e + T)]5x(6)+1—H(6)

s

1+6/2+’Y)(1—a)a,

S(1+a)

where we used . So we have that

[log(e 4 )] Px(O)+1-H(9) (é/2em) (-

0afa] S (1+ @) (1+r)1—07=0 ¢

As for 0y fo we may write o

Gaf2 = 7(u,50)?
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We can take advantage of some cancellation here by writing

= 20uf(u,00) 1 [T 9 1" 9 *h—h —
auff:/ 1—3s 8ufu,sds/ 1—3s fu,sds/ ——(Oyh — Oyh)d
oy = [0 sau s - [ s s [ )dp
1 T ¢} h — B —
= _7"/0 (1 —3s%) f(u, s) / T(ﬁuh — Oyh)dpds.
3 (85)
We can now estimate this using as
00 f2 < (14 @) AH0/2NA=)i(g6 (¢ 4 p)|PXOFI=HE) (] 4 p)l+0+0"
With everything together we see that from (83))
7x(8)+1—H(6) N
|0ago1] S log(e +7) (1+ @)e” o/, (86)

(1 + T)l*(ﬁ'*é

Now that we have the first order derivatives and for go1 we can compute the first order
directional derivatives. We then get

[log(e + T)]7X(5)+1—H(5)

(14 r)2-20" (14 @)e~(1F0/2H7(A—e)a
T

|00 g01| <

and
[log(e + T)]7x(5)+1—H(6)

(1+7)2-07=90

where we can absorb the factor 1 + @ by taking a smaller ~.

Estimates for the first order directional derivatives of the remaining metric coefficients ggg and
g11 follow by an identical procedure since we can write goo = go1 — f1 and g11 = go1 + f1- In fact
this yields identical estimates as for go; which then proves estimates (23]) of Theorem

(1 + a)e—(1+5/2+'y)(1—5)ﬁ’

’861901| 5

5.3 Asymptotic C?-stability
We start by showing the following estimates for the second order derivatives of f:

Lemma 5.2. Given 0 €] — 1,1/2[, there is some v = () > 0 such that the following estimates
hold:

02f] < _1og™
Py
5x(0)+1—H(§
02 f1 S [log(f(il—i-—'_?“)});_(;j_d ( )6_(1‘%‘*‘7)“
T

192 f| < log"™X @ (e 4 7)1+ )X 20,

Proof. For the second derivative with respect to r, we have the expression

h—h 3,(h—h)? 1(h—-h)4
20 _ gn—n _ 9 2
o f=1f " Orh 27‘ 2 + 2 f.

34



We can estimate every term of this expression using Lemma [2.1] to obtain

4x(9)
0211 < e

We now turn to the derivatives that involve u. We start with
2 f = 8f/ " ouh — 8h]dp+f7[6h il

Therefore using Lemma [2.1] u and (81) we get

[log(e + T)]E)x(é)—i-l—H(é)

—(1+3+7)u
T (I+ue 2 .

[N AS

Now we can estimate 92 f using
02 f = af/h hah ahdp+f/8hah f/h ha% d2h)dp

and the estimate for O2h. In fact since the estimate for 92h is the same as for 92h we get

102f] < (1+ u)?e™ 2 [log(e + )] XO (1 4 7)207

O
We consider now 83901. First observe that
92 f1 04.f104 f2 fi
2 _ [ o - U 2
811901— 1—r2[f2 (1 )] 1 — 2 + 1—r2a“f2'
To estimate this we must be able to control 85 f1 and 85 f2. We start by noting that
0211 = ——— (021 — 021, 00) = D f (u, 00) 2L = LOu1:20)

f(u, 00) f(u, 00) (87)
Ou f (u, 00)

27 Oy Ouf(u, 00
LS 0 = fouf (.0)

and we focus on estimating 92 f — f@g f(u,00). Here we have to be careful. We want to say that

% (Duh — Byh)?

8Zf(u7m):f(u7m)</o h=h g - 8h)dp>2+f(U,OO)/0 ;

;
T f(u,00) /O

h—nh
however, given our estimates we can only guarantee that these integrals converge if § < 0. For this
reason, when estimating second derivatives we assume that § < 0. We can then write

021 — FoR F(uso) = Flurr) [(/ N “Wﬂ

o) _ 7)\2 oL _f _
_f/ de—f/ W(aih_agh)dp
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which, from , and Lemma results in
02 — 732 (,00)] < [lo(e + P2 2HO (14 1)3(1 4 ) (=90,
Using this result we now estimate 81% f1 from as
|8§fl\ < [log(e + r)]gX(‘s)”*QH(‘S)(l + r)5(1 + IAL)2€72W(17€)&.

Regarding 82 fo observe that

i) _oultus) (5 Oeflico))

1 L
Oif2 = fu oy (agf Iy 00) £ (4,001

f(u,00)

We know how to estimate the second term, so we focus on the first term. We can write

27 ~8§f(u,oo)_1 "  a.2\/92 7 2
02f — R = [0 8) (02 (. 9) = w9092 (0,0
and therefore
07 0af(u,00) 8x(8)+2—2H () 2+6 N2 —2y(1—e)i
027 ~ FOLL ) < fogle 4 PO 2014 183 (1 4 P02

Using , this leads to the estimate
’8%]02’ 5 [log(e + T)]Sx(5)+2—2H(6)(1 + 7“)2+6(1 + ﬁ)2€—27(1—a)ﬁ'
Finally, we can put these terms together to obtain

92g01] Slog?(e+ 1) (1 +7)°(1 + 4)2e 20—

With this estimate we can now obtain the corresponding estimate for the second order derivative
with respect to ey as

log?(e + ) o (1—8)d
2 N2 —2~(1
92,90) S T g (4 ) D079
Again, this estimate works only for large 7 and § < 0. Next we estimate 92gp;. We have that
0, f1 2r f1
2 T 2
87‘901 - 2(arf2 + 27“) <1 — 7,2 =+ (1 — 7’2)2f1> + 1_ 7.2 (8rf2 + 2)
97 f1 2f1 o fr | 8r°f
—(1— 2 T )
2=l T))<1—7“2+(1—r2)2 =22 T (1= 2)p

So we are only missing the estimate for 92 fo + 2 which can be obtained as

02 £ +21 S (L1100 f1 + 511 = r2)f = Fl+ 1 f () = f(u,00)

< llog(e +n)XOH=HO o 5o
~ (1 + r)2—26F '
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Using this expression we find

- [log(e+r)]6X(5)+1_H(5)

o2 —(2+6)(1—e)it_
’ 7"901’ ~ (1_{_7‘)4,25-%

e

We now turn our attention to ﬁfﬁgm. We may write

02, Oa Oq
Oagor = (f2 = (1= 1%) (1'"_“];2 + o ﬁ%g) O
(83)
(O 2 iy
+0uf> <1 —r2 + (1-— 7"2)2) + 1-— 7“28”1“}02

and we have estimates for all terms except for 57,211 f1 and 8311 fo. Let’s consider first Bfﬂ f1 written as

2 _ 1 2 8uf(u7 OO)
P = T (4~ a1
So,

[10g(e + T)]5X(5)+1*H(5)

AN —(146/247)(1—e)a
e (L i (-

102 1] S

Next we estimate

Oufs = ——— (@%f — O [

Flu P flu.o0) 7
= T (7 (0 - 15y ) — -9 [ @ adkva)

giving
0%f2| S Dlog(e + r)XOHHON (L ) 40 (1 4 g)em (0720,
Finally, with these estimates we obtain from (88
[log(e + 74)]7x(6)+2—2H(6)
(1 +7a)2—35+—5

102 g01| < (1 +ﬂ)6—(1+6/2+’7)(1—6)ﬁ.
Now that we have all the estimates for the derivatives of gg; up to second order we may estimate

the remaining directional derivatives. We get

log?(e + 1) o (1—8)d
2 < 1 A2 —2v(1—¢€)h
102,901 < 1112 (1+a)%e
and

log?(e + 1)

|a€0861901‘ ,S W(l + @)26—27(1—5)117

where for both cases we need § < 0.

Finally, we obtain estimates for the derivatives of ggp and gi1 by writting goo = go1 — f1, 911 =
go1+ f1 and using the above estimates for the derivatives of f1. Doing this, yields the same estimates
as for go1 and therefore we obtain which concludes the proof of Theorem

As a final note we remark that some of the above decay estimates can easily be improved for

fixed 7:

37



Remark 5.1. For fited r > R we have for any multi-index 8 = (Bu,By) € N3 with || < 2 and
98 = 9P«9Pr | the following estimates hold for the metric and its derivatives:
107 () = 0% %5, Yooy S (1 + oD D2

N N 89
10 f (u, -) — 8 35 (u, Wreor) Sk (1+ w)X(Bu=2) g =A== x(Bu=2)]u (89)

where f4(u,r) =1, f¥u,r) =1 —r2 and 7 is a positive constant.
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The sequence (h,), contracts

The proof of Theorem is based on showing that the sequence (h,,), contracts in L L® as we show next.

Proposition A.1. Let —1 < ¢ < 1/2. For ||hy||o2-s and U sufficiently small, the sequence (hy)n
&Ly
contracts in Lgp LY.

Proof. Using ,

Dy 1wy =2Gpqwy, — I

But also, by definition,

fn—l
2

Orwy,.

Dy_1wy, = 6uwn -

So we get

hn—l - hn—l + fn—l

auwn = 2C;(n—lrwn — Jn—-1

From this we see that

Dy(wny1 — wy) = 2G i1 — Jp fin I % FrnOrwn — Oywy
= 2G Wit — JIn fin = %fnarwn — 2Gp_1wn + Jn,lh’“l;ﬁ"‘1 - %fn,larwn
2 (Wi — )+ 2(G — G i + f‘j*awn _ %[(hn —h) = (ot — )]
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Again, if we consider this equation along the characteristics (u, 7, (u;u1,71)), multiply it by an integrating
factor and simplify the expression we are led to

8u <[wn+1 _ wn]efsl 2Gnds> — 2(Gn B anl)wnefvfl 2G, ds + fn _anfl 8rwnef;'l 2G,, ds

- ﬂ[(h’n - Bn) - (hn—l — Bn—l)]e‘fil 2Gpds __ M

[hn—l _ En—l]efjl 2Gnd5.
Tn Tn

If we now integrate this in « from 0 to uy, and noting that w,41(0,7,(0)) — w,(0,7,(0)) = hy(r,(0)) —
By (0)) = 0, we get

uq wuy £ F w
Wyy1(u1,71) — wy(u1,m1) = / 2(Gr — Gror)wpela 260 gy 4 o -1 2fn_1 Dpwpelit 2Gnds gy,
0

0
Uy Jn - _ f“'l 9G. ds
‘/ e T T
0 n
Uy _ ~ }
- / M[hnfl — hy_)efit 20nds gy,
0 Tn

This way we get the estimate

[wn41(u1,71) — wy(ur,r1)| < I + I + I3 + Iy,

where
Uy .
=2 [ 10— Gl 260 (90)
0
1oL o
I = 5/ |fn - fn—1||arwn|€f“ 2Cnds gy, (91)
0
1l h 7 i1 2G,ds
I3 = (= hn) = (g = By el 2 P du (92)
0 n
“ J’n - Jn7 - u .
Iy = /0 “,71||hn71 — hp_q|edu 2CGnds gy, (93)
n

Before estimating these integrals, we’ll see some useful inequalities. We have that

rlogX(é)(e +7)

|(hn = hp) + (hn—1 = hn—1)| < [y = hp| + |hn—1 — hna| S WHWHHL;?L?C’%&

TlogX(‘S)(e +7)
W ”wn—l HLECL;?O.Q?&

< rlogX®(e4r)
(14 7)2-oF

Also, recalling that [|h|| e o < ||kl L Lo, We have
‘(hn - ﬁn) - (hnfl - Bn71)| S 2||hn - hn71||L[°J°L$,°~
The last two estimates imply that

x(6)
. - 5 , rlog® (e +r)
|(hn - hn) - (hn—l - hn—l) | S X ||hn - hn—l”Li’fL;?" (1 T T)2_6+

Now, since
L7 (hy = hy)? o [T slog™ (e +s) "2
5/0 ds < (2) /0 = ds < (a')
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and similarly for the same expression with n — 1 instead of n, then using the mean value theorem we see
that for 2’ sufficiently small
1 (" (hy — hy)? 1 " (hp_1— hp_1)?
|fn - fn71| = |eXp (/ 7( ) dS) — exp (/ —( ! 1) ds)‘
2 0 S 2 0 S

5 %/T ‘(hn - En)Q - (hn—l - hn—1)2|d8
S

" 1og¥¥ (e + s)
N ZE/”hn - hn—l”Lg’;’L:O /0 W

ds S I,th - hn—l”Li‘;’L;Z‘%

It also follows immediately from this that

~ ~ 1 T 1 T
Fo ol = |1 [ =80 = fonas| < [ @ aig — il
0 0
1 T
533'||hn—hn—1||L°U°L:°;/ (1435%)ds < (1+ 1) |hn — b || L Loe -
0

Now we also want a similar estimate for |G,, — G,,—1|. We may write

G = Guor = g (o = o)1= 307 = 1 [ (4 = )1 = 37005
= 217,[f = fa—1— fn— fa- 1] 232\/0 32(fn_fn—1)d3_gr(fn_fn—l)-

We have that

(hn B hn)2
2r

(hnfl - hnfl)2
fnfl 2

1+ 727010, (o — fuo1)| = (L4127 £y

_ (1+T‘)275
- 2r

W2 (o r210g™) (¢ + 1)
< hn - hnf oy Lo
< S @y e e i

rlogX(é)(e +7)
(1+7)2=2o"

|(fn - fn—l)(hn - Bn)Q + fn—l((hn - BH)Q - (hn—l - Bn—1)2)|

+a' ||y, — hn—1llLg Lo

S|Py — b ||z poe 10g* @ (e + 1) (1 + )% 72,

So,
|fo = foe1 — fo — fooa| < = / / 1+ = 5(1+p)2 310, (fr = fru—1)|dpds
S &by = By 1||L°°L°°*/ / log e;;f)dpds
Sl = hnilipiey [ [ dpds S~ hacrlzprer
In this way we see that

1 T
|Gn - Gn—l‘ S ZE/th - hn—l”L?fL;?O + l'/th - hn—lHL‘[’fL?C T72 / 52d5 + ’I‘I,th - hn—l”L?Lg"
0

S (U412 — ol -
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Now we obtain an estimate for |J,, — J,—1|. We can write

1—3r2 -

Jn_Jn—l - 3(Gn_G7L—1)+3r(f7z_fn—1)_ 47’ [(fn_fn—l)(hn_ﬁn)2+.fn—1[(hn_hn)z_(hn—l_hn—l)Q]]-

Therefore,

| Jn = Jn-1l S A+ 7)3" |hy = b1 ||l Lgepoe + 72 [[hy — hn—1ll e Lo

14 3r2 3 r? logQX(‘S)(e +7r) , r logX(‘s)(e +7)
+ (@)l = Byl L Loe (1472 + || Ay — hn—lHLg';’L:oW
<@/ ||hy — Byt || g poe (1 + ) log¥(® (e + 7).
Now we are ready to estimate the integrals Iy, I, Is and Iy. We start with I; as
“ 1 w 14 up
I < (@) by — B wm/ = el 2 gy < ||y — Byt || Lo oo ——
IN(‘T) || n n 1||LULr o (1—|—T’n)1_6e UNx|| n n 1||LULT (1+7‘1)2_5
Next we look at Iy obtaining
w1
1 uq 1 + (5%
ro 2G p ds 1o
I2 SI.’E ||h”_hn_1||LIOJQL$'O/O Wefu edqux ||hn—hn_1||Lg°L$om

and then we estimate I, as

1 102X (0 )
Iy S (QS/)Qth . hn—lHLEOL,?O / Meﬂil 2G’ndsdu

(1+7ry)L=o"
1og>X@ (e + 1)

< 2 ||hy — Bt || Loe oo ———

S llegre ()2
Finally, we estimate I5. Using the same notation as in Proposition we have

J, - - u J, - = u
I = / Muhn —hn) = (hp—1 = hpr)|eli 2Gndsqy +/ Muhn —hn) = (hp—1 — hyr)|eli 2Gndsqy
Q<1 Tn Q=1 n

4-n
147,
S hn — hnfluL?fLﬁ?‘J/ <1 > du
Q<y + 7

lo e+r, 2x(8)+1—H(d)
+ (x/)Qth _ hn71||L°U°L$°/ [ g( )]

ef:’l 2G“dsdu

Qo1 rn(l+ Tn)l_Q‘H
ool ey 0 — ol B e
S i e i
Putting these estimates together we obtain
s = wal(1,m1) S 2'llhn = hns o 1 % + 02" B = 1 [l 1 %

[log(e + Tl)]QX(6)+17H(6)

+ th*hn—l‘lL‘Z,cL?C( +x/th*hn—1HL‘Z,°L7?°

Mt )i L+ rp)3-2
logz"(é) (e +11)
"Ny — By || oo [ oo ——————2
+ ' 1||LU Le a —|—r1)2—5+
2x(8)+1—H(5)
T1 )4 r

43



Thus,

s = hul(wr) < [ s =l 5)ds
0

T U [log(e 4 S)}Qx(é)—&-l—H(ﬁ)
< NPy — hp—1|| oo Lo 1 M| d
S 1z e /0 {(1+5)4n+ (1552 (I1+2")a"| ds

S (U A+ (1 +2")2")[hn = hi || 13

Hence, we see that if ||| o o2 and U are small enough we can get the implicit constant smaller that 1,
U tr
thereby showing that the sequence (hy,), contracts in LgPL>. O
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